
Exploring Context-Sensitivity in Spatial
Intention Recognition

Peter Kiefer and Christoph Schlieder

Laboratory for Semantic Information Technologies
Otto-Friedrich-University Bamberg

96045 Bamberg, Germany
{peter.kiefer,christoph.schlieder}@wiai.uni-bamberg.de

Abstract. In its most general form, the problem of inferring the inten-
tions of a mobile user from his or her spatial behavior is equivalent to
the plan recognition problem which is known to be intractable. Tractable
special cases of the problem are therefore of great practical interest. Using
formal grammars, intention recognition problems can be stated as pars-
ing problems in a way that makes the connection between expressiveness
and complexity explicit. We argue that context free grammars are not
sufficiently expressive to handle important use cases. Furthermore, we
identify three types of constraints on the grammar’s productions that
may arise in spatial intention recognition: rule-at-location constraints,
rule-rule-constraints, and complex rule-location-constraints. Finally we
show that Tree Adjoining Grammars can be used to handle rule-rule-
constraints.

1 Introduction

Intention recognition is the problem of inferring a person’s intentions to act from
observations of that person’s behavior. It can undoubtedly make an information
system more intelligent. The system should automatically provide services that
support the user’s intentions, thus minimizing the necessary human computer
interaction (information push). Especially applications used under conditions
where the possibilities of human computer interaction are rather limited (such as
biking or technical maintenance) should adapt to the limited cognitive resources
of a user [1].

The intention recognition problem is also known in the literature as plan
recognition problem [2]. Many current plan recognition approaches deal with
the intractable form of the problem, and are thus rather suited for running on a
server than on a stand-alone mobile client. We focus on the latter since we believe
that there is a need for stand-alone mobile applications due to still expensive
data tariffs and privacy issues.

Assigning intentions to a sequence of incoming behaviors can be interpreted
as a pattern recognition problem. A formalism that has proven well for pat-
tern recognition in areas like machine vision ([3, 4]) are Context Free Grammars
(CFG) and their probabilistic counterparts. In addition to polynomial parsing

102



algorithms, such production systems have the advantage of being modular, gen-
erative, and intuitive.

Grammatical approaches are also used for intention recognition, but current
research in this area agrees that the context-freeness of CFGs is not sufficiently
expressive for most intention recognition domains. It seems at least a contradic-
tion in terms to build a system that is context aware with a formalism that is
context free. Probabilistic State Dependent Grammars (PSDG) ([5]), for instance,
define the probability of a production rule as dependent on a general context
variable (state) which is stored additional to the parse tree. This approach is
very general and directed towards a large class of plan recognition problems
which makes inference not efficient enough for our problem. Spatially Grounded
Intentional Systems (SGIS) ([6]) include spatial context by making the applica-
bility of a rule dependent on the current spatial region. This specific focus on
spatial context makes this approach interesting for stand-alone mobile intention
recognition of spatio-temporal behavior. A third line of argumentation targets
at utilizing grammar formalisms with more context sensitivity from natural lan-
guage processing (NLP) ([7]). Mildly Context Sensitive Grammars (MCSGs), a
class of grammatical formalisms well-known in NLP since the 1980s, are pro-
posed due to structural similarities to intention recognition problems. MCSGs
are more expressive than CFGs while still being polynomially parsable which
makes them especially attractive for algorithms running on mobile devices with
low computational power.

This paper strengthens the argument made in [7] and tries to combine it
with the spatial constraints formulated in SGIS [6]. We formulate three kinds
of constraints on behaviors typical for intention recognition on spatio-temporal
trajectories of a moving agent. This approach is new, in that it combines MCSGs,
plan/intention recognition and spatial knowledge modeled by a domain expert.
The goal consists in finding a formalism that has enough expressive power needed
for the kind of context sensitivity imposed by our domain, while restricting the
complexity of inference through spatial knowledge.

The outline of this paper is as follows. Section 2 introduces intention recog-
nition with Context Free Grammars (CFG) and the problem of ambiguity. It
is shown how spatial knowledge, like that encoded in SGIS, can help to resolve
these ambiguities. Section 3 discusses the need for more context sensitive rep-
resentations with special consideration of spatial knowledge. An example drawn
from a location-based game is formalized using Tree Adjoining Grammars (TAG)
which fall in the class of MCSGs. Section 4 sketches connections to related work
in intention recognition and motion pattern analysis not mentioned in sections
before. This paper describes work in progress, so we finally outline issues for our
future work in Section 5.

103



Production Rules P

Trip → Pick driving Drop (1)
Pick → parking (2)

| parking driving parking (3)
Drop → parking (4)

| parking driving parking (5)

Start Destination Observed Behavior Sequence

PS 6= P1 PD 6= P2 parking driving parking driving parking driving parking
PS = P1 PD 6= P2 parking driving parking driving parking
PS 6= P1 PD = P2 parking driving parking driving parking
PS = P1 PD = P2 parking driving parking

Fig. 1. A very simple context free production system for intention recognition (top)
and the language it defines (bottom).

2 Reducing Ambiguity by Adding Spatial Knowledge

2.1 Ambiguity: A Very Simple Example

To illustrate the basic ideas of this section we refer to the following simple
example: suppose we observe an agent on a car trip from PS to PD. We know
that she is going to pick up a friend at some point P1 on that trip, and that she
is going to drop her passenger at some other point P2. The observations we get
from our sensors are the behaviors B = {parking, driving} while the concrete
events of getting on or off the car remain hidden. The behaviors B are used
as terminals in our context free production system. We want to decide for any
element in the behavior sequence whether the driver is still on the way to the
pick up point P1 (having the intention Pick), or already accompanied by her
friend (having the intention Drop). A context free production system sufficiently
expressive for this simple use case is listed in Figure 1 (top). A top level intention
Trip is introduced as starting symbol, which yields in a set of intentions (non-
terminals) I = {Trip, P ick, Drop}. Note that the two agents might have the
same starting point (PS = P1), or the same destination (PD = P2). In Figure 1
(top), this is expressed by rules (2) and (4). Rule (2), for instance, states that the
start of the journey and the pick up may coincide. Figure 1 (bottom) presents
the language defined by our context free production system, i.e. all possible
behavior sequences that can be created with rules (1)–(5). From an intention
recognition perspective, these are all behavior sequences that can be recognized
by the simple grammar. The first two columns indicate which of the four possible
cases is covered by the accordant line, with respect to coinciding start/pick-up
and destination/drop points.

Formally, we now have defined all necessary components of a Context Free
Grammar CFGsimple = (B, I, P, Trip), which we may also call an intentional
system [6]. Recognizing the agent’s intentions in this formalism consists in de-
termining the correct parse tree for a sequence of behaviors. Algorithms for

104



Trip

P ick

parking driving parking

driving Drop

parking

Trip

P ick

parking

driving Drop

parking driving parking

Fig. 2. Ambiguity: two possible parse trees for the same sequence of behaviors.

parsing CFGs, most based on chart-based parsers like the Earley Algorithm [8],
are well-known and run in polynomial time. For each behavior b of an observa-
tion sequence, we can define the (direct) parent intention in the parse tree as
the currently active intention. When building a context-aware service it is those
active intentions that must be mapped to an appropriate information service.
For instance, the third behavior in the parse trees in Figure 2 (parking) has an
active intention Pick in the left tree, and Drop in the right tree.

The parse trees from Figure 2 visualize the ambiguity that may occur in our
example. Without further knowledge we cannot decide which of the two trees
is more plausible for the given behavior sequence. The problem of ambiguity is
well-known in NLP and typically solved by assigning probabilities to the pro-
duction rules, yielding in a Probabilistic Context Free Grammar (PCFG) (see
[9] for an overview and examples). Rule probabilities for a PCFG in NLP are
typically learned from large annotated text corpora. Assigning rule probabili-
ties for an intention recognizing PCFG is much more complicated, especially
because behavioral corpora do not exist for most domains. Instead of choosing a
probabilistic approach, we rather try to discriminate between different behavior
interpretations by using world knowledge, especially knowledge about the spatial
structure of the environment, to assist the parsing process.

2.2 Disambiguation with Spatial Constraints

We have already introduced intentional systems which are CFGs with behaviors
as terminals, and intentions as non-terminals. As a next step, we add spatial
knowledge to the production rules and obtain spatially grounded intentional
systems (SGIS), also defined in [6], as follows:

Definition 1. Let R denote a set of spatial regions, B a set of behaviors, and
I a set of intentions, all three sets being finite. A spatially grounded intentional
system A = (B, I, P, S,G) is an intentional system (B, I, P, S) together with a
relation G ⊆ P×R describing the regions in which a production rule is applicable.

SGISs exploit the fact that possible interpretations for an agent’s behavior
depend on the space he is currently located or moving in. This basic intuition of
connection between intention and place has a long tradition and already appears

105



Fig. 3. Spatial disambiguation.

in the first article that has formulated the plan recognition problem [2] where the
concept of LOCATION was integrated as basic concept in the World Domain.
For instance, a certain behavior in [2] can only be interpreted as plan TAKE,
if both, the actor and the object of that possible TAKE–plan, are at the same
location.

In our simple example, we could have some additional knowledge about the
structure of space in which the two friends are traveling. For instance, they
might be driving from urban area 1 to urban area 2 which are both part of
regionX (refer to Figure 3). We choose the spatial grounding of the production
rules introduced in Figure 1 (top) as follows: rules (2) and (3) are grounded
in region urban area 1, rules (4) and (5) are grounded in region urban area 2.
Grounded means that the rule may only be applied if all of its basic behaviors
(leaf nodes) take place in one of the selected areas. Thus, the production (1)
must be grounded in all regions because the trip spans over all spatial regions
from R.

Figure 3 shows how the spatial grounding in our simple example helps to
disambiguate during parsing. For this given connection between behavior and
space, the right parse tree of Figure 2 is impossible because rule (5) cannot be
applied for regions outside of urban area 2. Summarizing this section we can
say that SGIS reduce the ambiguities that may occur when parsing a behavior
sequence by modeling additional knowledge about the space where the behavior
occurs.

106



Fig. 4. Spatial behavior in the FluPa-Game.

3 Towards More Context Sensitivity

3.1 A Real World Example: The FluPa-Game

As in [6], we take a location-based game as use case for intention recognition. We
may consider a location-based game “a game which is supported by localization
technology and integrates the position of (one or several) players as main game
element into its rules” [10]. In other words, players moving in a geographic
gaming area are observed by localization technology, like GPS, which yields in a
motion track as an input for intention analysis. The real advantage of choosing
a game as use case are the limited possibilities of interaction. Especially when
a game is played by bike, the user needs both hands for navigation. This is an
ideal use case for implementing an information push mechanism.

A special case of location-based games are linear location-based games [11].
These are games where players are not free to move in the gaming area in an
arbitrary manner, but follow a linear geographic feature, for instance a river or
a railway line. This use case arises whenever the player’s main intent consists
in reaching a certain destination, like on a one-day bicycle tour from one city
to another. The logics of such a game must ensure that players are not required
to visit a location twice, for that would mean covering an extra distance. The
first implemented, at least to our knowledge, bicycle game for linear trips was
developed during the FluPa project at the Laboratory for Semantic Information
Technologies, Otto-Friedrich-University Bamberg. The FluPa-Game has been
implemented for Personal Digital Assistants (PDA). The GPS readings are taken
from an external GPS receiver which transmits its data via Bluetooth. The
implementation has just finished at the time of writing, so no user studies have
been conducted yet.

We will use variations of the FluPa-Game in the rest of this section, so we
need to sketch the main idea of the game concept: each of the two adversaries
plays the part of a skipper on the river Regnitz (although, certainly, in reality

107



Production Rules for the FluPa-Game

PlayF luPa → TreatV illage P layF luPa (1)
| SkipV illage P layF luPa (2)

SkipV illage → riding (3)
TreatV illage → riding TreatV illage (4)

| riding FindWay TreatV illage (5)
| ChooseHarbour ReachHarbour ChangeGoods (6)

FindWay → orienting (7)
ChooseHarbour → orienting (8)
ReachHarbour → riding (9)

| riding ReachHarbour (10)
| riding FindWay ReachHarbour (11)

ChangeGoods → picking (12)
| dropping (13)
| dropping picking (14)

Fig. 5. Intentional system for the FluPa-Game.

they are moving by bike). It is basically a game around a transport optimization
problem where you have to transport goods from one place to another to earn
money. You have a certain capacity on your boat which you may not exceed with
your freight. Before you may transport some goods, you must sign a delivery
order of the form “4 sacks of grain from Eggolsheim to Forchheim for 16 gold
pieces”. The available delivery orders are optimized in a way that guarantees
some competition between the players. Stations on the way are ordered linearly
along the Regnitz, so you can only accept and execute delivery orders that lie
ahead of you.

The types of spatial regions we can use for intention recognition are displayed
in Figure 4: the regions of type village are ordered linearly along the river, and all
part of the global region game area. Each village contains at least two possible
pick-up points, called harbours. All harbours inside one village are treated
equal, in a sense that a player may reach any of them to trigger the same game
action. An example intentional system for the intentions we want to support
is given in Figure 5: a player decides before reaching a village if she wants to
trigger some game actions there (TreatV illage) or just skip the village. Treating
a village means: finding the village area, choosing one of the harbours, and going
to the selected one (which again might include some wayfinding). Finally, the
player must decide if to pick some goods, drop them, or do both actions. The
motional behaviors are the result of a preprocessing of the GPS track which is
segmented along the borders of the spatial regions (see [12] for details). The
subscripts in Figure 4 give a hint of how a very simple preprocessing could look
like. Picking and dropping events are taken directly from the user input (typing
on the PDA).

Like in the simple example of section 2, we also have ambiguity for this gram-
mar. For instance, the behavior sequence riding, orienting, riding, orienting,
riding, picking is ambiguous, due to the two possible assignments of FindWay

108



Production Rules

S → NP V P (1)
NP → Pronoun (2)
V P → V erb (3)

Pronoun → I (4)
| He (5)

V erb → live (6)
| lives (7)

S

NP

Pronoun

I

V P

V erb

lives

Fig. 6. A simple CFG from NLP (left) and one tree generated by this CFG (right).

(find way to the village or to the harbour). We will not present the correspond-
ing parse trees here. It is also easy to find an appropriate spatial grounding for
the rules that can help us in this example. Our point is that, through the rules of
this specific game, we can formulate even more constraints on the applicability
of certain production rules than the spatial grounding constraints.

3.2 A Parallel to NLP: Cross-Dependency Constraints

Most standard textbooks in NLP elaborate on syntax processing using CFGs like
that shown in Figure 6 (left), which is certainly a very simplified one. Typical for
NLP are the so-called preterminals which are nonterminals that can only have
one terminal as child. These are typically used for word classes. For instance,
Pronoun and V erb in Figure 6 are preterminals. Especially for preterminals,
natural languages pose congruency constraints that are not covered by CFGs.
The parse tree in Figure 6 (right), for instance, was deliberately chosen to gener-
ate a non-grammatical sentence. If the pronoun is chosen as “I”, the verb must
certainly be “live”. This cannot be expressed in a CFG where the application of
any production is by definition free of any other productions chosen for symbols
in the tree that are not parent. In some natural languages, constraints like these
can be even more complicated and show crossing dependencies such as in the
pattern ABCABC.

In intention recognition, cross-serial dependencies like these can also occur.
For intention recognition from spatio-temporal behaviors we can formulate three
kinds of constraints, two of which may be cross-serial constraints:

1. Rule-at-location constraints: Certain productions may only be applied in
certain regions.We described these constraints in section 2. These constraints
are purely spatial constraints and covered by the SGIS formalism. They
cannot be cross-serial because their influence is restricted to one subtree.

2. Rule-rule constraints: If a certain rule has been chosen, another rule must
be chosen some time later in the parse tree. These constraints are equivalent
to those in NLP and purely temporal constraints, because they do not pose
any constraints on the regions where the rules are applied. These constraints
can be cross-serial.

109



Production Rules

PlayF luPa → skip PlayF luPa (1)
| pick PlayF luPa (2)
| drop PlayF luPa (3)

Fig. 7. Simplified intentional system for the FluPa-Game.

3. Complex rule-location constraints: If a certain rule has been applied in
some region R, this restricts the freedom of applying another rule later in
the parse tree. These constraints are spatial and temporal, and can also be
cross-serial.

The examples we give for constraints 2 and 3 are drawn from the FluPa-
Game. However, we do not need the full complexity of the rule set from Figure 5,
because the most important aspect in this context is the choice between skipping
a location, picking and dropping. Thus, for reasons of clarity, we use a simplified
version of the FluPa grammar, as can be seen in Figure 7. Note that cross-
dependencies appear just the same in the original full grammar from Figure 5
which we introduced for illustrative purposes.

A rule-rule constraint in the FluPa-Game is imposed by the fact that you
cannot drop something before you have picked it somewhere else. In grammatical
terms, that means that for any position in the input string, the number of ‘drop’
up to that point must not be greater than the number of ‘pick’. It is obvious that
this constraint can be handled with a non-deterministic pushdown automaton
and thus be handled by a CFG. Thus, with a CFG we can avoid the application of
rule (3) from Figure 7 when our stack (= the virtual boat in the game) is empty.
However, intention recognition is not only about deciding if a certain input string
belongs to our language, but rather about parsing the structure imposed by the
rules. In other words, it does not suffice to decide that “pick pick drop pick drop
drop” belongs to our language, but it will in many use cases also be important
to associate the pairs of “pick” and “drop” that belong together. For instance,
imagine “pick” and “drop” were only preterminals which in a second step had to
be mapped to concrete goods, like “pick-grain” or “drop-fish”. This long-ranging
association between pairs cannot be expressed by a parse tree from a CFG.

A complex rule-location constraint in the FluPa-Game is given by the
transport orders. For instance, if the player has picked the 4 sacks of grain in
Eggolsheim (see the example transport order in section 3.1), the production that
may be choosen in Forchheim is constrained to a “drop”. One could also image
typed constraints of the form: if you pick a sack of grain at a location of type
grain-pick-up-point, you must choose the drop production at a location of type
grain-drop-point.

3.3 Mildly Context Sensitive Grammars

Climbing up the well-known Chomsky hierarchy we come from regular grammars
(type 3), over CFGs (type 2) to context-sensitive grammars (CSG, type 1). NLP

110



has extended this hierarchy by adding new levels between CSGs and CFGs. The
first formalism in between were Indexed Grammars developed by Aho [13]. In this
formalism, a stack is attached to each node in the parse tree and handed on to all
children when a production is executed, after a possible push or pop operation.
A restricted version of Indexed Grammars are Linear Indexed Grammars (LIG).
They were first used, but not yet designated as LIG, in [14]. An important
restriction of LIGs is that the stack is handed on only to one child node. This
allows efficient parsing in polynomial time.

Other grammatical formalisms that fall in between CSGs and CFGs are Tree
Adjoining Grammars (TAG, [15]), Head Driven Phrase Structure Grammars
(HDPSG, [16]) and Combinatory Categorial Grammars (CCG, [17]). Interest-
ingly, these other formalisms have been shown to be weakly equivalent to LIGs,
i.e. their expressiveness allows them to produce the same languages ([18]). Thus,
LIG, TAG, HDPSG, and CCG can be subsumed under a common class of lan-
guage formalisms, called Mildly Context Sensitive Grammars (MCSG)1. Joshi
[19] was the first to call this class MCSG and defined common properties: limited
cross-serial dependencies, constant growth, and polynomial parsing.

The latter, polynomial parsing, obviously is an important argument for using
MCSGs in our use case. Cross-serial dependencies can be important in many use
cases as explained above. The various MCSG formalisms vary in the kind of
cross-serial dependencies they support, for instance regarding to the number of
symbols in a string that may be part of the same depend-relation2. The constant
growth property is explained in [7] as: “this means that if there is a plan of length
n then there is another plan of length at most n+K where K is a constant for the
specific domain”. This restrains the growth of the parsing sequence and is one
main reason why these formalisms stay polynomially parsable. As the authors in
[7], we see no use case in intention recognition that speaks against this property.
For instance, an exponential growth in the possible length of plans cannot be
observed in any reasonable domain.

3.4 Example: Reformulating the FluPa-Game as a TAG

Tree-Adjoining-Grammars (also called Tree-Adjunct-Grammars) are a MCSG
formalism which is - different than other grammars - rather a tree generative
system than a string manipulating system. That means, the elementary units
that are manupulated by operations are not strings of terminals and nontermi-
nals, but trees. An introduction to TAG can be found in [15]. In comparison to
other MCFGs, TAGs are a rather intuitive way of modeling grammatical knowl-
edge. Additionally, a parser for TAGS is available under GNU General Public
License (XTAG, [20]).

The trees in a TAG are divided into initial trees and auxiliary trees (see
Figure 8). Initial trees are headed by the starting symbol and have exclusively
1 Geib and Steedman [7] also call them LIG-equivalents.
2 Although in this paper we only present examples of two dependent symbols, one

can easily imagine cases where three or more symbols in an input string share one
depend-relation.

111



Fig. 8. A Tree-Adjoining-Grammar for the FluPa-Game (top) and two adjoining op-
erations (bottom).

terminals in their leaf nodes. In other words: the initial tree itself already forms
a correct word of the grammar through its terminals. Auxiliary trees have a head
node, and a number of leaf nodes which are all but one terminal nodes. One of
the leaf nodes is the so-called substitution node which has the same non-terminal
as the head node (marked with a circle in Figure 8). On these trees, an operation
called “adjunction” (or “adjoining”) is defined. Through this operation, a non-
terminal may be replaced by an auxiliary tree which has the same non-terminal
as head and substitution node.

For instance, in the first step in Figure 8, the auxiliary tree β1 is adjoined
into the starting symbol Play. Thus, the original Play and ε from the initial
tree are pushed down and appended to the substitution node. After the second
adjunction, we get the final tree on the right bottom in Figure 8.

We have not mentioned the dotted lines yet: these are dependencies between
nodes. TAGs allow these dependencies to be formulated on all initial and auxiliar
trees. Through the adjoining operation, the dependency just gets stretched but

112



not destroyed. Thus, in our example TAG we can generate any cross-dependency
of pick and drop just like needed in the FluPa-game use case. On these depen-
dency links, different types of constraints can be formulated [21]. For instance,
if pick and drop were pre-terminals, we could formulate a selective adjoining
constraint stating that the drop pre-terminal must be terminalized to the cor-
responding symbol to the pick pre-terminal (e.g. pick-grain, drop-grain). This
constraint is later used by the parsing algorithm.

4 Related Work

We have already cited [7] who recently made an argument for using MCSGs in
plan recognition. As in our work, they argued with possible cross-dependencies
in plan recognition. However, it was left open how exactly the correspondence
between cross-dependencies in NLP and plan recognition can look like for specific
domains. Adding spatial knowledge was also not addressed in that paper.

The plan recognition community has spent some interest in probabilistic
network based approaches (Bayesian approaches, [22]). One recent work in this
area chooses a Hierachical Markov Model and Particle Filtering to predict a
user’s changes in transportation mode, like getting on or off a bus [23]. They
evaluate their methods using a system called Opportunity Knocks which aims at
helping cognitively-impaired people to use public transportation safely. Different
to our approach, their mobile client sends data to an inference engine on a server
so that weaker demands on the computational complexity of the algorithm hold.
Another probabilistic network based approach, the Abstract Hidden Markov
Model, is chosen by [24]. Again, they evaluate their algorithms not on a mobile
client, but in an intelligent office environment.

A probabilistic model is also used in [25], here with the Dempster-Shafer the-
ory of evidential reasoning. This approach is interesting for it formalizes spatial
knowledge as spatial conceptual maps. The system collects evidence for a set of
candidate locations from which the most probable is chosen. The user’s future
trajectory is predicted, not his or her intention.

Inferring the goals of a moving human agent is also the aim of [26]. However,
the focus here is on detecting “inexplicable behavior” in an observed environment
(like a car park), not on explaining the high level intentions. Possible goals are
restrained to “reaching a certain point P”. Sufficient for these simple goals, a
representational formalism with low expressiveness (a state-transition diagram)
is chosen.

An ex-post analysis of spatio-temporal trajectories that have occurred in a
RoboCup game is the use case of [27]. This paper is related to our approach
in that the motion patterns are topologically contextualized by cutting them at
the edges of spatial regions. However, not the changing intentions of an agent
at a certain time are analyzed, but the overall characterization of a game, for
instance “BalancedWingPlaying(TeamA) = true”.

In the extended FluPa-Game example from Figure 5 we assumed a stream
of incoming preprocessed behaviors, namely orienting and riding. These behav-

113



iors can be even much more complex, as in the museum example from [28] (e.g.
crossing, visiting, ant-like-touring, grasshopper-like-touring). To obtain such be-
haviors, qualitative characteristics need to be extracted from an observed motion
path (or motion segment). Methods for this task have been developed in the area
of spatial cognition, e.g. [29].

The types of behaviors that are of interest for a specific domain can generally
be obtained in two different ways: one way is to model them by hand by asking a
domain expert. On the other hand, we could detect them from a set of observed
trajectories, e.g. when a number of FluPa-Games has produced a collection of
recorded tracks. The task of automatic motion pattern detection is one concern
of the spatio-temporal data mining community, see for instance [30].

On the lowest preprocessing level, before we can even get any reliable motion
paths, we must deal with sensor noise. Players in the FluPa-Game, for example,
are positioned with imprecise GPS measurements. Although newest GPS chip
sets deliver quite high precision and accuracy, the position might still be noisy
in situations with few satellites in view, for instance in the forest. To solve this
problem, Bayesian Filtering techniques may help us [31]. For our use case of
processing everything on-device, the benefits of Bayesian Filtering and its costs
need to be evaluated deliberately.

5 Discussion and Future Work

In this paper, we have argued that CFGs are not sufficiently expressive for many
use cases of intention recognition of spatio-temporal behavior. We identified
three kinds of constraints on productions rules that may occur. We have shown
that with TAGs we can express rule-rule constraints, while with SGIS we can
formalize rule-at-location constraints.

What still remains open is the representation of complex rule-location con-
straints. It is not yet clear if all complex constraints that can occur are express-
ible with the same formalism, or if this category needs a further refinement.
Furthermore, other grammatical formalisms than TAG need to be considered.
An interesting issue we have skipped in this paper are probabilistic grammars.
Even with spatial grounding of production rules, ambiguity in an input sequence
may occur. For these cases, adding probabilities to our grammar might help.

Finally, we plan to evaluate the use of MCFGs with spatial information in
user studies with the FluPa-Game. Other use cases are also planned, for instance
a mobile tourist guide.

Acknowledgements

We wish to thank Klaus Stein for the discussions on the problem of intention
recognition. Further, we would like to thank the FluPa-team (http://www.kinf.
wiai.uni-bamberg.de/flupa/) for their help with the game concept and imple-
mentation.

114



The FluPa-project was funded by the Wasserwirtschaftsamt Kronach (wa-
tershed management office Kronach) and the Umweltstation Lias-Grube Un-
terstürmig e.V. (office for environmental education in Unterstürmig).

References

1. Baus, J., Krueger, A., Wahlster, W.: A resource-adaptive mobile navigation system.
In: Proc. 7th International Conference on Intelligent User Interfaces, San Francisco,
USA, ACM Press (2002) 15–22

2. Schmidt, C., Sridharan, N., Goodson, J.: The plan recognition problem: An in-
tersection of psychology and artificial intelligence. Artificial Intelligence 11(1-2)
(1978) 45–83

3. Chanda, G., Dellaert, F.: Grammatical methods in computer vision:
An overview. Technical Report GIT-GVU-04-29, College of Com-
puting, Georgia Institute of Technology, Atlanta, GA, USA (2004)
ftp://ftp.cc.gatech.edu/pub/gvu/tr/2004/04-29.pdf.

4. Ivanov, Y., Bobick, A.: Recognition of visual activities and interactions by stochas-
tic parsing. IEEE transactions on pattern analysis and machine intelligence (PAMI)
22(8) (2000) 852–872

5. Pynadath, D.V., Wellman, M.P.: Probabilistic state-dependent grammars for plan
recognition. In: Proceedings of the 16th Annual Conference on Uncertainty in
Artificial Intelligence. (2000) 507–514

6. Schlieder, C.: Representing the meaning of spatial behavior by spatially grounded
intentional systems. In: GeoSpatial Semantics, First International Conference.
Volume 3799 of Lecture Notes in Computer Science., Springer (2005) 30–44

7. Geib, C.W., Steedman, M.: On natural language processing and plan recognition.
In: Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI). (2007) 1612–1617

8. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13(2) (1970) 94–102

9. Jurafsky, D., Martin, J.H., eds.: Lexicalized and Probabilistic Parsing. In: Speech
and Language Processing. Prentice Hall, Upper saddle River, New Jersey, USA
(2000) 447–476

10. Kiefer, P., Matyas, S., Schlieder, C.: Geogames - integrating edutainment content
in location-based games. In Magerkurth, C., Roecker, C., eds.: Pervasive Games -
Applications. (2007) to appear.

11. Kiefer, P., Matyas, S., Schlieder, C.: Playing on a line: Location-based games for
linear trips. In: International Conference on Advances in Computer Entertainment
Tecnology (ACE 2007). (2007) to appear.

12. Stein, K., Schlieder, C.: Recognition of intentional behavior in spatial partonomies.
In: ECAI 2004 Worskhop 15: Spatial and Temporal Reasoning (16th European
Conference on Artificial Intelligence). (2005)

13. Aho, A.V.: Indexed grammars - an extension of context-free grammars. Journal
of the ACM 15(4) (1968) 647–671

14. Gazdar, G.: Applicability of indexed grammars to natural languages. In: Natural
Language Parsing and Linguistic Theories. D. Reidel, Dordrecht (1988)

15. Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In Rozenberg, G., Salomaa,
A., eds.: Handbook of Formal Languages. Volume 3. Springer, Berlin, New York
(1997) 69–124

115



16. Sag, I.A., Pollard, C.: Head-driven phrase structure grammar: An informal synop-
sis. CSLI Report 87-79, Stanford University, Stanford University (1987)

17. Steedman, M.: Dependency and coordination in the grammar of dutch and english.
Language 61(3) (1985) 523–568

18. Vijay-Shanker, K., Weir, D.: The equivalence of four extensions of context-free
grammars. Mathematical Systems Theory 27(6) (1994) 511–546

19. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required
to provide reasonable structural descriptions? In Dowty, D.R., Karttunen, L.,
Zwicky, A.M., eds.: Natural Language Parsing: Psychological, Computational, and
Theoretical Perspectives. Cambridge University Press, Cambridge (1985) 206–250

20. XTAG Research Group: A lexicalized tree adjoining grammar for english. Technical
Report IRCS-01-03, IRCS, University of Pennsylvania (2001)

21. Joshi, A.K.: Introduction to tree adjoining grammars. In Manaster-Ramer, A.,
ed.: Mathematics of Language, Amsterdam/Philadelphia, John Benjamins (1987)
87–114

22. Charniak, E., Goldman, R.P.: A bayesian model of plan recognition. Artificial
Intelligence 64(1) (1993) 53–79

23. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation
routines. Artificial Intelligence 171(5-6) (2007) 311–331

24. Bui, H.H.: A general model for online probabilistic plan recognition. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
(2003)

25. Samaan, N., Karmouch, A.: A mobility prediction architecture based on contextual
knowledge and spatial conceptual maps. IEEE Transactions on Mobile Computing
4(6) (2005) 537–551

26. Dee, H., Hogg, D.: Detecting inexplicable behaviour. In: Proceedings of the British
Machine Vision Conference, The British Machine Vision Association (2004) 477–
486

27. Gottfried, B., Witte, J.: Representing spatial activities by spatially contextualised
motion patterns. In Lakemeyer, G. et al., ed.: RoboCup 2007, International Sym-
posium,, Springer (2007) 329–336

28. Schlieder, C., Werner, A.: Interpretation of intentional behavior in spatial
partonomies. In: Spatial Cognition III, Routes and Navigation, Human Mem-
ory and Learning, Spatial Representation and Spatial Learning. Volume 2685 of
Lecture Notes in Computer Science., Springer (2003) 401–414

29. Musto, A., Stein, K., Eisenkolb, A., Röfer, T., Brauer, W., Schill, K.: From mo-
tion observation to qualitative motion representation. In: Spatial Cognition II,
Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical
Applications, LNCS 1849, London, UK, Springer (2000) 115–126

30. Laube, P., van Krefeld, M., Imfeld, S.: Finding remo - detecting relative motion
patterns in geospatial lifelines. In: Developments in Spatial Data Handling, Pro-
ceedings of the 11th International Symposium on Spatial Data Handling. (2004)
201–215

31. Fox, D., Hightower, J., Liao, L., Schulz, D., Borriello, G.: Bayesian filtering for
location estimation. IEEE Pervasive Computing 2(3) (2003) 24–33

116


