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Abstract. Behaviour recognition in a video scene consists of several
distinct sub-tasks: objects or object parts must be recognised, classified
and tracked, qualitative spatial and temporal properties must be deter-
mined, behaviour of individual objects must be identified, and composite
behaviours must be determined to obtain an interpretation of the scene
as a whole. In this paper, we describe how these tasks can be distributed
over three processing stages (low-level analysis, middle layer mediation
and high-level interpretation) to obtain flexible and efficient bottom-up
and top-down processing. The approach is implemented in the system
SCENIC and currently applied to two domains: dynamic indoor scenes
and static building scenes. We include details of an experiment where an
ongoing table-laying scene is recognised.

1 Introduction

1.1 Application domains and requirements

Computer Vision in its most general form has been likened to silent-movie un-
derstanding [1], where people employ extensive common-sense knowledge about
the physical world, typical situations, behaviour of people, and aspirations of
individuals. On the first glance, behaviour recognition - which is addressed in
the paper - appears to be a more restricted topic, with a focus on the recognition
of very specific behaviours such as vandalism in a subway station [2], thefts at
a telephone booth [3], filling up at a gas station [4], identifying activities at an
airport [5] or placing dishes onto a table [6].

But at the moment one attempts to find a generic framework for behaviour
recognition, one faces most of the challenges of silent movie understanding. So
what are the challenges of generic behaviour recognition? In the following we
propose eleven requirements which go beyond traditional single-object recogni-
tion and must be met by a system for behaviour recognition. The requirements
pertain to a framework for model-based behaviour recognition, i.e. behaviour
recognition based on explicit representations of behaviour concepts and the nec-
essary procedures for recognising instances of such models in a concrete scene.
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R1 Behaviours describe a scene at an abstraction level above the level of
single-object trajectories, requiring qualitative and symbolic representations.

R2 Behaviours are typically embedded in a compositional hierarchy with
increasing abstraction towards higher levels.

R3 Behaviours are often defined in terms of qualitative spatial relations be-
tween objects. These relations must be evaluated efficiently to support behaviour
recognition.

R4 Similarly, behaviours may be defined in terms of temporal relations be-
tween parts which also must be evaluated efficiently.

R5 With behaviour recognition, we often face the task of interpreting scenes
incrementally and in real-time along the temporal dimension.

R6 Behaviour recognition often involves part-whole reasoning, in particular
guessing future behaviour from past observations.

R7 Part-whole reasoning and guessing the future means hypothesising inter-
pretations and hence entails uncertainty management and the need for hypoth-
esis revisions.

R8 Expectations generated by behaviour recognition provide a focus of at-
tention and induce top-down guidance for further processing steps.

R9 Behaviour recognition may require that contextual information from
other sources than the visual sensors be exploited.

R10 For behaviour recognition it may be necessary to resort to common-
sense knowledge, beyond the knowledge about visual phenomena.

R11 Representation and interpretation facilities of the behaviour recognition
framework must be domain independent and adaptable to specific application
domains by declarative specifications.

Let us consider an example of the traffic domain to illustrate these require-
ments. A driver assistance system equipped with a front-view camera is supposed
to warn the driver when a person is likely to enter the lane in front of the car.
”Entering the lane in front up the car” is a qualitative concept (R1). It may
be part of more complex behaviours, such as a pedestrian crossing a street or
a child running after a ball (R2). ”person on lane in front of car” as well as
the behaviour described by ”enter” involve qualitative spatial relations (R3). To
recognise dangerous situations, the temporal relation between the expected car
position and a person on the lane must be determined (R4). This must hap-
pen in real-time, keeping up with the evolving scene (R5). If a ball is observed
running into the lane, this may be part of a possible event ”child running af-
ter ball” and should cause a warning (R6). Depending on further circumstances
(e.g. a clear view of the curb area), the hypothesis of ”child running after ball”
may be discarded (R7). A verification of this hypothesis may require focussed
image analysis in an area where the child would be expected (R8). Context in-
formation, e.g. communicated from another car, may be available and must be
considered (R9). The example ”child running after ball” also illustrates a simple
case of using common sense (R10). A more sophisticated warning system would,
for example, also consider a possible fencing which would prohibit a child to
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enter the lane (R10). Finally, the same framework should be utilisable for - say
- behaviour recognition in an elderly-care scenario (R11).

We suggest that a computer vision system for behaviour recognition should
be designed to support these requirements as far as possible, and that claims
regarding generality should be measured against these requirements. Of course,
for specific tasks, it may be appropriate to devise special approaches. But in the
interest of economical application developments there is a premium on reusable
frameworks meeting all of these requirements.

In this paper we describe our approach towards generic behaviour recognition.
In agreement with other existing system frameworks [4, 7–9] and conceptual
studies [10, 11], our system consists of three major blocks as shown in Figure 1.

High−level interpretation system (HIS)

Metric−symbolic interface (MSI)

Low−level image analysis

Symbolic view hypotheses

Geometric scene description (GSD)

Fig. 1. Basic system structure for behaviour recognition

Low-level image analysis encompasses diverse image processing modules
(IPMs) which compute a geometric scene description (GSD) in terms of seg-
ments, blobs or regions of interest (ROIs) tracked through the image sequence.
The output is represented in terms of evidence objects which possess both
a symbolic identity and a quantitative description. IPMs may be focussed or
parametrised by top-down information.

The middle layer is called Metric-Symbolic Interface (MSI), but it has more
than a mere interface function. One novel task arising from hypothesis genera-
tion in the high-level interpretation unit (R7) is to match top-down hypotheses
with bottom-up evidence. This task differs from conventional bottom-up inter-
pretation as (uncertain) hypotheses must be mapped into available evidence
or may even trigger IPMs to provide further evidence. Another novel task of
the MSI is related to the computation of spatial relations which play a signi-
ficant role in high-level interpretations (R3). Qualitative spatial relations such
as ”touch” or ”on” are natural constituents of symbolic high-level concepts, but
they are grounded in the quantitative metrics of the GSD and can be computed
much more efficiently using a map-based representation rather than the descrip-
tions of symbolic objects. The same is true for temporal relations (R4) such
as ”approach” which also benefit from grounding in a metric representation.
A dedicated data structure supporting the representation and computation of
spatio-temporal relations has been postulated earlier [12, 13]. In our approach
this data structure has a natural place in the MSI.

The high-level interpretation system HIS consists of a conceptual knowledge
base and interpretation mechanisms. The conceptual knowledge base describes
concepts for object categories, occurrences, behaviours and meaningful object
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configurations using aggregates as generic structures (R2). The underlying idea
is that all high-level structures in a scene can be described in a homogeneous
way as composite entities with spatially and temporally related parts. This ap-
proach differs from scenarios [9], situation-graph trees [14] or other structures
which employ different representations at different abstraction levels, e.g. state-
transition networks or Markov Chains for action sequences [3]. We believe that
a generic framework (R11) should be able to represent arbitrary temporal re-
lations between the sub-parts of a behaviour (and not only state transition se-
quences), as can be expressed, for example, by Allen’s interval relations [15]. In
our implemented system SCENIC (see Section 4) we use quantitative temporal
constraints which realise a convex subset of Allen’s interval relations [11]. The
same formalism has also been proposed by [16].

Another advantage of our homogeneous object-oriented knowledge represen-
tation is the possibility to integrate behaviour knowledge with other common-
sense knowledge (R10). The viability of this perspective was shown in [17], where
description logics were investigated as a knowledge representation framework for
scene interpretation. Description logics are known to provide the theoretical basis
for knowledge representation with the Semantic Web language OWL3.

The interpretation mechanism provided by our HIS is designed to deal with
incomplete evidence - which is natural in evolving temporal scenes (R6) - as well
as additional context information which may be available from other sources
than low-level image analysis (R9). This flexibility is achieved by abstaining
from an inbuilt interpretation strategy and allowing interpretation steps de-
pending on the information on hand, for example conventional bottom-up steps
for interpreting evidence as well as top-down steps for predicting future parts
of ongoing behaviour or consequences of context information, for hypothesising
occluded objects, for computing spatial and temporal relations in the MSI, or
even for triggering focussed image analysis (R8). This general use of top-down
steps is novel in existing systems. However, the same idea underlies the temporal
prediction mechanism in [14].

In the following sections, we will concentrate on those aspects of our approach
which we deem most interesting for the behaviour recognition community. In
Section 2, we describe the MSI mediating between symbolic and metric repre-
sentations. Section 3 presents the knowledge representation and interpretation
facilities of the HIS. We use examples from the table-laying domain where the
task is to recognise actions such as placing a cover on a table as part of various
table-laying behaviours. In Section 4 we present a concrete experiment with our
scene interpretation system SCENIC. Section 5, finally, concludes the paper with
a summary and an outlook on future research.

2 Middle-level Processing

The metric-symbolic interface (MSI) connects the low-level scene analysis (track-
ing and primitive object classification) with the reasoning system. It takes input

3 Web Ontology Language, www.w3.org/TR/owl − ref/
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from both the low-level process (in terms of a GSD) and from the reasoning layer
(in terms of hypotheses and requests). It has two important tasks: performing
a spatiotemporal analysis, which turns the GSD into a set of high-level objects
and occurrences such as moves, touches and approaches, and acting as an inter-
face between the low-level image processing modules (IPMs) and the high-level
reasoning system. As a part of this interface work, the MSI creates instances of
high-level concepts from evidence, matches hypotheses to existing evidence, and
passes information between the low-level and reasoning stages, e.g. initiating a
focussed image analysis.

2.1 Low-level input

Although low-level video analysis lies outside of the scope of this paper, we will
briefly describe the output of the low-level stage needed for the middle layer. This
functionality was implemented as a part of a complete interpretation system for
the table-laying scenario (see Section 4).

The low-level stage of video interpretation consists of two main steps: tracking
of the objects in the scene and their classification. The tracking stage identifies all
moving objects in the scene and assigns each primitive object a unique ID which
is kept throughout the interpretation process. The image sequence is sampled at
(usually regular) time intervals. The position (oriented bounding box) of each
primitive object in motion is recorded for each time instant. The result is a
quantitative description of the trajectories of all objects in the scene. Depending
on the complexity of the domain, these objects may be blobs, regions of interest
(ROIs) or at best regions corresponding to complete physical objects.

The appearance of objects carries important clues about possible classifica-
tions and primitive objects are pre-classified using one of many low-level clas-
sification algorithms. This is only as reliable as the algorithms used, may be
ambiguous, and can be rejected by the high-level stage if it conflicts with other
information. Nevertheless, classification is important for the initialisation of the
high-level interpretation process.

The result of the low-level analysis is a quantitative description of the scene at
each observed time point, consisting of a list of all primitive objects present, each
described by: object ID, object class detected by a low-level classifier, position
(centre of gravity), orientation, the oriented bounding box, and colour.

2.2 Spatiotemporal analysis

The spatiotemporal analysis within the MSI consists of three steps: calculat-
ing perceptual primitives, computing qualitative primitives, and detecting occur-
rences within the scene.

Perceptual primitives In the first step of the analysis, a set of functions is
applied to the object properties from the GSD to obtain quantitative measure-
ments for spatial and temporal relations. The results of these functions are called
perceptual primitives. The intuition behind this step is to derive location- and
timepoint-invariant descriptors. Typical perceptual primitives include:
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– the rate of change of the position of an object (its velocity),
– the distance between the centres of two objects,
– the rate of change of this distance,
– the horizontal and vertical distance between axis-parallel bounding boxes of

two objects, etc.

These primitives are still quantitative, but they are important for the detection
of primitive occurrences such as a move (change in position), approach (change
in distance) and touch/overlap (intersection of bounding boxes).

Qualitative primitives The second step involves a qualitative evaluation of
the perceptual primitives. This is done by applying predicates to the perceptual
primitives which compute a “qualitative constancy” for each time point, for
example containment in a specific value range, being below a certain threshold
or being approximately zero. Applying these predicates results in qualitative
primitives, corresponding to notions like near, far, touching, approaching, moving
away, stationary, etc. This process is illustrated with five common qualitative
primitives:

– Moving. If the difference in the position since the last measurement is ap-
proximately zero, the object is stationary. Otherwise, it is moving.

– Speed. The speed of the movement can be qualitatively described by applying
a threshold predicate on the rate of change of position of the object. The
movement can then be described as slow, fast or other predicates.

– Orientation. By dividing the full circle into several intervals, orientation
predicates can be defined relative to the image axes to describe whether the
object points forward, backward, left or right. These predicates can also be
applied to other reference axes, like the direction of movement.

– Touching. If the bounding boxes of two objects overlap, the objects are
assumed to touch.

– Nearing. If the distance between two objects is decreasing, the two objects
are nearing each other.

Spatiotemporal occurrences In the third step, primitive occurrences are built
by combining qualitative primitives into units extending over time intervals of
maximal length, and by creating more complex models. Primitive occurrences,
such as move, approach or touch occurrences, form the basis for high-level rea-
soning.

A primitive occurrence is a concept which encompasses one or more qualita-
tive primitives and a maximal time interval during which the qualitative prim-
itives and possibly a certain set of constraints are always fulfilled. A primitive
occurrence is defined by a start and end time, by the objects involved and the
qualitative primitives which have to be true during this time period.

– Move is an occurrence where an object fulfils the moving qualitative prim-
itive throughout a time interval. An interval between two successive move
occurrences is a stay occurrence.

149



– Approach is an occurrence where the qualitative primitive nearing holds be-
tween two objects throughout a time interval.

– Pair move is a move involving two objects moving at the same speed into
the same direction at each instant of an interval. An example is a cup on a
saucer moving together.

– Touch is defined as an interval during which two objects touch, as defined in
the previous section.

– Touching move is a pair move during which both objects touch.
– Transport is a touching move consisting of an object which can move by itself

(e.g. a person or a hand) and an object which can be moved (e.g. a cup or
a saucer).

These processing steps turn a quantitative GSD into a set of qualitative occur-
rences which can be represented symbolically and correspond to notions used in
human perception, thus providing a basis for meaningful high-level concepts. In-
teresting events in many domains can be described using primitive occurrences
of this kind, for example a person purchasing a ticket in a subway station: a
person approaches the ticket machine, the person touches the ticket machine,
the person moves away from the ticket machine, the person approaches a train.

2.3 Spatial and temporal indexing

The calculation of spatial relationships profits from a map-based representation.
Looking for a left neighbour of a primitive object, for example, is simply a matter
of traversing a corridor in a map containing all primitive objects, instead of
performing an expensive comparison with all objects in the scene. The matching
of hypotheses to evidence also profits from this type of representation, as the
search can be concentrated on the part of the image confined by the hypothesis.

The map-based representation used in SCENIC is a grid dividing the image
into rectangular fields. There is a map representing evidence (computed by low-
level image analysis) and one representing views (representing hypotheses of
the scene interpretation). Each field contains references to all evidence or view
objects whose spatial extent intersects with it. Correspondingly, each evidence
item and each view has a list of all fields that it covers in the evidence or view
map, respectively. Thus, searching evidence for a hypothesis is turned into a
simple lookup operation. The fields covered by a hypothesis in the view map are
identified, and the corresponding fields in the evidence map contain references
to all applicable evidence items that can be matched to the given hypothesis.

Since the GSD enters the middle layer in terms of data based on image frames,
temporal indexing from each time point to objects of the GSD and to qualitative
primitives is already available. Primitive occurrences, however, extend over inter-
vals and are not naturally included in a frame-based representation. A top-down
request asking for an occurrence in a specific time interval would require check-
ing all primitive occurrences and comparing their begin and end times. Because
of this, temporal indexing is extended so that each time point also contains a
list of the references to all primitive occurrences taking place at this time point.
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2.4 Evidence-view mapping

In addition to the spatiotemporal analysis of the GSD, the central role of the
middle layer in SCENIC is matching real-world evidence to instances of object
views in the high-level interpretation system. In an interpretation process, this
matching may occur in two directions: bottom-up by assigning evidence to a
view of a high-level object, or top-down by checking a view hypothesis against
the available evidence.

The bottom-up case is a classification step which assigns existing evidence
to the view class tied to an object class of the conceptual knowledge base. This
step is ambiguous in general, as is well-known from single-object classification,
and probabilistic guidance may be required for efficiency. As a result of the
classification, a view instance (or in short: view) is created. This bottom-up step
is typical for initialising the interpretation process.

In a top-down step, the middle layer receives a view hypothesis created by the
interpretation system and has the task of confirming or refuting it. To do so, the
middle layer can either match the hypothesised views to known evidence (already
identified by the low-level system), or start a new low-level process to look for
more evidence at the position indicated by the hypothesis. If a hypothesised view
is matched to evidence, the hypothesis is confirmed and the evidence is linked to
the hypothesis. Otherwise, the hypothesis is refuted. The reasoning system can
take this new information into account.

In both cases, matches between evidence and views are recorded. If a particu-
lar match results in a conflict in the interpretation process, it can be withdrawn.
Failed matches are also recorded to avoid repeating them in the future.

Due to the amount of raw data involved in the interpretation of even simple
scenes, efficient indexing of information is extremely important when trying to
match hypotheses to evidence. The spatial and temporal indexing introduced
in this chapter significantly reduces the matching complexity by providing fast
access to all evidence in individual space and time segments.

3 Reasoning Level

In our framework we view scene interpretation as a compositional task where
the observed spatial and temporal occurrences in a video have to be composed
into aggregates with increasing level of abstraction until a scene interpretation
according to a given goal is reached. This composition is based on a declarative
representation of the knowledge in a conceptual knowledge base, a conceptual
model of a domain. In principle, this knowledge generically represents all scenes
which may occur in a domain. In the table-laying domain, the conceptual model
represents scenes about table laying actions that may occur in such a video.

This conceptual model provides the logical basis for the scene interpretations.
In the following, we will shortly describe the knowledge representation language
(Subsection 3.1), common aggregates for behaviour recognition (Subsection 3.2),
knowledge and reasoning about aggregates for representing compositional (Sub-
section 3.3), spatial and temporal occurrences (Subsection 3.4) and the process
of merging objects (Subsection 3.5).
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3.1 Knowledge representation language

The knowledge representation language consists of the following facilities:

Concept Hierarchies. Object classes (concepts) are described using a highly
expressive object description language, and embedded in taxonomic and
compositional hierarchies. Object properties are specified by parameters with
restricted value ranges or sets of values. A compositional hierarchy is induced
by the special structural relation part-of. All concepts are compositional
structures called aggregates except concepts without parts, which are called
primitive aggregates. Objects selected for a concrete scene interpretation are
instantiations of these concepts.

Constraints. Constraints pertaining to properties (relations or parameters) of
more than one object are administered by a constraint net. Conceptual con-
straints are formulated as part of the conceptual knowledge base and in-
stantiated as corresponding objects are instantiated. Constraints are multi-
directional, i.e. propagated regardless of the order in which constraint vari-
ables are instantiated. At any given time, the remaining possible values of a
constraint variable are given as ranges or value sets.

Task Description. A task is specified in terms of an aggregate which must be
constructed (the goal) and possibly additional restrictions such as choices of
parts, prescribed properties, etc. Typically, the goal is the root node of the
compositional hierarchy governing the concepts which are relevant for the
task.

Control Knowledge. Strategies for controlling the inference process can be
specified in a declarative manner. For example, it is possible to prescribe
phases of bottom-up or top-down processing conditioned on certain features
of the evolving scene interpretation. As mentioned earlier, there is no inher-
ent interpretation strategy built into the system.

This knowledge representation language is logic-based, general and thus, domain-
independent. It is used to model knowledge 1) specific for behaviour recognition
in general by specifying an appropriate upper model and 2) specific for a certain
domain, like table-laying scenarios.

3.2 Upper model

The upper model enables the distinction between occurrences and parts of oc-
currences representing real world entities (i.e. 3D-objects and their behaviour).
Views of primitive occurrences are identified by the middle layer and passed to
the high-level system. Conceptually, views are instances of the concept view (or
its specialisations) of the upper model (see Figure 2). The upper model also
contains view classes for all distinct primitive occurrences that can be identified
by the middle layer (e.g. of the type move, stay, touch, or approach).

3D-objects are instances of the concept real-world-entity or its special-
isations. A 3D-object instance may be related to a corresponding view object
linked to evidence in the scene, or may be hypothesised without evidence [18].
Further upper-model concepts that are specific to behaviour recognition, such
as transport, action, sub-action, are discussed in the following subsections.
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real-world-entity view-object
has-view

domain-object

stationary-object

physical-object

moving-object

has-stationary

has-move

subscene-view

stationary-view

moving-view

has-statics

has-motions

has-view

has-view

has-view

structural relation

specialization relation

touch-view

has-touches

touch has-view
object-of

Fig. 2. Upper-Model for interpreting behaviours.

3.3 Reasoning with aggregates - integrating perceived parts and
making hypotheses

A scene interpretation may be described as an aggregate composed of behaviours
of constituent objects which in turn may be aggregates with constituent parts,
etc. In the table-laying scenario, laying a complete cover (create-cover-action)
may consist of laying a cup cover (create-cupcover-action) and laying of a
plate cover (create-basecover-action). Laying a cup cover consists of trans-
port occurrences of the involved objects (e.g. hand-cup-transport and hand-
saucer-transport), a stationary occurrence representing the steady state of a
laid cup cover (cupcover) and optionally an approach occurrence prescribing
the decrease of distances between the object cup and the object saucer which
are part of creating a cup cover (cup-saucer-approach).

Parts of an aggregate may be mandatory, optional or number-restricted. An
example represented in our knowledge-representation language is given below:

(define-concept :name create-cupcover-action
:super create-action
:relations
((has-cup-transport (:set (:some (a hand-cup-transport) :min 1 :max 1)))
(has-saucer-transport (:set (:some (a hand-saucer-transport) :min 1 :max 1)))
(has-spoon-transport (:set (:some (a hand-spoon-transport) :min 1 :max 1)))
(has-cup-saucer-approach (:set (:some (a cup-saucer-approach) :min 0 :max 1)))
(has-cupcover (:set (:some (a cupcover) :min 1 :max 1 )))
(subaction-of (a create-cover-action))))

(define-concept :name create-cover-action
:super create-action
:relations
((has-subactions (:set (:some (a create-action) :min 2 :max 2)

:specializations
(:some (a create-basecover-action) 1 1)
(:some (a create-cupcover-action) 1 1)))

(has-cover (:set (:some (a cover) :min 1 :max 1 )))
(action-of (:or (a dinner-for-two-si) (a single-dinner-si)))))
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(define-concept :name dinner-for-two-si
:super cover-interpretation
:relations
((has-actions (:set (:some (a create-cover-action) :min 2 :max 2)))))

Such concept descriptions are used to reason about the compositional struc-
ture of a scene in a top-down or bottom-up manner. For example, if a create-
cover-action was instantiated for some reason, the appropriate parts are in-
stantiated top-down (i.e. hypothesised objects are created). If a hand-cup-
transport was instantiated, it is recognised as part of a create-cupcover-
action and the corresponding aggregate is instantiated bottom-up. If variability
occurs (for example create-cover-action can be part of dinner-for-two-si
as well as single-dinner-si), a mechanism is needed for selecting one interpre-
tation and evaluating it. In our approach, we currently use backtracking search,
but probabilistic methods are also being developed.

3.4 Spatial and temporal reasoning
Conceptual descriptions of a scene involve spatial and temporal properties of oc-
currences and spatial and temporal relations between occurrences to a significant
extent. The SCENIC approach supports this by providing appropriate concept
parameters (like tp-end, tp-start for time intervals and bb-left-upper-x etc.
for bounding boxes) and constraints related to these parameters.

When an occurrence is inferred for a video scene, the corresponding concept
is instantiated with the spatial and temporal parameters as described above.
They are initially set to specific values provided by the middle layer (if created
bottom-up) or to intervals provided by the concept definition (which may be the
open range of [0 . . . inf ]) in the case of top-down hypotheses. By processing the
related spatial and temporal constraints in subsequent processing steps, the value
ranges of parameters are further reduced, leading to final uncertainty intervals
or conflicts causing backtracking.

We distinguish between conceptual constraints and constraint relations. Con-
straint relations are equations or inequalities about spatial and temporal param-
eters. Conceptual constraints describe a structural situation which is a precon-
dition for evaluating certain constraint relations. For example:

(define-conceptual-constraint
:name cup-before-saucer
:structural-situation
((?cupcover-act :name create-cupcover-action)
(?cup-tp :name hand-cup-transport

:relations ((cup-transport-of ?cupcover-act)))
(?saucer-tp :name hand-saucer-transport

:relations ((saucer-transport-of ?cupcover-act))))
:facts ((>= (?cup-tp tp-start) (?saucer-tp tp-end))))

specifies that, if a create-cupcover-action has a hand-cup-transport
and a hand-saucer-transport (described with the structural situation), then
the time point tp-start of the hand-cup-transport should be after (>=)
the tp-end of the hand-saucer-transport. Conceptual constraints are spec-
ified for concepts and hold for every instance of these concepts (here for every
create-cupcover-action).
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Constraints can also be defined domain-independently for concepts of the
upper model, e.g. for computing a bounding-box of a real-world entity.

3.5 Merging objects
A further reasoning service is needed when two objects were created indepen-
dently but can be treated as the same object. In this case both object instances
should be merged as this is will provide a simpler and hence preferable scene
description. The need for a merge may occur, for example, when an object has
been hypothesised top-down (say, a laying-a-dinner-for-two-action) and bottom-
up processing of evidence has come up with the same hypothesis. Merging im-
plies that the two objects are unified with all their properties and relations.
In SCENIC, merging is accomplished by a conceptual constraint specifying all
conditions which must be fulfilled by the two merging candidates.

4 System and Experiments

4.1 Architecture

The system SCENIC consists of five system components connected via remote
procedure calls and file transfer4. This enables us to plug in different low-level
algorithms and allows for distributed processing on several computers in a net-
work. In the following we give details about each of the system components.

Image Processing Modules

Raw Image

LabelMe Image 
Database

Evidence Items

Evidence Class Instances

View Class InstancesOWL 
View Class Instances

OWLc to KONWERK
Instance Converter

KONWERK 
Interpretation System

KONWERK Interpreted Image

KONWERK to OWLc
Interpretation Converter

OWLc
Conceptual 
Knowledge 

Base 

Version Store of 
OWL Conceptual 
Knowledge Bases

OWLc to KONWERK
Concept Converter

Case Base of OWL
Interpreted Images

GUI
Visuali-
sation

OWLc
Interpreted 

Image

Label-Filter
Automatic
Learning
Evaluator

Version Space 
Learning

OWL Concept 
Description 

GUI
Concept 
Editor

Learning 
Supervisor

Classified 
LabelMe Image 

Feedback 
LabelMe Image 

Rectification 
and Annotation

Image Analysis

Middle Layer

Inter-
pretation

Learning Modules

Gui/Knowledge
Management

Fig. 3. Overview of SCENIC’s modules.

4 We are currently migrating from a stream-based list format (see below) to an XML-
RPC interface (www.xmlrpc.com).
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GUI/Knowledge Management The GUI has the following tasks: Interactive con-
trol of the three processing levels low-level image analysis, middle layer, high-
level interpretation; presentation and depiction of results; management of dis-
tinct versions of the knowledge base. The knowledge base is implemented as an
OWL knowledge base and augmented with constraints (depicted with OWLc in
Figure 3). The constraints are represented with a proprietary constraint language
[19] enabling n-ary constraints at the concept level.

Image and Video Analysis Image and video analysis can be performed with
distinct types of image processing moduls (IPMs) or manually by annotating
images. For behaviour recognition we use a simple tracking unit and a model-
based object recognition algorithm (see Section 2). The results of video analysis
are represented using a proprietary format for the Geometric Scene Description
(GSD), see Section 4.2.

Middle Layer The middle layer has access to the conceptual knowledge base
in order to map IPM output to views which are instances of view concepts
defined in the conceptual knowledge base. For behaviour recognition the middle
layer mainly identifies trajectories in the GSD and recognizes move and touch
occurrences.

Interpretation The interpretation module converts the OWL knowledge base
and the input received from the middle layer into internal representations of the
structure-based configuration system KONWERK [19–23], which is reused here
for scene interpretation. KONWERK features an expressive concept language,
a declarative control language, and inference capabilities based on specialisation
relations and a powerful constraint system.

Learning The learning module is a separate module not relevant for the topics
of this paper (see [24]). It provides aggregate concepts in the form of augmented
OWL concepts.

4.2 Experiments

We have executed several experiments with SCENIC in the dynamic table-laying
domain [6, 18] and the static building domain [25]. In this paper we focus on
the interplay between high-level interpretation and middle layer in a dynamic
scene. As input, we use a video where two human agents, sometimes acting in
parallel, place dishes and other objects onto a table, for example, create covers as
customary for a dinner-for-two. The tracking system identifies primitive objects
in each frame, e.g.:

(FR 188 (ID 1 (PV TYPE SAUCER)(PV CENTER (435 191))(PV BOX (404 160 467 224))
(PV SM(20 10 17 0 3 98)))

(ID 2 (PV TYPE PLATE)(PV CENTER (110 274))(PV BOX (64 228 158 322))
(PV SM(2 0 3 98 0 5)))

(ID 3 (PV TYPE UNKNOWN)(PV CENTER (427 379))(PV BOX (411 369 445 387))
(PV SM(0 0 0 0 0 0))))

...
(FR 216 (ID 1 (PV TYPE SAUCER)(PV CENTER (435 191))(PV BOX (404 160 467 224))
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(PV SM(20 10 17 0 3 98)))
(ID 2 (PV TYPE PLATE)(PV CENTER (110 274))(PV BOX (64 228 158 322))

(PV SM(2 0 3 98 0 5)))
(ID 4 (PV TYPE SAUCER)(PV CENTER (209 311))(PV BOX (178 281 241 344))

(PV SM(13 5 11 0 1 97)))
(ID 3 (PV TYPE SAUCER)(PV CENTER (437 199))(PV BOX (404 159 467 250))

(PV SM(12 14 20 9 7 75)))
(ID 54 (PV TYPE HAND)(PV CENTER (211 362))(PV BOX (199 337 224 385))

(PV SM(0 0 0 100 0 0)))
(ID 53 (PV TYPE HAND)(PV CENTER (477 272))(PV BOX (454 242 500 303))

(PV SM(0 0 0 100 0 0))))

The MSI identifies movements, stationary occurrences and touches for all ob-
jects and stores the results in so called motion frames (see below). However, not
all possible spatial data are initially created. For example, distance changes (i.e.
approach occurrences) between all objects are not computed for combinatorial
reasons.5

MOTION-FRAME:
object: #3 object-types: (SAUCER-VIEW UNKNOWN-VIEW CUP-VIEW)
type: GENERAL-MOTION start: (-1000000000000 188) end: (228 230)
trajectory: ((-1000000000000 (427 379)) (190 (429 371)) (192 (430 358))

(194 (431 345)) (196 (432 332)) (198 (433 319))
(200 (434 307)) (202 (435 295)) (204 (436 284))
(206 (437 274)) ...)

The high-level unit receives the move, stay and touch occurrences in form
of instances of moving-view, stationary-view and touch-view as input. The
interpretation process uses the conceptual model (see Section 3) as basis for in-
terpreting the scene. In Figure 4 left, an intermediate scene interpretation is illus-
trated. Besides others, the system has recognized a create-cupcover-action.
As defined in the model for create-cupcover-action, a cup-saucer-approach
has to be present. The high-level system therefore creates a hypothesis for such
an approach object with the appropriate time and spatial parameters, inferred
from the transport objects (see Figure 4 right). This approach object is passed
to the middle layer as feedback from high-level interpretation. The middle layer
computes all approach objects in the given temporal and spatial region of inter-
est and matches the given hypothesis against the computed evidence. It confirms
the hypothesis and thus, supports the hypothesized interpretation.

5 Conclusions

In this paper, we have presented the SCENIC approach to video interpretation.
This approach features a flexible mix of bottom-up and top-down processing
steps and a division of tasks distributed over (i) a low-level stage for image
analysis and tracking, (ii) a middle layer for matching evidence with primi-
tive occurrences, and (iii) a high-level interpretation system for composing the
scene description. The middle layer has several novel features: It supports se-
lective computation of spatiotemporal relations using top-down guidance and
5 One might argue that in a case as simple as our experimental table-laying scene, the

combinatorial explosion of binary spatial object relations may be ignored. However,
we aim at a system architecture which can be scaled up to more complex scenes.
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Fig. 4. Left: Intermediate scene interpretation as an instance of lay-dinner-for-two.
Objects in natural colours are supported by evidence, objects in artificial colours are
hypotheses based on high-level conceptual knowledge. Hypotheses are shown at the
center of boxes, which represent possible locations. The low-level result is presented at
top right; the original video at top left. Right: Hypothesized approach object for cup
and saucer.

exploiting its map-based representations, and it evaluates top-down hypotheses
by matching a hypothesis against available evidence or even initiating low-level
image analysis processes. An experiment has been presented which illustrates
feedback in form of a hypothesis from the high-level to the middle layer. Future
work will include learnt concepts about scenes and a probabilistic guidance for
the selection of interpretation steps.
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