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Abstract
We consider the group match prediction problem where the goal is to estimate the probability of one group of items preferred
over another, based on partially observed group comparison data. Most prior algorithms, each tailored to a specific statistical
model, suffer from inconsistent performances across different scenarios. Motivated by a key common structure of the
state-of-the-art, which we call the reward-penalty structure, we develop a unified framework that achieves consistently high
performances across a wide range of scenarios. Our distinction lies in introducing neural networks embedded with the
reward-penalty structure. Extensive experiments on synthetic and real-world datasets show that our framework consistently
leads to the best performance, while the state-of-the-art perform inconsistently.
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1. Introduction
We often compare a pair of items (or groups of items) and
judgewhich one is of higher utility. We also become inter-
ested in predicting comparison outcomes for unobserved
pairs, based on partial comparison data for previously
observed pairs, and in recommending select options in
preference to the others. We investigate the group match
prediction (group recommendation) problem where we
aim to estimate the probability of one group of 𝑀 items
preferred over another, based on partially observed group
comparison data.

Most prior algorithms postulate ground-truth utilities
for items, and assume underlying models to exist. These
models are considered to describe the utility of a group
as a function of the utilities of its items, and govern sta-
tistical patterns of comparison data based on the group
utilities [1, 2, 3, 4]. Some algorithms have been devel-
oped for prominent yet specific statistical models, and
shown to attain optimal performances (see Section 4.1).
Yet, major challenges arise when we attempt to employ
them in practice.
First, prior algorithms lead to inconsistent perfor-

mances. Tailored to specific models, they achieve decent
performances in some scenarios that are well-represented
by their models, but perform poorly in others. This in-
consistency limits the application of each algorithm to a
narrow range of scenarios.
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Second, no prior algorithm can offer a satisfactory per-
formance when a given scenario cannot be represented
by well-studied models. For instance, underlying models
for some scenarios can be inherently too complex to be
approximated by existing models. In such cases, all prior
algorithms are ill-suited.

We address all these challenges by developing a unified
algorithmic framework that can (𝑖) infer and adapt to any
underlying models for given scenarios; and (𝑖𝑖) achieve
consistently high performances.

Main Contributions. First, we identify a key com-
mon structure (which we call the reward-penalty struc-
ture, to be detailed in Section 4.1) shared among state-of-
the-art algorithms, and incorporate the structure into our
framework. This emphasis on structural aspects enables
our framework to attain high performances (Section 5).
Second, we introduce neural networks so as to enable our
framework to infer and adapt to any latent models. We
design the neural networks to well-respect the reward-
penalty structure in order to retain high performances
across vairous scenarios. (Sections 4.2 and 4.3) Third, we
construct the neural networks in such a way that our
framework can be robust against prohibitive scalability
issues. This robustness makes our framework applica-
ble to a broader range of scenarios which involve large
numbers of items.
Insight from the state of the arts: Looking into state-

of-the-art algorithms in the tasks of match prediction
and rank aggregation (a related and long-studied task)
[5, 6, 1, 2], we find that they share a key element: so-
called the reward-penalty mechanism in estimating the
utilities of items. Themechanism rewards an item greatly
for winning (or being more preferred) in a disadvanta-
geous comparison where its group is weaker than the
counterpart. Likewise, it penalizes an item greatly for
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losing (or being less preferred) in an advantageous one.
Also, the magnitudes of such rewards and penalties are
proportional to its contribution to its group. It turns
out that across different state-of-the-art algorithms, only
the terms corresponding to rewards and penalties vary
(Section 4.1 for details), but the common mechanism re-
mains unchanged. We take it as the main structure in
our framework ((5) in Section 4.2 for details).

Neural networks: Motivated by the above observations,
we incorporate three separate neural network modules
into our framework (Sections 4.2 and 4.3 for architec-
tural details): two modules represent reward and penalty
mechanisms, and the other combines them to produce
final comparison outcome predictions. These modules
are trained according to the given dataset so that they
can adapt to any hidden models that underlie the dataset,
making our framework attain universal applicability. The
overall architecture that puts all three modules together
is specifically designed to maintain the reward-penalty
structure, in order to retain high performances across
various scenarios.

Scalability: A prior work employed a single-layer neu-
ral network as an initial effort to predict winning prob-
abilities of group matches [7]. This attempt showed a
promising result, demonstrating improved prediction ac-
curacy on a real-world online game dataset. However, it
exhibits scalability issues. It requires one input node per
item, thus is too prohibitive to be extended for scenarios
with large numbers of items (scaling with 𝑛). In contrast,
we design our neural network modules carefully to avoid
such scalability issues (Figures 1 and 2: the input dimen-
sions are fixed to 2𝑀 regardless of 𝑛). It also provides
higher performances compared to the prior work.
Extensive experiments: We compare our framework

with the single-layer baseline and other algorithms by ex-
tensive experiments on synthetic and real-world datasets.
Using synthetic datasets (Section 5.1), we show that our
framework achieves the best performance across four
prominent models in the literature, while the other al-
gorithms suffer from inconsistent performances across
different models. Three models consider extensions of
the Bradley-Terry-Luce model [8] to the group compari-
son scenario. The other considers a generalized version
of the Thurstone model [4] widely used in skill rating
systems of online games. Using real-world datasets (Sec-
tion 5.2), we show that our framework performs con-
sistently well across diverse real-world scenarios. We
consider five real-world datasets (sources in Footnote 7).
One is a crowd-sourced image classification dataset, an-
other is a collection of movie ratings, and the other three
are online game match records. In our performance eval-
uations, we use the cross entropy loss (see (1)) and the
prediction accuracy (see (8)).
Ablation studies: To verify that the reward-penalty

structure in our framework plays a key role in bringing

performance improvements, we conduct ablation studies
(Table 2 in Section 5.2). As our baseline, we consider our
framework where the reward and penalty modules are
arbitrarily made defunct (Section 5.2 for details). Evaluat-
ing the performances of our framework and the baseline
on all five real-world datasets in terms of both cross en-
tropy loss and prediction accuracy, we demonstrate that
the reward and penalty modules consistently improve
performances across all datasets and metrics, confirming
their effectiveness.

2. Related Work
Themost relevant priorworks are [1, 2, 3, 4]. Theseworks
assume prominent models (some long-established and
some widely used in practice) for in-group interactions
and group comparisons, and carry out statistical analysis
to a great extent. We compare our framework with the
algorithms developed therein.
The problem of estimating individual item utilities

from group comparison data has been investigated in
[1, 2]. They considered extensions of the BTL model
where the group utility is either the sum or the product
of its items’ utilities, and group comparisons follow the
BTL model. We call the two models the BTL-sum and
BTL-product models respectively.

A more advanced in-group interaction model has been
developed in [3]. They considered a scenario where a
pair of individual items in a group leads to a synergy. The
group utility is represented as the sum of two quantities,
which we call the HOI model: (1) the sum of individual
item utilities and (2) the sum of the products of all pairs of
individual item utilities. The work of [9] has considered
a scenario where any 𝑘-tuple of items leads to a synergy.

In [4], they assumed individual item utilities to be cen-
tered around a mean following a Gaussian distribution
and viewed the group utility as their sum, which we call
the Thurstone model. Their algorithm is widely used
in skill rating systems of online games where groups of
users compete.
The work of [7] has made an initial effort in employ-

ing a neural network to predict winning probabilities of
group matches. It has been shown that a single-layer neu-
ral network can fit some variants of the BTL model [2]
and improve prediction accuracy through experiments
on a real-world online game dataset. As noted, one clear
distinction compared to our work lies in scalability. The
neural network developed in the prior work requires one
input node per item, thus is prohibitive for scenarios with
large numbers of items. In contrast, we develop a neural
network that requires only a fixed number of input nodes
regardless of the number of items (Section 4.2 for details).



3. Problem Setup
The goal is to predict comparison outcome likelihoods
for unobserved pairs of groups, given partial group com-
parison data. Each data point consists of (𝐴, 𝐵, 𝑦𝐴𝐵),
(𝐴, 𝐵, 𝑦𝐴𝐵). 𝐴 and 𝐵 are groups of 𝑀 individual items.
𝑦𝐴𝐵 indicates which group is preferred: 𝑦𝐴𝐵 = 𝕀(𝐴 ≻ 𝐵)
where 𝐴 ≻ 𝐵 indicates 𝐴 preferred over 𝐵. We denote
the set of observed comparisons by 𝐷obs and that of un-
observed comparisons by 𝐷unobs. Our training dataset
available is {(𝐴, 𝐵, 𝑦𝐴𝐵)}(𝐴,𝐵)∈𝐷obs

. We use the cross en-
tropy loss as our metric. Let us define ̂𝑦𝐴𝐵 as the estimate
of Pr [𝑦𝐴𝐵 = 1] produced by our algorithmic framework.
Then formally, our goal is to minimize:

−1
|𝐷obs|

∑
(𝐴,𝐵)∈𝐷obs

𝑦𝐴𝐵 log ̂𝑦𝐴𝐵 + (1 − 𝑦𝐴𝐵) log(1 − ̂𝑦𝐴𝐵).

(1)

Notation. [𝑛] = {1, 2, … , 𝑛} is the set of all items. We
use lowercase letters (e.g., 𝑖) for individual items, and up-
percase letters (e.g., 𝐴) for sets of items. {𝑤𝑖}𝑖∈𝐴 is the set
of 𝑤𝑖’s for all 𝑖 ∈ 𝐴. [𝑤𝑖]𝑖∈𝐴 is a vector of 𝑤𝑖’s for all 𝑖 ∈ 𝐴
and its ordering is provided in the context. ̂𝑦 is an esti-
mate of 𝑦. We use subscripts as in 𝑦𝐴𝐵 when 𝑦 concerns a
comparison between 𝐴 and 𝐵. We use superscripts as in
𝑤 (ℓ) when 𝑤 is updated iteratively. We use bold symbols
as in 𝑤 to indicate the vector of 𝑤𝑖’s for all 𝑖 ∈ [𝑛].

4. Proposed Algorithm

4.1. Motivation
Our framework design is inspired by optimal state-of-the-
art algorithms (achieving minimal sample complexity or
global minima of cross entropy loss) in extensions of the
Bradley-Terry-Luce model (BTL) model [8]. We make
the following key observations regarding the structural
similarities shared by the state-of-the-art:

(𝑎) They exhibit “reward” and “penalty” terms in the es-
timation process (details in (2) and (3)). In updating
an item’s utility estimate, they reward the item for
contributing to its group’s winning, and penalize it
for contributing to its group’s losing.

(𝑏) The expressions of these reward/penalty terms vary
as the underlying models change.

(𝑐) The magnitudes of rewards and penalties depend
on the power dynamics between groups. A greater
reward is given to an item when its group is rela-
tively weaker compared to the opponent group, and
likewise a greater penalty is given when its group
is relatively stronger.

(𝑑) Their magnitudes depend on the portion of an item’s
contribution (or blame) within its group. Suppose
an item’s group wins (or loses) in a comparison. The
item is given a greater reward (or penalty) when its
share of contribution (or blame) within the group is
relatively greater.

Reward-Penalty Structure. Let us examine the algo-
rithms developed in extensions of the BTL model.

• Rank Centrality [5] has been developed under the stan-
dard BTL model where individual items are compared
in pairs. It achieves the minimal sample complexity
for top-𝐾 rank aggregation, whose task is to estimate
the set of top-𝐾 items, in certain regimes [10, 11]. As
in Section 3, we define 𝑦𝑖𝑗 = 𝕀(𝑖 ≻ 𝑗), given a pair of
items 𝑖 and 𝑗. By some manipulation, the update rule
at step ℓ for individual item utility 𝑤 (ℓ)

𝑖 of item 𝑖 can
be shown as1:

𝑤 (ℓ+1)
𝑖 ← 𝑤 (ℓ)

𝑖 + 𝛼 ∑
𝑗∶(𝑖,𝑗)∈𝐷obs

(𝑦𝑖𝑗𝑤
(ℓ)
𝑗 − (1 − 𝑦𝑖𝑗)𝑤

(ℓ)
𝑖 ) .

(2)

For item 𝑖, one can interpret 𝑤 (ℓ)
𝑗 as the reward since

it increases 𝑤 (ℓ+1)
𝑖 when 𝑖 ≻ 𝑗 (𝑦𝑖𝑗 = 1), and 𝑤 (ℓ)

𝑖 (next

to (1 − 𝑦𝑖𝑗)) as the penalty since it decreases 𝑤 (ℓ+1)
𝑖

when 𝑖 ≺ 𝑗 (𝑦𝑖𝑗 = 0). 𝛼 is a step size in the update.
Note that the reward is large when the opponent’s
utility estimate is large; we give a large reward for a
win against a strong opponent (observation (𝑎) above).
Likewise, the penalty is large when its own utility
estimate is large; we give a large penalty for a loss
against a weak opponent (observation (𝑐) above).

• Majorization-Minimization (MM) for the BTL-sum
model has been developed in [6, 1]. We define 𝑤 (ℓ)

𝐴 ∶=
∑𝑖∈𝐴 𝑤 (ℓ)

𝑖 . By some manipulation, the update rule at

step ℓ for individual item utility 𝑤 (ℓ)
𝑖 of item 𝑖 can be

shown as2:

𝑤 (ℓ+1)
𝑖 ← (3)

𝑤 (ℓ)
𝑖 + 𝛼𝑖 ∑

(𝐴,𝐵)∈𝐷obs
𝑖∈𝐴

(𝑦𝐴𝐵 ⋅ R
(ℓ)
𝐴𝐵,𝑖 − (1 − 𝑦𝐴𝐵) ⋅ P

(ℓ)
𝐴𝐵,𝑖)

where

R(ℓ)𝐴𝐵,𝑖 =
𝑤 (ℓ)
𝐵

𝑤 (ℓ)
𝐴 + 𝑤 (ℓ)

𝐵

⋅
𝑤 (ℓ)
𝑖

𝑤 (ℓ)
𝐴

, P(ℓ)𝐴𝐵,𝑖 =
𝑤 (ℓ)
𝐴

𝑤 (ℓ)
𝐴 + 𝑤 (ℓ)

𝐵

⋅
𝑤 (ℓ)
𝑖

𝑤 (ℓ)
𝐴

.

(4)

1As in [5], 𝛼 = 1
max𝑖 𝑑𝑖

where 𝑑𝑖 is the number of distinct items to
which item 𝑖 is compared. Also, we describe Rank Centrality as an
iterative algorithm (one way to obtain the stationary distribution of
the empirical pairwise preference matrix) to highlight its inherent
reward-and-penalty structure.

2𝛼𝑖 = (∑(𝐴,𝐵)∈𝐷obs∶𝑖∈𝐴 (𝑤
(ℓ)
𝐴 + 𝑤 (ℓ)

𝐵 )
−1
)
−1
.



Note that the update rule (3) is similar to (2) of Rank
Centrality, but the reward and penalty terms in (4) are
different (observation (𝑏) above). The interpretation
is similar. The reward for item 𝑖 is large when the
opponent group’s utility estimate is large (see 𝑤 (ℓ)

𝐵
in the numerator of R(ℓ)𝐴𝐵,𝑖). Note also that the larger
the contribution of item 𝑖 within its own group (see
𝑤 (ℓ)
𝑖 /𝑤 (ℓ)

𝐴 of R(ℓ)𝐴𝐵,𝑖), the greater the reward (observation
(𝑑) above). The same holds for the penalty.

• MM for the BTL-product model has been developed
in [2] and shown to achieve global minima in terms of
cross entropy loss. Its individual item utility update
rule is described as in (3) but the reward and penalty
terms are different.3 A similar interpretation applies,
and all observations (𝑎)–(𝑑) can be found.

We introduce two separate modules to represent re-
wards and penalties respectively. We employ neural net-
works for the modules so they can adapt to the underlying
models for any given scenario and dataset.

4.2. Modules R and P

input
layer

fully connected
hidden layers

output
layer

ReLU sigmoidReLU ReLU ReLU

[R(t)
AB,i]i∈A

[R(t)
AB,j ]j∈B

[R(ℓ)
AB,i]i∈A

[R(ℓ)
AB,j ]j∈B

[w(ℓ)
i ]i∈A

[w(ℓ)
j ]j∈B

R

sigmoid 

Figure 1: Architecture of module R (and P, which is omitted
as it has the same structure with different weights). It takes
as input utility estimates for the 2𝑀 items in a pair of groups
(𝐴, 𝐵) and produces as output reward and penalty estimates
for the items.

Structure: Figure 1 depicts the detailed architecture of
the two modules which reflect rewards (R) and penal-
ties (P) discussed in Section 4.1. The input and output
of module R and P are of dimension 2𝑀. 𝑀 can be set
arbitrarily according to the scenario of interest. R (P re-
spectively) takes as input the current utility estimates of
the individual items in a given group comparison (𝐴, 𝐵),
and produces as output the current reward (penalty re-
spectively) estimates for the items. All layers are fully
connected. The activations between layers are rectified
linear units [12]. The final activation is the sigmoid func-
tion [13].

3𝛼𝑖 = (∑ 𝑤 (ℓ)
𝐴

𝑤 (ℓ)
𝐴 +𝑤 (ℓ)

𝐵
)
−1

where 𝑤 (ℓ)
𝐴 = ∏𝑖 𝑤

(ℓ)
𝑖 , R(ℓ)

𝐴𝐵,𝑖 =
𝑤 (ℓ)
𝐵

𝑤 (ℓ)
𝐴 +𝑤 (ℓ)

𝐵
⋅ 𝑤 (ℓ)

𝑖 ,

P(ℓ)𝐴𝐵,𝑖 =
𝑤 (ℓ)
𝐴

𝑤 (ℓ)
𝐴 +𝑤 (ℓ)

𝐵
⋅ 𝑤 (ℓ)

𝑖 .

Operation: Recall that our comparison data samples
do not include utility estimate information. Each sample
only specifies the pair of groups compared (𝐴, 𝐵) and
the comparison outcome ̂𝑦𝐴𝐵. Thus, we begin with a
randomly initialized utility estimate vector 𝑤(0) ∈ ℝ𝑛 (ini-
tialization details in Section 4.4). Starting from 𝑤(0), we
obtain 𝑤(𝐿) ∈ ℝ𝑛 by applying modules R and P repeatedly
𝐿 times to update 𝑤(ℓ) as follows:

𝑤 (ℓ+1)
𝑖 ← (5)

𝑤 (ℓ)
𝑖 + 𝛼 ∑

(𝐴,𝐵)∈𝐷obs
𝑖∈𝐴

(𝑦𝐴𝐵 ⋅ R
(ℓ)
𝐴𝐵,𝑖 − (1 − 𝑦𝐴𝐵) ⋅ P

(ℓ)
𝐴𝐵,𝑖) ,

where4 𝛼 = 𝑐
max𝑖 𝑑𝑖

and 𝑑𝑖 = |{(𝐴, 𝐵) ∶ 𝑖 ∈ 𝐴 ∪ 𝐵}|.

At step ℓ, given 𝑤(ℓ), R and P produce positive real
values in [0, 1]. They are reward and penalty values re-
spectively, and are used to obtain 𝑤(ℓ+1) as per (5). They
are given as follows:

R(ℓ)𝐴𝐵,𝑖 = R (𝑖, [𝑤 (ℓ)
𝑗 ]𝑗∈𝐴, [𝑤

(ℓ)
𝑘 ]𝑘∈𝐵) ,

P(ℓ)𝐴𝐵,𝑖 = P (𝑖, [𝑤 (ℓ)
𝑗 ]𝑗∈𝐴, [𝑤

(ℓ)
𝑘 ]𝑘∈𝐵) .

(6)

At the end of step ℓ, we normalize 𝑤(ℓ+1) to be zero-

mean 𝑤 (ℓ+1)
𝑖 ← 𝑤 (ℓ+1)

𝑖 − ∑𝑛
𝑖=1

𝑤 (ℓ+1)
𝑖
𝑛 , and unity-norm

𝑤 (ℓ+1)
𝑖 ← 𝑤 (ℓ+1)

𝑖
‖𝑤(ℓ+1)‖2

. We repeat until we obtain 𝑤(𝐿). Fig-
ure 3 illustrates the process. See the first stage therein.

Scalability: The input and output dimensions (2𝑀) are
independent of the total number of items (𝑛). Thus, our
framework does not suffer from scalability issues in con-
trast to a prior neural network based approach [7] in
which the input dimension of the neural network therein
scales in proportion to 𝑛. This scalability issue for the
prior approach manifests in our real-world datasets with
large numbers of items. See our real-world data experi-
ment results for GIFGIF and IMDb 5000 datasets in Table 1
in Section 5.2.
Refinement: We apply R and P multiple times (𝐿 > 1)

to obtain a final utility estimate vector 𝑤(𝐿). The best
value of 𝐿 is set via hyper-parameter tuning. This series
of applications is to “refine” utility estimates.
Data augmentation: R and P take as input a con-

catenation of two vectors [𝑤 (ℓ)
𝑗 ]𝑗∈𝐴 and [𝑤 (ℓ)

𝑘 ]𝑘∈𝐵. As
they are vectors, not sets, ordering matters. We ap-
ply data augmentation to make our framework ro-
bust against arbitrary orderings of the items within
a group. Specifically, given a sample, we create ex-
tra samples which represent the same outcome but
have different item orderings. For example, given

4Prior work (see Footnote 1) has motivated the choice of 𝛼. The
numerator 𝑐 is determined by hyper-parameter tuning.



a sample (𝐴 = (1, 2), 𝐵 = (3, 4), 𝑦𝐴𝐵 = 1), we create ex-
tra samples such as (𝐴′ = (2, 1), 𝐵′ = (4, 3), 𝑦𝐴′𝐵′ = 1).
We also seek robustness against arbitrary orderings
of the groups. Specifically, we create extra sam-
ples by changing the order of two sets 𝐴 and 𝐵 as
in (𝐴 = (3, 4), 𝐵 = (1, 2), 𝑦𝐴𝐵 = 0) and 𝐴′ and 𝐵′ as in
(𝐴′ = (4, 3), 𝐵′ = (2, 1), 𝑦𝐴′𝐵′ = 0). These techniques
help train R and P so as to be robust against item or-
derings within a group and group orderings.
Ablation study: R and P are the most distinctive fea-

tures of our framework. To evaluate their effectiveness,
we conduct ablation studies. See Table 2 in Section 5.2.

4.3. Module G

input
layer

output
layer

ReLU sigmoidReLU ReLU ReLU

fully connected
hidden layers

[w(t)
j ]j∈B

[w(L)
i ]i∈A

[w(L)
j ]j∈B

sigmoid 

Figure 2: Architecture of module G. It takes as input utility
estimates for the 2𝑀 items in (𝐴, 𝐵) (obtained by modules R
and P) and produces as output a group comparison prediction.

To perform our main task, we need more than rewards
and penalties. As seen in Section 4.1, latent models can
be assumed to exist. In-group interaction models (among
items within a group) lead to group utilities. Group com-
parison models (between a pair of groups) govern statisti-
cal patterns of comparison outcomes. The role of module
G is to fit these models. Modules R and P help quantify
and provide item utility estimates. Then module G takes
as input the item utility estimates for a pair of groups,
and produces as output the probability of one group pre-
ferred over the other. The three modules interact closely
to perform the task. The overall architecture that ties
them all will soon be depicted at the end of this section.
Structure: Figure 2 depicts the detailed architecture

of module G. The input and output of module G are of
dimension 2𝑀 and a scalar respectively. As in modules R
and P, we set the value of 𝑀 as per the given scenario of
interest. As the dimensions are independent of the total
number of items (𝑛), the module does not suffer from
scalability issues. All layers are fully connected. The
activations between layers are rectified linear units [12].
The final activation is the sigmoid function [13].

Operation: Given a group comparison (𝐴, 𝐵), the mod-
ule takes as input the utility estimates of the items in
groups 𝐴 and 𝐵, and produces as output the winning

probability estimate of 𝐴 preferred over 𝐵:

̂𝑦𝐴𝐵 = G ([𝑤 (ℓ)
𝑖 ]𝑖∈𝐴, [𝑤

(ℓ)
𝑗 ]𝑗∈𝐵) . (7)

As in (6), module G takes as input a concatenation of
two vectors [𝑤 (ℓ)

𝑖 ]𝑖∈𝐴 and [𝑤 (ℓ)
𝑗 ]𝑗∈𝐵. The item and group

orderings for the input to G are the same as those for the
input to R and P. As mentioned, the item utilities used
as input to module G are obtained from the operation of
modules R and P.

1st stage 2nd stage 

GR
P

[w(ℓ)
i ]i∈A

[w(ℓ)
j ]j∈B

w(ℓ+1)w(ℓ) [R(ℓ)
AB,i]i∈A

[P (ℓ)
AB,j ]j∈B

zero-mean
unity-norm

w(L)

[w(L)
j ]j∈B

[w(L)
i ]i∈A

Figure 3: Overall architecture of our framework.

Figure 3 illustrates the overall architecture where mod-
ules R, P and G are put together. The first stage depicts
the operation of R and P (initialization of 𝑤(0) omitted).
The second stage depicts the operation of G. Note that
the reward-penalty structure is present. This structure
is unaffected during the training process where only the
parameters inside the modules are updated.

4.4. Training Procedure
We split 𝐷obs randomly into 𝐷train and 𝐷val. We let 𝐷val
be a fraction (1%–2%) of 𝐷obs and use it for validation
purposes. We divide 𝐷train into 𝐵 equal-size batches. We
denote by 𝐷𝑏

train the data in batch 𝑏 ∈ [𝐵].

(𝑎) Initialization: Initialize 𝑤(0) using a Gaussian distri-
bution whose mean is zero and variance is the nor-
malized identity matrix, and the parameters of R, P
and G using the Xavier initialization [14].

(𝑏) Refinement: For all samples (𝐴, 𝐵) ∈ 𝐷𝑏
train, start

with {([𝑤 (0)
𝑖 ]𝑖∈𝐴, [𝑤

(0)
𝑗 ]𝑗∈𝐵)}(𝐴,𝐵)∈𝐷𝑏

train
initialized in

(𝑎), apply R and P modules 𝐿 times, and obtain
{([𝑤 (𝐿)

𝑖 ]𝑖∈𝐴, [𝑤
(𝐿)
𝑗 ]𝑗∈𝐵)}(𝐴,𝐵)∈𝐷𝑏

train
.

(𝑐) Prediction: For all samples (𝐴, 𝐵) ∈ 𝐷𝑏
train, start with

{([𝑤 (𝐿)
𝑖 ]𝑖∈𝐴, [𝑤

(𝐿)
𝑗 ]𝑗∈𝐵)}(𝐴,𝐵)∈𝐷𝑏

train
obtained in (𝑏), ap-

ply G module, and obtain { ̂𝑦𝐴𝐵}(𝐴,𝐵)∈𝐷𝑏
train

.

(𝑑) Model parameter update: Update the parameters of
R, P, and G via the Adam optimizer [15] to minimize
the loss. To compute the loss, replace 𝐷obs in (1)
by 𝐷𝑏

train. Apply weight decay regularization with a
factor of 0.01. Repeat (𝑏)–(𝑑) for all batches 𝑏 ∈ [𝐵].



The parameters are updated 𝐵 times using 𝐷train once in
one epoch. We use 500 epochs. In each, we compute a
validation loss using 𝐷val. We apply early stopping and
choose the parameters with the lowest loss.

5. Experimental Results
To verify the broad applicability of our framework,
we conduct extensive experiments using synthetic
and real-world datasets. We compare it with six other
algorithms: MM-sum [1], MM-prod [2], SGD-HOI [3],
TrueSkill [4], Rank Centrality [5], and an algorithm
based on a single-layer neural network [7]. SGD-HOI
has been developed for the factorization HOI model in
[3] and TrueSkill for the Thurstone model in [4]. As
Rank Centrality has been developed for the case of
comparing two individual items, we consider its natural
extensions depending on the dataset. For example, in
the sum model, we replace the summation in (2) by
∑(𝐴,𝐵)∈𝐷obs∶𝑖∈𝐴 (𝑦𝐴𝐵∑𝑘∈𝐵 𝑤

(ℓ)
𝑘 + (1 − 𝑦𝐴𝐵)∑𝑘∈𝐴 𝑤 (ℓ)

𝑘 ).
The single-layer neural network algorithm developed in
[7] has a scalability issue. It requires at least one input
node per item, thus becomes bloated with large 𝑛. This
drawback prevents us from measuring its performance
in our setup5 for some real-world datasets such as GIFGIF
and IMDb 5000 (to be presented in Table 1 in Section 5.2).

5.1. Synthetic Data Experiments
We use four synthetic datasets: BTL-sum, BTL-product,
HOI and a generalized Thurstone. We set 𝑛 = 300 and
𝑀 = 5. In the HOI model, we generate the ground-truth
utilities and dimension-7 features using Gaussian dis-
tributions. In the others, we generate the ground-truth
utilities uniformly at random. We generate 5𝑛 log 𝑛 dis-
tinct paired groups and each pair is compared 10 times.6

We split generated datasets randomly into 𝐷obs (90%)
and 𝐷unobs (10%). All algorithms use 𝐷obs to predict
unobserved group comparisons in 𝐷unobs. They use a
fraction (1%–2%) of 𝐷obs for validation purposes. We use
𝐿 = 20 and the learning rate of 10−2. We use four hidden
layers for all modules. For R and P, each layer consists
of 7𝑀 nodes, and for G, each layer consists of 9𝑀 nodes.
Figure 4 shows our result. The performance curves

of the algorithms that underperform by large gaps are
not presented. Let us discuss each sub-figure from left
to right. (1) BTL-sum model: In most settings where we

5Intel Core i7-6850K @ 3.6GHz (CPU) and GeForce GTX 1080
Ti (Single GPU).

6The 5𝑛 log 𝑛 is chosen in order to guarantee connectedness be-
tween any pair of nodes within a comparison (hyper-)graph where
nodes represent items and an hyper-edge represents a group com-
parison [16]. Without connectedness guarantees, some algorithms
may fail to produce meaningful estimates.
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Figure 4: Synthetic data experiments. From left to right, top
to bottom: BTL-sum model, BTL-product model, HOI model,
and a generalized Thurstone model. Off-the-scale curves due
to low performance algorithms are not shown. Amount of
data used for training is described in fractions of 𝐷obs, 90% of
the dataset for training (x-axis). Performance is obtained by
using 𝐷unobs, 10% of the dataset for testing (y-axis).

have sufficient data, our framework achieves the perfor-
mance promised by MM-sum, which has been shown
in [1] to achieve local minima in terms of cross entropy
loss. (2) BTL-product model: Our framework achieves the
optimal performance promised by MM-prod, which has
been shown in [2] to achieve global minima in terms of
cross entropy loss. (3) HOI model: SGD-HOI performs
best in most settings. Our framework is second-best with
a slight gap to the best performance in those settings,
but performs best when we have sufficient data. This is
because our framework using neural networks is affected
by overfitting with insufficient data. (4) Thurstone model:
MM-prod and our framework perform best. TrueSkill
comes next with a gap, but it clearly outperforms the
others. Interestingly, TrueSkill, developed specifically for
the Thurstone model, does not lead to the best perfor-
mance. But this result does not run counter to theory, as
its optimality has not been shown in the literature.
Our framework performs consistently best (or near-

best with a marginal gap) across all datasets, while the
others perform inconsistently across them. Some per-
form well in one, but poorly in the others (for example,
MM-sum performs best only in the BTL-sum model but
poorly in all others). It is important to note that our
framework outperforms the single-layer neural network
baseline developed in [7] across all datasets.

5.2. Real-World Data Experiments
As in Section 5.1, we split real-world datasets randomly
into 𝐷obs (90%) and 𝐷unobs (10%), and use a fraction
(1%–2%) of 𝐷obs for validation purposes if necessary. We



Table 1
Match prediction results in terms of cross entropy loss and prediction accuracy in real-world dataset experiments (N/A: not
available due to scalability issues). The best performances are boldfaced and the second-best are underlined. The numbers in
parentheses indicate the ranks in each dataset and metric.

GIFGIF HOTS DOTA 2 LoL IMDb 5000
CE-Loss Acc CE-Loss Acc CE-Loss Acc CE-Loss Acc CE-Loss Acc

Proposed .3053 (1) .8729 (3) .6790 (1) .5673 (1) .6599 (1) .6090 (2) .6936 (1) .5411 (1) .8107 (1) .6016 (1)
Menke & Martinez N/A N/A .6830 (6) .5458 (7) .6601 (2) .6127 (1) .6937 (2) .5236 (5) N/A N/A

MM-sum .3114 (3) .8758 (1) .6796 (4) .5645 (4) .6610 (4) .6049 (5) .7036 (3) .5166 (7) 1.0719 (4) .5812 (2)
MM-prod .3126 (4) .8758 (1) .6793 (3) .5660 (2) .6603 (3) .6083 (3) .7070 (5) .5249 (3) 3.7455 (5) .5428 (5)
SGD-HOI .4056 (6) .8614 (5) .6798 (5) .5562 (5) .6673 (6) .5955 (6) .7125 (6) .5171 (6) .9471 (3) .5780 (3)
TrueSkill .3063 (2) .8728 (4) .6857 (7) .5499 (6) .6683 (7) .5863 (7) .7057 (4) .5245 (4) .8409 (2) .5736 (4)

Rank Centrality .3761 (5) .8555 (6) .6792 (2) .5660 (2) .6667 (5) .6051 (4) .7230 (7) .5276 (2) 3.7455 (5) .5096 (6)

Table 2
Ablation study results that evaluate the effectiveness of modules R & P in real-world dataset experiments. “Not Trained”
indicates R & P made defunct; to produce coarse item utility estimates, they are active once (𝐿 = 1) without refinements, and
data augmentation and model updates are not applied. “Trained” indicates our complete framework.

GIFGIF HOTS DOTA 2 LoL IMDb 5000
CE-Loss Acc CE-Loss Acc CE-Loss Acc CE-Loss Acc CE-Loss Acc

R & P Not Trained 0.338 0.864 0.693 0.515 0.689 0.535 0.696 0.520 0.743 0.538
R & P Trained 0.296 0.875 0.682 0.560 0.660 0.614 0.690 0.539 0.716 0.576
Improvements

(CE-Loss decreases, 12.291% 1.338% 1.514% 8.736% 4.255% 14.764% 0.880% 3.704% 3.616% 7.058%
Accuracy increases)

use five real-world datasets7: GIFGIF, HOTS, DOTA 2, LoL,
IMDb 5000. We use 𝐿 = 30, 15, 15, 20, 20 and the learning
rates of 10−3, 10−3, 10−2, 10−2, 10−2 respectively. We use
four hidden layers for all modules. Each layer consists of
7𝑀 nodes for R and P, and 9𝑀 nodes for G.

Let us discuss each dataset. (1) GIFGIF: A crowd-
sourcing project.7 We use the dataset pre-processed in
[17]. A participant is presented with two images and
asked to choose one which better describes a given emo-
tion.8 This dataset belongs to a special case of our in-
terest as individual comparisons are concerned. We con-
sider the emotion of happiness. We have 6,120 images
and 106,886 samples. (2) HOTS: A collection of HOTS
match records from 10/26/17 to 11/26/17 collected by
HOTS logs.7 Each match consists of two groups with five
players each. The players choose heroes for each match
out of a pool of 84. We choose high-quality matches only
where all players are highly-skilled according to some
available statistics. There are 26,486 records. (3) DOTA
2: A collection of DOTA 2 match records.7 Each match
consists of two groups with five players each, and they
choose heroes out of a pool of 113. There are 50,000
records. (4) LoL: A collection of LoL professional match

7gifgif.media.mit.edu (GIFGIF); hotslogs.com/Info/API
(HOTS); kaggle.com/devinanzelmo/dota-2-matches (DOTA 2);
kaggle.com/chuckephron/leagueoflegends (LoL); kaggle.com/car-
olzhangdc/imdb-5000-movie-dataset (IMDb 5000).

8“neither” is also allowed, but we exclude such data.

records.7 Two groups with five players each compete.
The players choose heroes out of a pool of 140. There are
7,610 records. (5) IMDb 5000: A collection of meta-data
for 5,000 movies.7 Each movie has a score and is asso-
ciated with keywords. To fit our purpose, we generate
match records for movie pairs. We consider each movie
as a group and its five keywords as its items. Given a
pair, we declare a win for the one with a higher score.
We have 8,021 keywords and 123,420 samples.

In addition to the cross entropy loss, we also consider
another metric highly-relevant in practice: prediction
accuracy. We declare it a win for a group if the estimate
of its winning probability is above a certain threshold,
which we set as 0.5 [18]. Thus, the prediction accuracy
is expressed as follows9:

1
|𝐷unobs|

∑
(𝐴,𝐵)∈𝐷unobs

𝑦𝐴𝐵𝕀≥ 1
2
( ̂𝑦𝐴𝐵) + (1 − 𝑦𝐴𝐵)𝕀< 1

2
( ̂𝑦𝐴𝐵).

(8)

Table 1 shows our result. We boldface the best per-
formances and underline the second-best. The numbers
in parentheses indicate the ranks among the algorithms
being compared in a given setup of dataset and metric.
Our framework consistently yields the top performances

9We define 𝕀≥ 1
2
(𝑥) as 1 if 𝑥 ≥ 1

2
and as 0 otherwise. Similarly,

𝕀< 1
2
(𝑥) equals to 1 if 𝑥 < 1

2
and to 0 otherwise.



in all cases, while the others suffer from significantly in-
consistent performances across datasets and/or metrics.
To verify that our design of modules R and P plays a

critical role in achieving consistently high performances
across various scenarios, we conduct ablation studies.
As our baseline, we consider the case where we refine
initialized estimates 𝑤(0) using R and P once (𝐿 = 1), data
augmentation is not applied, and the model parameters
of R and P are not updated. Thus, module G takes as
input coarse utility estimates and produces as output
a group comparison outcome prediction. This baseline
can be viewed as a naive neural network based approach
without the key reward-penalty mechanisms.

Table 2 shows our result. The best performance im-
provements (boldfaced) reach up to 12.291% in cross en-
tropy loss and 14.764% in prediction accuracy. The av-
erage performance improvements are 4.511% in cross
entropy loss and 7.12% in prediction accuracy. Note that
across all datasets and metrics, it is empirically demon-
strated that the reward-penalty structure by modules R
and P brings consistent improvements.

6. Conclusion
We explore the group match prediction problem where
the goal is to predict the probability of one group pre-
ferred over the other given an unseen pair of groups,
based on partially observed group comparison data. We
develop a unified algorithmic framework that employs
neural networks and show that it can yield consistently
best performances compared to other state-of-the-art
algorithms on multiple datasets across various domains.
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