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Abstract

Explainable Recommendation has attracted a lot of attention due to a renewed interest in explainable artificial intelligence. In
particular, post-hoc approaches have proved to be the most easily applicable ones to increasingly complex recommendation
models, which are then treated as black boxes. The most recent literature has shown that for post-hoc explanations based
on local surrogate models, there are problems related to the robustness of the approach itself. This consideration becomes
even more relevant in human-related tasks like recommendation. The explanation also has the arduous task of enhancing
increasingly relevant aspects of user experience such as transparency or trustworthiness. This paper aims to show how
the characteristics of a classical post-hoc model based on surrogates is strongly model-dependent and does not prove to be

accountable for the explanations generated.
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1. Introduction

The explanation of a recommendation list plays an in-
creasingly important role in the interaction of a user
with a recommender system: the pervasiveness of eco-
nomic interest and the inscrutability of most Artificial
Intelligence systems make users ask for some form of ac-
countability in the behavior of the systems they interact
with. Given the explanation that a system can provide
to a user we identify at least two characteristics that the
explanation part should enforce [1, 2, 3]:

« Adherence to reality: the explanation should mention
only features that really pertain to the recommended
item. For instance, if the system recommends the
movie “Titanic”, it should not explain this recommen-
dation by saying “because it is a War Movie” since it is
by no means an adherent description of that movie;

« Constancy in the behavior: when the explanation is
generated based on some sample, and such a sample is
drawn with a probability distribution, the entire pro-
cess should not exhibit a random behavior to the user.
For instance, if the explanation for recommending the
movie “The Matrix” to the same user is first “because
it is a Dystopian Science Fiction”, and then “because it
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is an Acrobatic Duels Movie”, for the same user, this
behavior would be perceived as nondeterministic, and
thus reducing its trustworthiness.

Among several ways of generating explanations, we
study here the application of LIME [4] to the recommen-
dation process. LIME is an algorithm that can explain
the predictions of any classifier or regressor in a faithful
way, by approximating it locally with an interpretable
model. LIME belongs to the category of post-hoc algo-
rithms and it sees the prediction system as a black box
by ignoring its underlying operations and algorithms.
Since we can consider the recommendation task as a
particular Machine Learning task, the LIME approach
can also be applied to recommendation. LIME-RS [5]
is an adaptation of the general algorithm to the recom-
mendation task and can be considered in all respects as
a black-box explainer. This means that it generates an
explanation by drawing a huge number of (random) calls
to the system, collecting the answers, building a model
of behavior of the system, and then constructing the ex-
planation for the particular recommended item. While
the fact of adopting a black-box approach lets LIME-RS
to be applicable for every recommender system, the way
of building a model by drawing a huge random sample
of system behaviors makes it lose both adherence and
constancy, as our experiments show later on this paper.
This suggests that the direct application of LIME-RS to
recommender systems is not advisable, and that further
research is needed to assess the usefulness of LIME-RS
in explaining recommendations.

The paper is organized as follows: Section 2 reviews
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the state of the art on explanation in recommendation;
Section 3 details LIME to make the paper self-contained.
Section 4 shows the results of experiments with two main-
stream recommendation models: Attribute Item-kNN
and Vector Space Model. We discuss the outcomes of the
experiments in Section 5, and conclude with Section 6.

2. Related Work

In recent years, the theme of Explanation in Artificial
Intelligence has come to the foreground, capturing the
attention not only of the Machine Learning and related
communities — that deal more specifically with the algo-
rithmic part — but also of fields closer to Social Sciences,
such as Sociology or Cognitivism, which look with great
interest to this area of research [1]. The growing interest
in this area is also dictated by new regulations of both
Europe [6] and US [7] with respect to sensitive issues in
the field of personal data processing, and legal respon-
sibility. This trend has also touched the research field
of recommender systems [8, 9, 10, 11]. However, topics
such as explanation are by no means new to this field.
In fact, we can date back to 2014 the introduction of the
term “explainable recommendation” [12], although the
need to provide an explanation that accompanies the rec-
ommendation is a need that emerged as early as 1999
by Schafer et al. [13], when people began trying to ex-
plain a recommendation with other similar items familiar
to the user who received that recommendation.

Catalyzation of interest around the topic of explana-
tion of recommendations coincides also with the aware-
ness achieved in considering metrics beyond accuracy
as fundamental in evaluating a recommendation sys-
tem [14, 15]. Indeed, all of the well-known metrics of
novelty, diversity, and serendipity are intended to im-
prove the user experience, and in this respect, a key role
is played by explanation [3, 16]. “Why are you recom-
mending that?”—this is the question that usually accom-
panies the user when a suggestion is provided. Tintarev
and Masthoff [2] detailed in a scrupulous way the as-
pects involved in the process of explanation when we
talk about recommendation. They identified 7 aspects:
user’s trust, satisfaction, persuasiveness, efficiency, effec-
tiveness, scrutability, and transparency.

This is the starting point to define Explainable Rec-
ommendation as a task that aims to provide suggestions
to the users and make them aware of the recommen-
dation process, explaining also why that specific object
has been suggested. Gedikli et al. [3] evaluated differ-
ent types of explanations and drew a set of guidelines
to decide what the best explanation that should equip a
recommendation system is. This is due to the fact that
popular recommendation systems are based on Matrix
Factorization (MF) [17]; for this type of model, trying

to provide an explanation opens the way to new chal-
lenges [1, 18, 19, 20].

There are two different approaches to address this type
of issue.

+ On the one hand, the model-intrinsic explanation
strategy aims to create a user-friendly recommen-
dation model or encapsulates an explaining mech-
anism. However, as Lipton [21] points out, this
strategy will weigh in on the trade-off between
the transparency and accuracy of the model. In-
deed, if the goal becomes to justify recommen-
dations, the purpose of the system is no longer
to provide only personalized recommendations,
resulting in a distortion of the recommendation
process.

« On the other hand, we have a model-agnostic [22]
approach, also known as post-hoc [23], which
does not require to intervene on the internal
mechanisms of the recommendation model and
therefore does not affect its performance in terms
of accuracy.

Most recommendation algorithms take an MF-approach,
and thus the entire recommendation process is based on
the interaction of latent factors that bring out the level of
liking for an item with respect to a user. Many post-hoc
explanation methods have been proposed for precisely
these types of recommendation models. It seems evi-
dent that the most difficult challenge for this type of
approach lies in making these latent factors explicit and
understandable for the user [9]. Peake and Wang [23]
generate an explanation by exploiting the association
rules between features; Tao et al. [24] in their work, find
benefit from regression trees to drive learning, and then
explain the latent space; instead, Gao et al. [25] try a deep
model based on attention mechanisms to make relevant
features emerge. Along the same lines are Pan et al. [11],
who present a feature mapping approach that maps the
uninterpretable general features onto the interpretable as-
pect features. Among other approaches to consider, [12]
proposes an explicit factor model that builds a mapping
between the interpretable features and the latent space.
On the same line we also find the work by Fusco et al.
[26]. In their work, they provide an approach to identify,
in a neural model, which features contribute most to the
recommendation. However, these post-hoc explanation
approaches turn out to be built for very specific mod-
els. Purely model-agnostic approaches include the recent
work of Tsang et al. [27], who present GLIDER, an ap-
proach to estimate interactions between features rather
than on the significance of features as in the original
LIME [4] algorithm. This type of solution is constructed
regardless of the recommendation model.

Our paper focuses on the operation of LIME, a model-
agnostic method for a surrogate-based local explanation.



When a user-item pair is provided, this model returns as
an outcome of the explanation a set of feature weights,
for any recommender system. However, the recommen-
dation task is very specific, so there is a version called
LIME-RS [5] that applies the explanation model tech-
nique to the recommendation domain. In this way, any
recommender is seen as a black box, so LIME-RS plays the
role of a model-agnostic explainer whose result is a set
of interpretable features and their relative importance.
The goal of LIME-RS is to exploit the predictive power
of the recommendation (black box) model to generate
an explanation about the suggestion of a particular item
for a user. In this respect, it exploits a neighborhood
drawn according to a generic distribution compared to
the candidate item for the explanation. It seems obvious
that the choice of the neighborhood plays a crucial role
within the process of explanation generation by LIME-RS.
We can compare this sample extraction action to a per-
turbation of the user-item pair we are using to generate
the explanation. In the case of LIME-RS this perturba-
tion must generate consistent samples with respect to
the source dataset. We see that this choice represents a
critical issue for all the post-hoc models which base their
expressiveness on the locality of the instance to explain.
This trend is confirmed in several papers addressing
this issue of surrogate-based explanation systems such as
LIME and SHAP [28]. In two recent papers, Alvarez-Melis
and Jaakkola [29] have shown how the explanations gen-
erated with LIME are not very robust: their contribution
aims to bring out how small variations or perturbations
in the input data cause significant variations in the expla-
nation of that specific input [30]. In their paper, a new
strategy is introduced to strengthen these methods by
exploiting local Lipschitz continuity. By deeply inves-
tigating this drawback, they introduced self-explaining
models in stages, progressively generalizing linear classi-
fiers to complex yet architecturally explicit models.
Saito et al. [31] also explored this issue by turning their
gaze to different types of sampling to make the result of
an explanation generated through LIME more robust. In
particular, in their work, they introduce the possibility
of generating realistic samples produced with a Genera-
tive Adversarial Network. Finally, Slack et al. [32] adopt
a similar solution in order to control the perturbation
generating neighborhood data points by attempting to
mitigate the generation of unreliable explanations while
maintaining a stable black-box model of prediction.

3. Background Technology

From a formal point of view, we can define a LIME-
generated explanation for a generic instance x € Z pro-
duced by a model fas:

E(x) = argminZ (£, e, y) + Q(e)

ecE

1

where & represents the fidelity of the surrogate model to
the original f, and erepresents a particular instance of the
class E of all possible explainable models. Among all the
possible models, the one most frequently chosen is based
on a linear prediction. In this case, an explanation refers
to the weights of the most important interpretable fea-
tures, which, when combined, minimize the divergence
from the black-box model. The function , measures the
distance between the instance to be explained x € Z, and
the samples x” € & extracted from the training set to
train the model e. Finally, Q(e) represents the complexity
of the explanation model.

Two pieces of evidence make the application of LIME
possible: (i) the existence of a feature space Z on which
to train the surrogate model of f, (ii) and the presence
of a surjective function that maps the space mentioned
above (Z) to the original space of instances (). Going
into more detail, we consider the fidelity function & as
the mean square deviation between the prediction for a
generic instance x” € 2 of the black-box model and that
generated for the counterpart z’ € Z by the surrogate
model. Starting from these considerations we can express
Z with the following formula:

2

x'€eX 2’ €

Z(f.e,mye) = 71'x(x’)-(f(x')—e(z’))2 (2)

In the formula above 7, plays a fundamental role as
it expresses the distance between the instance to be
explained and the sampled instance used to build the
surrogate model. From a generic perspective, we can
express this function as a kernel function like 7, =
exp(=D(x, x")? /o?), where D is any measure of distance.

The full impact of this distance is captured when the
fidelity function also considers the transformation of the
surrogate sample in the original space. As mentioned
earlier, we consider a surjective function p that maps the
original space into the feature space p : & — Z. We
can also consider the function that allows us to move
in the opposite direction p™' : & — Z. At this point,
Equation (2) becomes:

Z(femap) = Toez e (p71 @) (F(r7 D) —e2)” (3)

From this last equation, we can grasp the criticality of
the surjective mapping function. Indeed, the neighbor-
hood in Z-space cannot be guaranteed with the transfor-
mation in Z-space. Thus, some samples selected to train
the surrogate model could not satisfy the neighborhood
criterion for which they were chosen.

We must therefore stress on the centrality of the sam-
pling function: how do we extract the neighborhood of



our instance to be explained? If we look at the application
of LIME to the recommendation domain, we can compare
this sampling action to a local perturbation around our
instance x; however, this perturbation aims to generate
n samples x’, which might contain inconsistencies: as
an example, suppose we want to explain James’s feeling
about the movie The Matrix. The original triple of the in-
stance to be explained associates to the user-item pair the
genre of the movie (representing the explainable space)
and in this case it is of the type ( James, TheMatrix, Sci-Fi).
A perturbation around this instance could generate incon-
sistencies of the type (James, TheMatrix, Western). For
this reason, in LIME-RS the perturbation considers only
real and not synthetic data. This choice is dictated by
the avoidance of the out-of-sample (OOS) process phe-
nomenon. Closely related to this problem predicted by
OOS is that the interpretation examples selected in LIME-
RS represent the ability to capture the locality through
disturbance mechanisms effectively. One of the disad-
vantages of LIME-like methods is that they sometimes
fail to estimate an appropriate local replacement model
but instead generate a model that focuses on explaining
the examples and is also affected by more general trends
in the data.

This issue is central to our work, and it involves two
aspects: (i) the first one concerns the sampling function
of the samples precisely. In the LIME-RS implementation,
this function is driven by the popularity distribution of
the items within the dataset. (ii) The second critical issue
concerns the model’s ability to wittily discriminate the
user’s taste from the neighborhood extracted to build the
surrogate model. A model that squashes too much on bias
or is inaccurate cannot bring out the peculiarities of user
taste that are critical in building the explainable model
which are, in turn, useful in generating the explanation
for the instance of interest.

These observations dictate the two research questions
that motivated our work:

RQ1 Can we consider the surrogate-based model on
which LIME-RS is built to generate always the
same explanations, or does the extraction of a dif-
ferent neighborhood severely impact the system’s
constancy?

RQ2 Are LIME-RS explanations adherent to item con-
tent, despite the fact that the sampling function

is uncritical and based only on popularity?

4. Experiments

This section is devoted to illustrating how the experimen-
tal campaign was conducted. The datasets used for this
phase of experimentation are Movielens 1M [33], Movie-

lens Small [33], and Yahoo! Movies'. Their characteristics
are shown in Table 1.

Table 1
Characteristics of the datasets involved in the experiments.
Users  Items  Transactions  Sparsity
Movielens TM 6040 3675 797758 0,9640
Movielens Small 610 8990 80419 0,9853
Yahoo! Movies 7636 8429 160604 0,9975

As for the choice of the models to be used in this work
is concerned, we selected two well-known recommenda-
tion models that are able to exploit the information con-
tent of the items to produce a recommendation: Attribute
Item kNN (Att-Item-kNN) and Vector Space Model (VSM).
The two chosen models represent the simplest solution
to address the recommendation problem by exploiting
the content associated with the items in the catalog.

Att-Item-kNN  exploits the characteristics of
neighborhood-based models but expresses the represen-
tation of the items in terms of their content and, based
on this representation, it computes a similarity between
users. Starting from this similarity and exploiting
the collaborative contribution in terms of interactions
between users and items, Att-Item-kNN tries to estimate
the level of liking of the items in the catalog. VSM
represents both users and items in a new space to
link users and items to the considered information
content. Once obtained this new representation, with
an appropriate function of similarity, VSM estimates
which are the most appealing items for a specific user.
The implementation of both models are available in the
ELLIOT [34] evaluation framework. This benchmarking
framework was used to select the best configuration
for the two recommendation models by exploiting the
corresponding configuration file?.

Our experiments start by selecting the best configu-
rations based on nDCG [35, 36] for the two models on
the considered datasets. Then, we generate the top-10
list of recommendations for each user, and we take into
account the first item i; on these lists for each user u. Fi-
nally, each recommendation pair (u,i,) is explained with
LIME-RS. The explanation consists of a weighted vector
(g, w); where g is the genre of the movies in the dataset
- ie., the features — and wis the weight associated to g
by LIME-RS within the explanation. Then, this vector is
sorted by descending weights. In this way, the genres of
the movies which play a key role within the recommen-
dation, as explained by LIME-RS, are highlighted at the
first positions of the vector. These operations are then
repeated n = 10 times and changing the seed each time,

R4 - Yahoo! Movies User Ratings and Descriptive Content
Information, v.1.0 http://webscope.sandbox.yahoo.com/.
*https://tny.sh/basic_limers
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as 10 is likely to be a good choice to detect a general pat-
tern in the behavior of LIME-RS. At this point, for each
pair (u,i;), we have a group of 10 explanations ordered
by descending values of w, which we exploit to answer
our two research questions.

RQ1. Empirically, since in a real scenario of recommenda-
tion a too verbose explanation is not useful, we consider
only the first five features in the sorted vector represent-
ing the explanation of each recommendation. In order to
verify the constancy of the behavior of LIME-RS, given a
(u,i1) pair, we exploit the n previously generated expla-
nations for this pair. Then for k = 1,2,..., 5, we define
Gy, as the multiset of genres that appear in k-th position
— for instance, if “Sci-Fi” occurs in the first position of 7
explanations, then “Sci-Fi” occurs 7 times in the multiset
G, and similarly for other genres and multisets. Then,
we compute the frequency of genres in each position as
follows: given a position k, a genre g, and the number
n of generated explanations for a given pair (u, i), the
frequency fg, of g in k-th position is computed as:

_liglg e Gl
n

fa (4)
where || - || denotes the cardinality of a multiset. Then, all
this information is collected for each user in five lists —
one for each of the k positions — of pairs (g, fg, ) sorted by
frequency. One can observe that the computed frequency
is an estimation of the probability that a given genre is
put in that position within the explanation generated by
LIME-RS sorted by values. Hence, the pair (g, max ( fgk)>
describes the genre with the highest frequency in the
k-th position of the explanation for a pair (u,i;). Finally,
it makes sense to compute the mean gy of the highest
probability values in each position k of the explanations
for each pair (u,i;). Formally, by setting a position k, the
mean /i is computed as:

_ z‘lgll max (fgk) j

0] ®)

Hre
where U is the set of users for whom it was possible to
generate a recommendation for. Observing the value
of y, we can state to what extent LIME-RS is constant
in providing the explanations until the k-th feature: the
higher the value of ., the higher the constancy of LIME-
RS concerning the k-th feature.

By looking at Table 2, we can see that for Att-Item-
kNN the LIME-RS explanation model is reliable as long
as it considers at most three features in the weighted
vector presented as an explanation of the recommen-
dation. Extending the explanation to four features, we
have a constancy that falls below 65%, while arriving at
an explanation with five features is more likely to run
into explanations that exhibit an unacceptably random
behavior. On the other hand, we can see that for VSM

Table 2

Constancy of LIME-RS. A value equal to 0 means that the
genre(s) provided by LIME-RS in the first k position(s) is always
different (worst case: completely inconstant behavior); A value
equal to 1 means that the genre(s) provided by LIME-RS in
the first k position(s) is always the same (total constancy).

H Ha Hs Ha Hs
Att-ltem-kNN
Movielens TM 0,9130 0,7822 0,6927 0,6288 0,5727
Movielens Small  0,8830 0,7426 0,6639 0,60459  0,5616
Yahoo! Movies 0,9230 0,8016 0,7232 0,6528 0,5830
VSM
Movielens TM 0,8929 0,7953 0,7729 0,7726 0,7801
Movielens Small  0,9464 0,8636 0,8343 0,8138 0,8049
Yahoo! Movies 0,9732 0,9209 0,8887 0,8884  0,9056

the values are much more stable. In this case, we have a
constancy that, regardless of the length of the weighted
vector of the explanation, stabilizes on average around
80%. An aspect emerges that will be discussed in de-
tail later: LIME-RS is conditioned by the ability of the
black-box model to discriminate the user’s tastes locally.
RQ2. With the aim of providing an answer about the
adherence to reality of LIME-RS, we make a comparison
between the genres claimed to explain a recommended
item and its actual genres. Indeed, the explanations about
an item should fit the list of genres the item is charac-
terized by. This means that, in an ideal case, all highly
weighted features within the explanation should match
the genres of the item. From the results in Table 2, we no-
tice that using Att-Item-kNN the constancy of LIME-RS
reaches a low value after the third feature. Hence, it is a
futile effort to go deeper in the study of the explanation.
To this aim, we intersected each explanation limited to
the set Ey of its first k genres with the set of genres F;
characterizing the first recommended item, for k = 1,2, 3.
Upon completion of this operation for all the n expla-
nations generated for each (u,i;) pair, we computed the
number of times we obtained an empty intersection of
these sets, normalized by the total number of explana-
tions n x |U], in order to understand to what extent an
explanation is (not) adherent to the item. Formally, for a
given value of k, the value adherencey, is computed as:

S (B B, = o]
nx U]

adherence, = 6)
where U is the set of users of the dataset for whom it
was possible to generate a recommendation, n is the
number of generated explanations for each pair (u,i;),
and by X[--] we mean that we sum 1 if the condition
inside [--] is true, and 0 otherwise. One can note that
adherence. € [0, 1], where a value of 1 indicates the worst
case in which for none of the n explanations under con-
sideration at least one genre of the item is in the first k



features of the explanation. In contrast, the lower the
value of adherencey, the higher the adherence of LIME-RS.

Table 3

Adherence of LIME-RS. For value equals to 1 no genre provided
by LIME-RS in the first k real genres of the movie (worst case);
For value equals to 0 at least one genre provided by LIME-RS
in the first k genres is always among the real genres of the
movie.

adherence;,  adherence,  adherence,
Att-ltem-kNN
Movielens 1M 0,2774 0,1105 0,0488
Movielens Small 0,2364 0,0651 0,0180
Yahoo! Movies 0,3597 0,1202 0,0476
VSM
Movielens 1M 0,5357 0,2539 0,1088
Movielens Small 0,4384 0,1674 0,0403
Yahoo! Movies 0,1013 0,01348 0,0021

Observing the results from Table 3, Att-Item-KNN per-
forms well in terms of adherence since, in approximately
75% of cases, even considering only the main feature of
the explanation, it falls into the set of the item genres,
as for Movielens dataset family. This performance is
a 10% lower for Yahoo! Movies. In contrast with this
result, VSM shows poor performances on both dataset
of the Movielens family, by failing half the time about
Movielens 1M as regards adherence. A surprising result
is achieved for Yahoo! Movies dataset because, enlarging
the study to the first three features among the explana-
tion, the error is almost completely absent. The reasons
we found to explain this difference in the performances
concern the characteristics and the quality of the dataset,
as we highlight later on.

5. Discussion

This work investigates how well a post-hoc approach
based on local surrogates — such as the LIME-RS algo-
rithm - explains a recommendation. Instead of studying
the impact of explanations on users (that is a well-studied
topic in the literature and is beyond our scope), we fo-
cus on objective evidences that could emerge. In this
respect, we have designed specific experiments, which
introduced two different metrics, to evaluate adherence
and constancy for this kind of algorithms. For instance,
Table 2 shows a different behavior for Att-Item-kNN and
VSM. On the one hand, Att-Item-kNN seems to guarantee
a good constancy in explanations up to the third feature.
This suggests that an explanation that exploits the first
three features of the list produced by LIME-RS could be
barely considered as reliable (i.e., reaching a constancy of
0.69 on Movielens 1M). On the other hand, VSM exhibits
amuch more “stable” behavior, demonstrating in all cases

(except for the first feature with Movielens 1M) better per-
formance than Att-Item-kNN in terms of constancy, with
peaks up to 97%. A straightforward consequence of these
observations could be analyzed in terms of confidence or
probability. If the constancy steadily decreases, it means
that the probability that LIME-RS suggests the same ex-
planatory feature decreases. In practical terms, we could
say that LIME-RS is less confident about its explanation.
In fact, this is the behavior of Att-Item-kNN. Conversely,
VSM shows high values of constancy, resulting in a more
”deterministic” behavior. With VSM, LIME-RS is more
confident of its explanations. This could increase user’s
trustworthiness, since LIME-RS behavior is more reliable.
However, these results could also be interpreted to-
gether with the ones from Table 3. They show how
often at least one feature — out of k features provided
by LIME-RS- adheres to the features that describe the
item being explained. In other words, they measure the
probability that LIME-RS succeeds in reconstructing at
least one feature of a specific item. Combining the re-
sults of Table 2 and those of Table 3, Att-Item-kNN, as
already mentioned, shows good performance regarding
adherence and identifies 3 times out of 4 the first funda-
mental feature of the explanation among those present
in the set of features originally associated with the item.
As expected, if the number k of LIME-RS-reconstructed
features increases, the number of times such a set has a
nonempty intersection (with the features belonging to
the item) - i.e., adherence - increases. It could be noted
that Att-Item-kNN on Yahoo! Movies shows the worst
behavior in terms of adherence. VSM shows a different
behavior. Despite the excellent performance regarding
constancy, it could be observed that on both Movielens
datasets, the performance in terms of adherence is poor,
and worse for Movielens 1M than for Movielens Small.
Surprisingly, on Yahoo! Movies, VSM performs much
better, and the errors are almost negligible.
The difference between the two models could be due
to many reasons. In the following we analyze possible
relations between such behaviors and two of them: pop-
ularity bias in the dataset and characteristics of side in-
formation. On the one hand, if the dataset is affected
by popularity bias, it would be a well-studied cause of
confusion for LIME-RS. On the other hand, the character-
istics of the side information associated with the datasets
could dramatically influence the performance of the two
recommendation models. To assess these hypotheses, we
have evaluated (see Table 4) the recommendation lists
produced by Att-Item-kNN and VSM considering nDCG,
Hit Rate (HR), Mean Average Precision (MAP), and Mean
Reciprocal Rank (MRR). Table 4 shows that the chosen
datasets are strongly affected by popularity bias. Indeed,
MostPop is the best performing approach, and the two
“personalized” models fail to produce accurate results.
This triggers the second aspect that concerns the quality



Table 4
Results of the experiments on the models involved in the
experiments. Models are optimized according to the value of
nDCG.

model nDCG  Recall HR Precision MAP MRR
Movielens Tm
Random 0,0051 0,0028  0,0869 0,0098 0,0094  0,0264
MostPop 0,0845 0,0379  0,4548 0,104 0,115 0,2205
Att-ltem-kNN 0,0229 0,0165  0,2425 0,0383 0,0387  0,0888
VSM 00173 00109 02106  0,0292  0,0306 0,0741
Movielens Small
Random 0,0030 0,0013  0,0492 0,0049 0,0068  0,0205
MostPop 0,0715 0,0389  0,3902 0,0748 0,0912  0,1961
Att-ltem-kNN  0,0124  0,0068  0,1459  0,0197  0,0191  0,0484
VSM 0,0085  0,0056  0,1000 0,0111 0,0123  0.0350
Yahoo! Movies
Random 0,0005  0,0008  0,0051 0,0005  0,0005 0,0015
MostPop 0,2188 0,2589 0,596 0,1067 0,1501 0,3447
Att-Item-kNN 0,0215 0,0262  0,1198 0,0132 0,0155  0,0435
VSM 0,0131 0,0171 0,0754 0,0081 0,0092  0,0261

of the content. The results suggest that the side infor-
mation is not good enough to boost the recommenda-
tion systems in producing meaningful recommendations.
In fact, the three datasets seem to have an informative
content that is not adequate to generate appealing rec-
ommendations. We observe that, from an informative
point of view, the Yahoo! Movies dataset is slightly more
complete: 22 genres against the 18 genres available on
Movielens. Although the VSM model does not show ex-
cellent performance, in combination with LIME-RS, it
provides explanations that are very reliable in terms of
constancy (see Table 2) and adherence (see Table 3) to
the actual content of the items being explained.

From the designer perspective, there is also a prag-
matic way to look at the experimental results. Suppose a
developer needs an off-the-shelf way of generating expla-
nations for recommendations, and chooses LIME-RS to
do that. Our results suggest that if the explainer employs
a Movielens dataset with Att-Item-kNN model, then it
is better to run the explainer several times. Indeed, the
first feature obtained for the explanation could change
around 1 time every 5 trials (first column of Table 2),
and once such a feature is obtained, it is better to check
whether this feature is really among the ones describing
the item, since 1 time out of 4 the feature can be wrong
(first column of Table 3). Moreover, if the explainer em-
ploys the Yahoo! Movies dataset with VSM model, then
probably there is no need to run the explainer twice, since
its behavior is constant 97% of the times, while the fea-
ture is wrong only 10% of the times. However, the low
performance of such a model is to be taken into account.

6. Conclusion

In this paper we shed a first light on the effectiveness
of LIME-RS as a black-box explanation model in a rec-

ommendation scenario. We propose two different mea-
sures to understand how reliable an explanation based
on LIME-RS is: (i) constancy was used to assess the im-
pact of the random sampling phase of LIME-RS on the
provided explanation — ideally the explanation should
remain constant in spite of the sample used to obtain
it; (ii) adherence was proposed to understand the recon-
structive power of LIME-RS with respect to the features
that belong to the item involved in the explanation - ide-
ally, LIME-RS should provide an explanation that always
adheres to the actual features of the recommended item.

To test both constancy and adherence, we trained and
optimized two content-based recommendation models:
Attribute Item-kNN (Att-Item-kNN), and a classical Vec-
tor Space Model. For each model, and for all datasets
exploited in the study, we generated recommendation
lists for all users. We exploited the first item of these
top-10 lists to produce the explanations that were then
the subject of our investigation. It turned out that for
models built with a large collaborative input such as
Att-Ttem-kNN, LIME-RS produces fairly constant expla-
nations up to a length of three features. Moreover, these
explanations turn out to be adherent with respect to the
item between 65% and 75% of the cases in which only
the first feature of the weighted vector of explanations
is considered. VSM shows a different behavior where
explanations are much more constant, but suffer a lot in
terms of adherence, except for the Yahoo! Movies dataset
for which the explanation model showed outstanding
performance despite the poor ability of VSM to provide
sound recommendations to users.

In our eXperiments, some evidence started to emerge
highlighting that the adopted explanation model is condi-
tioned not only by the accuracy of the black-box model it
tries to explain but also by the quality of the side informa-
tion used to train the model. The latter result deserves to
be adequately investigated to search for a link at a higher
level of detail. We plan to apply our experiments also to
other recommendation models, to see whether the prob-
lems with adherence and constancy that we found for the
two tested models show up also in other situations. We
will also investigate what impact structured knowledge
has on this performance by exploiting models capable of
leveraging this type of content. In addition, it would also
be the case to try different reference domains with richer
datasets of side information to understand what impact
content quality has on this type of explainer.
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