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Abstract
This paper presents a case-study of a knowledge-based recommender system capable to diagnose post-harvest diseases of
apples. It describes the process of knowledge elicitation and construction of a Bayesian Network reasoning system as well as
its evaluation with three different types of studies involving diseased apples. The ground truth of diseased instances has
been established by genome sequencing in a lab. The paper demonstrates the performance differences of knowledge-based
reasoning mechanisms due to different users interacting with the system under different conditions and proposes methods
for boosting the performance by likelihood evidence learned from the estimated consensus of users’ and expert’s interactions.
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1. Introduction
Apple trees are the most common temperate fruit tree
species, since their fruits can be stored for prolonged pe-
riods of time under controlled atmosphere conditions.
However, physiological disorders and pathogenic mi-
croorganisms can deteriorate the quality and quantity of
the production during storage, and lead to considerable
economic losses [1]. For instance, in Northern Europe,
storage losses due to pathogenic microorganisms were
estimated to reach up to 10% in integrated production
and up to 30% in organic production [2]. Therefore, an
effective knowledge-based recommender system, able to
timely suggest a correct diagnosis of diseases manifested
on stored apples, is of crucial importance. For instance,
it depends on the exact pathogen species to decide on
the right strategy for immediate damage containment
and/or to recommend a plant protection scheme for the
following year. In order to reliably determine the na-
ture of the disease, several macroscopic symptoms, such
as appearance, color, texture and consistency of the rot
need to be considered by the system. Hence, we should
provide a practical interface to elicit user feedback on
manifested symptoms on a diseased apple in order to
guide the reasoning to recommend a diagnosis. Thus, we
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propose BN-DSSApple a decision support system based
on the framework of Bayesian Networks (BN), a graphical
probabilistic method to reason about uncertainty rela-
tionships among symptoms, signs, and diseases. The user
observation (i.e., the evidence) is elicited incrementally
through an adaptive question-answering interface, illus-
trated by visual explanation of the requested information
in order to facilitate user understanding. Furthermore,
we illustrate the process adopted to build the diagnos-
tic knowledge base with the help of a domain expert in
the field of post-harvest apple diseases. We analyse and
address the problem of transferability of such an expert
model to a larger cohort of users with different exper-
tise levels. We thoroughly tested BN-DSSApple under
different experimental conditions, simulated in 3 user
studies, to prove the effectiveness of the system and its
transferability across different environments.

The methodological contribution of this case study is
organized according to this pipeline: a) in Section 3.1,
we describe the application domain and the implemented
BN-DSSApple system; b) in Section 3.2, we illustrate the
process of knowledge elicitation from a domain expert for
crafting the knowledge base of the BN; c) in Section 3.3,
we formalize the recommendation mechanism responsi-
ble for the suggestion of a suitable diagnosis given the
user feedback; d) in Section 3.4, we define the trasportabil-
ity problem of a knowledge-based model and we propose
a possible solution, exploiting the so-called likelihood
evidence.
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2. Background
A Bayesian Network (BN) [3, 4] is defined by its two
main components: the qualitative part represented by its
graphical structure and the quantitative part consisting
of the conditional probabilities. More formally, a BN is
graphically represented as a directed acyclic graph (DAG)
𝒢 = (𝑁 , 𝐸), where 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑙} denotes the set
of 𝑙 nodes and 𝐸 ⊆ 𝑁 × 𝑁 the set of directed edges be-
tween pairs of nodes. Each node 𝑛𝑖 ∈ 𝑁 in the DAG 𝒢
is mapped one-to-one with a random variable 𝑋𝑖 ∈ 𝒳,
where 𝒳 denotes the set of random variables involved
in the model. A random variable 𝑋𝑖 ∈ 𝒳 is represented
by a set of exclusive values (or states) in which the vari-
able might be observed 𝑉 𝑎𝑙(𝑋𝑖) = {𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑚𝑖 }, where
𝑥 𝑗𝑖 ∈ 𝑉 𝑎𝑙(𝑋𝑖) denotes the 𝑗-th value of variable 𝑋𝑖. We use
the notation𝑋𝑖 = 𝑥 𝑗𝑖 for an observed event, to express that
variable 𝑋𝑖 ∈ 𝒳 is observed (or instantiated) in the state
𝑥 𝑗𝑖 ∈ 𝑉 𝑎𝑙(𝑋𝑖). A conditional probability table (CPT) is asso-
ciated to each random variable 𝑋𝑖 ∈ 𝒳. The CPT specifies
the conditional probability distribution 𝑃(𝑋𝑖|𝑝𝑎(𝑋𝑖)) ∈ 𝒫
over the states of 𝑋𝑖. Where, 𝒫 represents the set of
conditional probabilities in the model, and 𝑝𝑎(𝑋𝑖) ⊂ 𝒳
denotes the set of the so-called parents of the variable 𝑋𝑖
associated to the node 𝑛𝑖 in the DAG 𝒢. Specifically, the
parent set of 𝑋𝑖 is composed by every variable 𝑋𝑗 ∈ 𝒳
associated to the node 𝑛𝑗 in the DAG 𝒢, connected with
a directed edge to 𝑛𝑖 (the so-called child node). More for-
mally, 𝑝𝑎(𝑋𝑖) = {𝑋𝑗 ∈ 𝒳 ∶ (𝑛𝑗, 𝑛𝑖) ∈ 𝐸}. We can further
define an ancestor variable 𝑎𝑛(𝑋𝑖) of the variable 𝑋𝑖, and
a descendant variable 𝑑𝑒(𝑋𝑖) of variable 𝑋𝑖, if exists a di-
rected path (i.e., a set of directed edges) connecting node
𝑛𝑎 (associated with variable 𝑎𝑛(𝑋𝑖)) to 𝑛𝑖 (associated with
variable 𝑋𝑖), and 𝑛𝑖 to 𝑛𝑑 (associated with variable 𝑑𝑒(𝑋𝑖));
namely {(𝑛𝑎, 𝑛𝑗), (𝑛𝑗, 𝑛𝑖), (𝑛𝑖, 𝑛ℎ), … , (𝑛𝑔, 𝑛𝑑)} ⊂ 𝐸. It is im-
portant to mention that the DAG 𝒢 of the BN specifies
a set of probabilistic relationships among variables in
the model. Namely, if an edge (𝑛𝑗, 𝑛𝑖) ∈ 𝐸 exists in the
graph, this generally implies that a causal relation holds
between the variables 𝑋𝑗 and 𝑋𝑖, associated to nodes 𝑛𝑗
and 𝑛𝑖. Specifically, we typically assume that the parent
𝑋𝑗 represents the cause and child 𝑋𝑖 represents the ef-
fect in the domain. Thus, a fundamental assumption of
conditional (in)dependence between variables could be
derived. This assumption is the Local Markov Assump-
tion (or Local Independence Assumption), and it states
that: given its parents 𝑝𝑎(𝑋𝑖) ⊂ 𝒳, defined in the DAG 𝒢,
a variable 𝑋𝑖 is conditionally independent of all its non-
descendant variables. More formally, for each variable 𝑋𝑖:
(𝑋𝑖 ⟂ 𝑋𝑗|𝑝𝑎(𝑋𝑖)), where 𝑋𝑗 ∉ 𝑑𝑒(𝑋𝑖), set of descendants of
𝑋𝑖. This property allows to specify the joint distribution
over the space of the variables𝒳 in the BNmodel through
the probability factorization 𝑃(𝒳) = ∏𝑙

𝑖=1 𝑃(𝑋𝑖|𝑝𝑎(𝑋𝑖)),
usually referred to as the chain rule for Bayesian networks.

3. Methodology

3.1. System Description
The presented knowledge-based decision support system,
named BN-DSSApple, is conceptualized as an interactive
easy-to-use web application that allows users with dif-
ferent levels of domain expertise in the area of apple
production (e.g., farmers, quality controllers, and storage
workers), to perform in-field diagnosis of post-harvest
diseases of apple fruit, relying solely on the observed
macroscopic symptoms on the stored fruit. The system
is designed as a recommender engine which collects the
feedback of the user (i.e., the evidence) on a specific apple
fruit (i.e., the target apple), in order to suggest a suitable
diagnosis (i.e., a set of recommended diseases). The rea-
soning mechanism is performed by a Bayesian Network
(BN) based on an ad-hoc knowledge base, constructed
with the help of a domain expert (as described in 3.2).

Specifically, the system collects user’s feedback about
the target apple by asking a set of dynamic multiple-
choice questions related to the macroscopic features of
the observed symptoms (e.g., the shape of the rot, the ori-
gin of the infection, etc.). Each question is illustratedwith
exemplary pictures, facilitating also non-expert users in
their understanding. Each question is mapped to a spe-
cific variable in the BN model. This part of the system is
dynamic, since the system incrementally adapts the ques-
tions path based on the previous answers given by the
user. For instance, when the system gets the information
that spores are visible on the infected apple, it will inquiry
the user about further features of those spores (i.e., their
mass distribution, colour, and origin). Furthermore, the
system provides full flexibility to the user, i.e., it allows
to navigate the questions path back and forth in order to
revise previous answers, to provide multiple answers, or
to skip questions in case of lacking confidence.

3.2. Knowledge Elicitation for Bayesian
Network

In order to build a diagnostic reasoning system based on
Bayesian network (i.e., both the network structure and
the CPTs) two options are available: learn from the data
or elicit the knowledge from the domain literature or the
experts, or any combination of the above. At the best
of our knowledge, no datasets are publicly available to
learn significant relationships among apple diseases and
macroscopic symptoms. Thus, we started by analysing a
large OWL ontology which captures the entire life cycle
of apple cultivation, production, handling, and storage,
presented in [5]. Hence, we extracted a smaller quantita-
tive part of the presented ontology suitable for our goal,
which allows a simple reasoning mechanism connecting
symptoms to diseases, thanks to a set of SWRL rules [6].



The graphical structure of this ontology is represented in
Figure 1. At the best of our knowledge, the difficult task
to (semi)-automatically construct a BN from a domain
ontology is still under-explored in the literature. Few
practical, heuristic solutions can be found [7, 8], which
can hardly be applied to our case. The main limitation of
such an effort lays in the fact that the two frameworks dif-
fer in the purpose they are used for. An ontology is more
suitable to describe concepts and qualitative relationships
(of different nature), while the BN requires quantitative
definitions (i.e., probabilistic) of correlation relationships
related to the reasoning mechanism of phenomena [9].

Figure 1: The initial ontology for BN-DSSApple.

We overcame this problem by directly interviewing
a domain expert for the construction of the knowledge
base. Specifically, we divided this task into two distinct
phases: during the first phase, we identified the random
variables (i.e., the macroscopic symptoms) which are rel-
evant in the diagnostic process; during the second phase,
we determined the probability values (i.e., the CPTs) quan-
titatively linking the diseases to the symptoms. We firstly
asked the domain expert to review the available ontol-
ogy, enrich and adapt it in order to obtain an effective
tool for the diagnosis of post-harvest diseases of apple
based on visible macroscopic symptoms on it. After few
rounds of interaction, we agreed with a set of 27 discrete
random variables (12 boolean and 15 categorical) related
to macroscopical symptoms and signs that could be ob-
served on the infected apple skin and pulp, together with
two hidden (target) variables, namely Disease and Stage.
We assumed that a target apple could be infected by one
and only one disease and thus, the random variable Dis-
ease encodes the whole set of bacterial diseases of our
study, namely the 7 diseases Val(Disease) = {alternaria_rot,
alternaria_spot, bitter_rot, botrytis, mucor_rot, neofabraea,
penicillium}. The Stage random variable was introduced
to facilitate the experts’ probability elicitation task. The
variable represents three discrete and symbolic stages

of advancement of the post-harvest infection, namely
Val(Stage) = {early, medium, late}. This workaround al-
lows the expert to visualize a specific condition of the
disease and thus specify a more reliable likelihood of the
symptoms.

The final BN-DSSApple graph is reported in Figure 2.
The central nodes in the network, bolded and empty, rep-
resent the two hidden diagnosis variables, namelyDisease
and Stage. On the top part of the network, coloured in
grey, are the nodes related to the lesion properties. On
the right-most part, colored in yellow, are the rot prop-
erties, while on the left-most part, colored in green, are
the lesion origin nodes. Finally, in the central-bottom
part, colored in orange, are represented the nodes related
to the lesion type and other symptoms, under those, col-
ored in cyan, the nodes representing the properties of
the other symptoms.

Figure 2: The graph of the Bayesian Network for DSSApple.

In the second phase, we interviewed the domain expert
in order to define the quantitative probabilistic dependen-
cies among variables. For simplicity, we decided to start
from a situation where all the symptom variables are con-
ditionally independent among each other, given the states
of Disease and Stage. Furthermore, they all depends from
the two hidden variables responsible for the assessment
of the diagnosis (i.e., Disease and Stage). We indicate the
Disease variable as 𝐷 ∈ 𝒟, where 𝒟 defines the set of
hidden variables for the model. 𝑉 𝑎𝑙(𝐷) = {𝑑1, 𝑑2, … 𝑑𝑛}
represents the set of states of the variable 𝐷, where 𝑑 𝑖 is
the 𝑖-th state of the Disease variable (i.e., the 𝑖-th disease
in our pool). The Stage variable is referred as 𝑇 ∈ 𝒟
and 𝑉 𝑎𝑙(𝑇 ) = {𝑡1, 𝑡2, … 𝑡𝑚} represents the set of states of
variable 𝑇, where 𝑡 𝑖 is the 𝑖-th state of the Stage variable.
All other (observed) variables in the model are referred
as symptom variables and they belong to the set 𝒮. A
generic symptom variable 𝑆𝑖 ∈ 𝒮 is represented by a set
of states 𝑉 𝑎𝑙(𝑆𝑖) = {𝑠1𝑖 , 𝑠2𝑖 , … 𝑠𝑞𝑖 }, where 𝑠𝑗𝑖 is the 𝑗-th state
of the symptom variable 𝑆𝑖. Moreover, we adapted the



procedures described in [10] for eliciting expert proba-
bilities of our network. Specifically, we adopted a mixed
symbolic questionnaire to facilitate the expert express-
ing the conditional probability of each event. In more
details, two techniques were applied depending on the
support of the variable. For boolean variables (for each
symptom variable 𝑆𝑖 ∈ 𝒮 such that 𝑉 𝑎𝑙(𝑆𝑖) = {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}),
the expert was invited to answer the question: “How fre-
quently do you observe symptom 𝑆𝑖 = 𝑡𝑟𝑢𝑒, given that you
have an apple infected by disease 𝐷 = 𝑑𝑙 at stage 𝑇 = 𝑡𝑗?”.
We allowed her to select one option on a pre-defined 6-
point scale, includingAlways (A), Very often (V),Often (O),
Sometimes (S), Rarely (R), and Never (N). The expert had
to fill a form, providing the answer for each combination
of 𝑑𝑙 ∈ 𝐷 × 𝑡𝑗 ∈ 𝑇. The symbolic scale is converted into an
actual probability 𝑃(𝑆𝑖 = 𝑡𝑟𝑢𝑒|𝐷 = 𝑑𝑙, 𝑇 = 𝑡𝑗) according
to the scheme reported in Table 1. The complementary
probability is consequentially defined as 𝑃(𝑆𝑖 = 𝑓 𝑎𝑙𝑠𝑒|𝐷 =
𝑑𝑙, 𝑇 = 𝑡𝑗) = 1 − 𝑃(𝑆𝑖 = 𝑡𝑟𝑢𝑒|𝐷 = 𝑑𝑙, 𝑇 = 𝑡𝑗).

answer 𝑃(𝑆𝑖 = 𝑡𝑟𝑢𝑒|𝑑𝑙, 𝑡𝑗)

Always (A) 0.999
Very often (V) 0.8
Often (O) 0.6
Sometimes (S) 0.3
Rarely (R) 0.01
Never (N) 0.001

Table 1
Scale to convert expert knowledge into actual probabilities.
How frequently do you observe symptom 𝑆𝑖 = 𝑡𝑟𝑢𝑒, given that
you have apples infected by disease 𝑑𝑙 at stage 𝑡𝑗?

For categorical variables (i.e., each symptom variable
𝑆𝑖 ∈ 𝒮 such that 𝑉 𝑎𝑙(𝑆𝑖) = {𝑠1𝑖 , 𝑠2𝑖 , … , 𝑠𝑚𝑖 }, where 𝑚 > 2),
such a process would have been too burdensome for the
expert. Thus, we decided to adopt a lighter, yet effective,
approach. For each categorical symptom variable 𝑆𝑖 ∈ 𝒮,
given a specific disease 𝐷 = 𝑑𝑙 at stage 𝑇 = 𝑡𝑗, the expert
was invited to simply indicate which values of 𝑉 𝑎𝑙(𝑆𝑖)
are likely to be observed. Furthermore, we agreed on a
3-point symbolic annotation to denote the likelihood of
each reported value, namely, common (no parenthesis),
less common (one parenthesis), and rare (two parenthe-
sis). The assumption underneath this choice is that many
symptom values are never observed under some condi-
tions (i.e., resulting CPTs are sparse) and could be ignored
to speed up the elicitation process. In order to convert
likelihood annotations into actual probability distribu-
tion values we adopted the following heuristic. Please
consider a random variable 𝑅 with 𝑉 𝑎𝑙(𝑅) = {𝑎, 𝑏, 𝑐, 𝑑},
which is annotated as follows by the the expert: a: com-
mon, b: less common, c: rare, and d is ignored; then
𝑃(𝑎) = 2𝑃(𝑏) = 4𝑃(𝑐) = 1.0 and 𝑃(𝑑) = 0.0. Further-
more, a small value 𝜖 = 0.001 is added to each probability

value in order to avoid null probabilities, then values
are normalized such that ∑𝑟∈𝑉 𝑎𝑙(𝑅) 𝑃(𝑟) = 1.0. This pro-
cess completely defines a probability distribution for the
categorical random variable 𝑅.

3.3. Recommendation Mechanism
In this section, we detail how a ranked list of recom-
mended diseases (i.e., a diagnosis) is computed after the
user provides the feedback on a target apple, answering
the questions asked by the system.

The reasoning mechanism of the BN allows to perform
the inference, namely, to estimate the posterior proba-
bility distribution on a target unobserved variable (i.e.,
the Disease variable 𝐷), given any set S ∈ 𝒮 of observed
variables as provided by the user (i.e., the evidence E).
The evidence set E is constructed incrementally by the
application. At each step, the application requests the
user to answer a multiple-choice question, related to a
symptom variable 𝑆𝑖 ∈ 𝒮. When the user submits the
observed state 𝑠𝑗𝑖 ∈ 𝑉 𝑎𝑙(𝑆𝑖), BN-DSSApple includes the
new information into the evidence set, E ∪ 𝑆𝑖 = 𝑠𝑗𝑖 . At
the end, of this elicitation process, the application will
have access to the complete information provided by
the user on the infected target apple, she wants to diag-
nose. It is important to mention that the BN inference
mechanism is robust to missing values, hence, the user
is not forced to provide observations for every symptom
variable 𝑆𝑖 ∈ 𝒮 in the model. Thus, if the user skips the
question related to variable 𝑆𝑚 ∈ 𝒮, the evidence set E
will not include an observation for that variable, 𝑆𝑚 ∉ E.
Thus, the goal of the reasoning system is to provide a
probability over the set of candidate diseases (i.e., the
possible diagnosis). We estimate the posterior probabil-
ity distribution 𝑃(𝐷|E) through an algorithm called loopy
belief propagation [11]. The loopy belief propagation is
an approximate message-passing method to perform in-
ference on graphical models. In few words, the algorithm
iteratively updates the marginal distribution 𝑃(𝑁 ) of a
node 𝑁 ∈ 𝒢, by updating the outgoing message, at the
current iteration, from the node 𝑁 to each of its neigh-
bors V ∈ 𝒢 in terms of the previous iteration’s incoming
messages from V.

In our recommendation engine, after completing the
evidence collection process for a target apple 𝑎, the pos-
terior probability computed by the BN when evidence E
is provided, is considered as a diagnosis score 𝑠(𝑑𝑖)𝑎 for
each disease 𝑑𝑖 ∈ 𝐷. Namely, this probability distribu-
tion represents the confidence of the system over each
disease 𝑑𝑖 ∈ 𝐷 being the correct diagnosis for the target
apple 𝑎. More formally, given the provided evidence set
E = {𝑆1 = 𝑠𝑜1, 𝑆2 = 𝑠𝑝2 , … 𝑆𝑙 = 𝑠𝑞𝑙 }, defined as the set of
each observed state 𝑠𝑗𝑖 ∈ 𝑉 𝑎𝑙(𝑆𝑖) for each random variable
𝑆𝑖 ∈ 𝒮, the diagnosis score related to target apple 𝑎 for



disease 𝑑𝑖 ∈ 𝐷 is computed as:

𝑠(𝑑𝑖)𝑎 = 𝑃(𝐷 = 𝑑𝑖|E) (1)

The ranked list of the 𝑘 suggested diseases 𝑅𝑘 =
{𝑑1, 𝑑2, … , 𝑑𝑘} shown to the user is then based on the
score for each disease, such that 𝑠(𝑑 𝑖) ≥ 𝑠(𝑑 𝑖+1). The
parameter 𝑘 controls for the flexibility of the system to
show more or less recommended diseases to the user. In
our evaluation, the parameter is fixed to 𝑘 = 3.

3.4. Transferability and Likelihood
Evidence

In knowledge-based modeling, but also with standard
supervised learning, we often face the problem of trans-
ferring such a model on a different environment (i.e., pro-
viding external validity). This type of situation is referred
to as the transferability problem [12, 13]. For instance,
it might be difficult to allow a vast set of users, with
different expertise level, to effectively exploit a diagnos-
tic expert model, based on domain-specific knowledge.
In our application, the knowledge base of BN-DSSApple
has been built with the information derived from do-
main literature and empirical knowledge of a domain
expert. Nevertheless, different sets of users, with less ex-
perience in the field, might perceive the same attributes
(i.e., the symptoms) in a different way. In fact, the user
perception is mediated by her personal experience and
specific knowledge biases. This mismatch invalidates the
effectiveness and hence the diagnostic performance of
BN-DSSApple. In this section, we formalize the problem
of transferability and we propose a practical solution to
bridge the gap between the expert model and the user
perception.

In our scenario, the transferability problem is defined
as the mismatch between the BN probability distribu-
tions (CPTs) defined by the expert, and the probability
distributions derived by the usage of the system. For-
mally, the expert during the knowledge elicitation phase
(as described in Section 3.2) implicitly defined a com-
plete set of probability 𝒫 𝑒𝑥𝑝 = {𝑃(S|𝐷 = 𝑑1), 𝑃(S|𝐷 =
𝑑2), … 𝑃(S|𝐷 = 𝑑𝑛)} ⊆ 𝒫, for each set of symptom random
variables S, given the target disease 𝐷 = 𝑑𝑖. At testing
time, the users of our application produced a set of 𝑢
observations ℰ = {(E1, 𝑑1), (E2, 𝑑2), … (E𝑢, 𝑑𝑢)} ⊆ 𝒮 × 𝒟,
where E𝑖 = {𝑆1 = 𝑠𝑜1, 𝑆2 = 𝑠𝑝2 , … 𝑆𝑙 = 𝑠𝑞𝑙 }, represent the
evidence provided by a user during the 𝑖-th diagnosis ses-
sion, as a set of instantiations of symptom variables, and
𝑑𝑖 is the corresponding ground-truth disease. These set
of user observations define a different set of probabilities
𝒫 𝑢𝑠𝑟 = {𝑃(S|𝐷 = 𝑑1), 𝑃(S|𝐷 = 𝑑2), … , 𝑃(S|𝐷 = 𝑑𝑛)} ⊆ 𝒫,
which is generally different from the one defined by the
expert, 𝒫 𝑢𝑠𝑟 ≠ 𝒫 𝑒𝑥𝑝. The problem becomes the one to
find a transferability function 𝑇 (.) to be applied to the
expert model such that 𝒫 𝑢𝑠𝑟 = 𝑇(𝒫 𝑒𝑥𝑝).

The problem of transferability is long-lasting in ma-
chine learning and statistics and it has been addressed
in causal terms, referred to as transportability [12, 14],
as well as in statistical terms, in the context of super-
vised learning, where it is also known as covariate shift
or sample selection bias [15, 16]. One of the most common
approaches applies a direct correction to the learned prob-
ability distribution based on the estimates on the testing
set [13]. Specifically inspired by the work presented in
[17], we proposed a methodology, referred to as likeli-
hood evidence and tailored to our BN-based application, to
correct the expert-defined distribution 𝒫 𝑒𝑥𝑝 towards the
one derived by users 𝒫 𝑢𝑠𝑟. We define the likelihood evi-
dence (or likelihood finding) for each random symptom
variable 𝑆𝑖 ∈ 𝒮 of our BN-DSSApple. Specifically, when a
symptom variables 𝑆𝑖 is observed and thus instantiated
by a user, we assume that a certain degree of uncertainty
is associated with it (i.e., the difference of knowledge and
expertise between the user and the expert). We define the
actual user observation with another random variable
𝑂𝑖, such that 𝑉 𝑎𝑙(𝑂𝑖) = 𝑉 𝑎𝑙(𝑆𝑖), to distinguish it from the
variable as it should be observed by an expert 𝑆𝑖. We
represent the uncertainty degree with a likelihood ratio
𝐿(𝑆𝑖), formally defined as:

𝐿(𝑆𝑖 = 𝑠𝑗𝑖 ) = 𝑃(𝑂𝑖 = 𝑜𝑙𝑖|𝑆𝑖 = 𝑠𝑗𝑖 ) (2)

which represents the probability of a user observing value
𝑜𝑙𝑖 ∈ 𝑉 𝑎𝑙(𝑂𝑖) given that, in the same situation, the expert
would have observed 𝑠𝑗𝑖 ∈ 𝑉 𝑎𝑙(𝑆𝑖). Thus, we enrich our
BN by adding, for each symptom variable 𝑆𝑖, a virtual
likelihood evidence node 𝑂𝑖 that encodes the likelihood
ratio 𝐿(𝑆𝑖), with 𝑝𝑎(𝑂𝑖) = {𝑆𝑖}. The added set of random
variable 𝒪 = {𝑂1, 𝑂2, … 𝑂𝑡} is now the one observed by
the user while providing the evidence E on the questions
asked by the application, while the random variables in
𝒮 become hidden. We finally need to define a new set
of conditional probability tables 𝑃(𝑂𝑖|𝑆𝑖) for each pair
(𝑆𝑖, 𝑂𝑖) ∈ 𝒮 × 𝒪. We adopt a direct estimation of these
probabilities from the observed interactions of users with
a set of apples 𝒜 for which we know the actual observed
value by the expert. Namely, for each state 𝑠𝑗𝑖 ∈ 𝑉 𝑎𝑙(𝑆𝑖)
of each variable 𝑆𝑖 ∈ 𝒮 we define a subset of 𝒜𝑠𝑗𝑖

⊆ 𝒜 for
which the value of the symptoms variable 𝑆𝑖 observed by
the expert is 𝑆𝑖 = 𝑠𝑗𝑖 . Thus, the conditional probability of
the observed value 𝑂𝑖 = 𝑜𝑙𝑖 by the users is defined as:

𝑃(𝑂𝑖 = 𝑜𝑙𝑖|𝑆𝑖 = 𝑠𝑗𝑖 ) =
1

|𝒜𝑠𝑗𝑖
|
∑
𝑎𝑖∈𝒜𝑠𝑗𝑖

1𝑎𝑖(𝑜
𝑙
𝑖) (3)

where1𝑎𝑖(𝑜
𝑙
𝑖) is an indicator functionwhich is equal to 1 if

the user observed 𝑂𝑖 = 𝑜𝑙𝑖 in apple 𝑎𝑖, and 0 otherwise. The
defined conditional probability for the likelihood ratio is
also referred as consensus among expert and users.



4. Experiments

4.1. User Study Evaluation
We conducted a large user study to evaluate the effec-
tiveness of BN-DSSApple in recommending the correct
diagnosis. Specifically, we divided the user study into
three distinct phases to test the system behaviour under
different circumstances. The task submitted to the users
involved in our study was the same in all cases. The user
received a “bucket” of infected apples, for which she had
to find the correct diagnosis leveraging BN-DSSApple.
Each target apple was simulated as a set of two high-
definition photos depicting an internal and an external
view of the target apple, and for which the ground-truth
disease was collected in lab by genome sequencing. In
each diagnostic round, the user had to carefully inspect
the target apple and interact with the system by provid-
ing information (i.e., the evidence) about the symptoms
and signs she was able to identify on the apple. At the
end, BN-DSSApple returned a ranked list of three sug-
gested diagnosis, i.e., the three diseases with the highest
posterior given the available evidence, as computed by
the BN. The three phases of the presented study differed
in the number of users, their expertise level, and the
number of distinct target apples involved. In details, we
performed:

• Single Expert Study (SES): a domain expert (the
one which collaborate in the construction of the
BN) interacted with the system to diagnose 21
target apples in a time-span of around 2 weeks.

• Single User Study (SUS): a single user (a MSc
student in Biology), interacted with the system
during the course of an internship, lasting around
3 months, to diagnose 131 target apples.

• Multiple Users Study (MUS): a group of 11 stu-
dents of a Phytopatology class interacted with
the system to diagnose a bucket of 7 target ap-
ples each. The apples were randomly sampled
from the same set of 21 apples used for SES. The
activity lasted for a total of 4 hours.

In Table 2 we summarize the different characteristics of
the three user studies performed.

4.2. Results
In Table 3 we report the results of the three user stud-
ies in terms of recall@k. To better formalize this metric,
please consider a situation in which a set 𝑁 of 𝑛 diagnosis
is performed by BN-DSSApple. The set 𝑁 is composed
by 𝑛 ranked lists of recommended diagnosis, namely
𝑁 = {𝑅𝑘𝑎1 , 𝑅

𝑘
𝑎2 , … 𝑅𝑘𝑎𝑛}, where 𝑎𝑖 represents the 𝑖-th apple

processed by the system. A generic 𝑅𝑘𝑎𝑖 = {𝑑1𝑎𝑖 , 𝑑
2
𝑎𝑖 , … , 𝑑𝑘𝑎𝑖}

# users expertise # apples time-span

SES 1 high 21 2 weeks
SUS 1 high-medium 131 3 months
MUS 11 medium-low 21 4 hours

Table 2
Characteristics of the three user studies: Single Expert Study
(SUS), Single User Study (SUS), and Multiple User Study
(MUS).

is a ranked list of 𝑘 suggested diagnosis 𝑑 𝑗𝑎𝑖 for apple 𝑎𝑖
with a specific ground truth disease 𝑡𝑎𝑖 . Thus, we formally
define recall@k as:

𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 = 1
𝑛

∑
𝑅𝑘
𝑎𝑖∈𝑁

1𝑅𝑘
𝑎𝑖
(𝑡𝑎𝑖) (4)

Where the function 1𝑅𝑘
𝑎𝑖
(𝑡𝑎𝑖) is an indicator function

which is equal 1 if 𝑡𝑎𝑖 ∈ 𝑅𝑘𝑎𝑖 and 0 otherwise.

SES SUS MUS ZeroR

recall@1 .905 .489 .286 .143
recall@2 1. .656 .403 .286
recall@3 1. .763 .571 .429

Table 3
Recall@k for the three user studies performed, Single Expert
Study (SES), Single User Study (SUS), and Multiple Users
Study (MUS). The ZeroR benchmark is also reported.

From the results presented in Table 3 we highlight how
the theoretical effectiveness of the BN-DSSApple model is
very high. Specifically, an expert user (SES), with strong
knowledge in the domain of post-harvest diseases of ap-
ples and a good capability of correctly identify symptoms
on a diseased apple, is able to reach a recall@1 above
the 90%. The performance of the system increases up
to 100% of recall when evaluated at a larger cut-off of
suggested diseases. Of course, we have to consider that
in the SES evaluation, we are in the ideal situation where
the expert user knows exactly how to look and evalu-
ate the symptoms requested by BN-DSSApple. A more
realistic situation is depicted by the SUS evaluation. In
this situation, a single user with a medium-high level of
expertise had months of time to interact with the sys-
tem by evaluating a very large set of apples (131). The
performance of the system for the recall@1 are still con-
vincing (49%), i.e. correct disease identification by half of
all diagnoses. The other metrics testify how the system
is not able to scale-up well for further cut-off of recall,
achieving 66% of recall@2 and 76% of recall@3 (the cor-
rect disease is within the first 3 recommendations in 3/4
of the cases). Finally, BN-DSSApple showed some limits
in the situation where the users have a limited expertise



and training, and a limited amount of time (few hours)
to use the system as in the MUS evaluation. In addition
to the time and skill aspect, also less intrinsic motiva-
tion to interact as accurate as possible with the system
could be a partial explanation for the deviation. In this
case, the measured recall of the system is significantly
lower than the one of the two previous evaluations. Par-
ticularly, the recall@1 doesn’t reach the 30%, while the
best result is achieved by the recall@3 with a value of
57% (slightly more than half of the diagnosis include the
correct disease in the top-3 recommendations). Neverthe-
less, despite the poor performances of BN-DSSApple in
MUS, the collected results are still superior to the ZeroR
benchmark, namely, a classifier which always suggest
the class with a priori higher probability. Important to
notice that the reported results for ZeroR are related to
the situation in which the class (ground-truth disease)
distribution is perfectly balanced, like for SES and MUS.
In the comparison with ZeroR, MUS evaluation for BN-
DSSApple shows the double of recall@1 (28.6% against
14.3%), while recall@2 and recall@3 are closer but still
significantly better (+12% and +14%, respectively). The
main cause of this mismatch of performances among ex-
pert and averaged users can be identified in the problem
of transferability of a knowledge-aware model. In the
remaining of this section, we are going to empirically an-
alyze and explain such a phenomenon, and test possible
solutions to correct and alleviate it.

Foremost, we want to understand the impact of each
expert-defined attribute in the model. In Table 4 we
report the ranked list of attributes, based on the like-
lihood ratio (i.e., consensus) computed between users
of MUS and the expert of SES (which we consider as a
ground-truth) in identifying the symptoms on the same
set of 21 target apples. It is interesting to notice how
the users are effective in identifying the principal symp-
toms and signs, presented by the application as boolean
variables. Namely, Sclerotia (99%), Rot (96%), and Spot
(95%) present a very high level of agreement with the
domain expert, while Mycelium_spore (81%) and Halo
(78%) receive an high consensus. Vice versa, some quali-
tative attributes related to the appearance or the consis-
tency of the lesion and the rot are among the hardest to
be correctly recognized by the users (i.e., they show a
poor consensus with the expert). For example, Lesion_ap-
pearance and Rot_texture_pressure achieve a consensus
below the 50%, while Lesion_margin, Lesion_area, and
Rot_texture_opaque are below 65%. Nevertheless, other
categorical variables more related to quantitative aspects
of the lesion are easier for the users to be spotted. This
is the case of the variables Lesion_size, Lesion_surface,
Lesion_form, and Lesion_crack which show a consensus
between 84% and 79%. Finally, it is interesting to notice
the behavior of the variables of the Lesion origin cate-
gory. Most of them are quite easy to be identified by the

rank attribute consensus

1 Sclerotia 0.988
2 Calyx 0.985
3 Rot 0.964
4 Spot 0.950
5 Stalk 0.926
6 Core 0.917
7 Spore_distribution 0.872
8 Lesion_size 0.837
9 Lesion_surface 0.837
10 Number_lesions 0.817
11 Mycelium_spore 0.809
12 Lesion_form 0.792
13 Lesion_crack 0.790
14 Halo 0.782
15 Rot_shape 0.760
16 Rot_texture_dry 0.755
17 Halo_colour 0.750
18 Rot_margin 0.740
19 Spore_colour 0.731
20 Spore_origin 0.694
21 Lesion_margin 0.636
22 Lesion_area 0.623
23 Rot_texture_opaque 0.607
24 Wound 0.594
25 Lenticel 0.588
26 Lesion_appearance 0.417
27 Rot_texture_pressure 0.321

Table 4
Attributes ranking based on the rate of agreement (i.e., con-
sensus) of the users of MUS with the domain expert of SES.

user, with a consensus above the 90% with the expert.
Nevertheless, two of them, namely Wound and Lenticel,
are equally difficult to be recognized with a consensus of
around 59%. This is probably due to the fact that the two
origins might be perceived as quite similar and could be
confused, without a careful inspection of the apple skin.

In Figure 3 we plot the recall@k achieved by BN-
DSSApple for MUS and SES, by incrementally selecting
the attributes based on the consensus ranking reported
in Table 4. On the x-axis, we report the number of at-
tributes in each model configuration. Namely, the 𝑖-th
value represents the BN model built with the attribute
set 𝒜𝑖 = {𝑎1, 𝑎2, … 𝑎𝑖−1, 𝑎𝑖}, where the rank 𝑗 of attribute
𝑎𝑗 is defined by expert consensus, as reported in Table
4. From the graph in Figure 3a for MUS evaluation, we
immediately notice how the model achieves the best per-
formances for recall@1 and recall@2 with around 8-9
attributes. A larger set of attributes is detrimental, caus-
ing a drop of recall of at least 10% in both situations.
Interesting to notice how these performances seem to
recover with the models based on 21-22 attributes, with-
out reaching the optimal level. In fact, for the recall@3
metric the global optimum is achieved by the model with



(a) (b)

Figure 3: Recall@k by incremental selection of attributes based on ranking of Table 4 for MUS (a) and SES (b).

20 attributes, with a significant improvement of around
10% on the smaller attribute set configurations. Opposite
considerations emerge from the graph in Figure 3b for
SES evaluation. In this case, the recall@k metrics are lin-
early correlated to the number of attributes, and the best
performances are always achieved with the full set of
attributes. This means that the expert is able to correctly
instantiate even the harder variables, by understanding
the status of an infected apple. Furthermore, this “hard-
to-recognize” attributes are necessary to significantly
improve the diagnostic effectiveness of the model and
reach the highest performances in term of recall@k. For
instance, in both recall@2 and recall@3 the BN model
registers around +20% improvement by considering the
full set of 27 attributes instead of just considering 21
attributes (i.e., by discarding the 6 “hardest” attributes,
with lowest consensus).

BN TRAIN-BN BEST-ATTR LH-EV

recall@1 .286 .312 .429 (8) .351
recall@2 .403 .468 .597 (9) .623
recall@3 .571 .636 .779 (20) .766

Table 5
Recall@k for MUS when applying the plain BN-DSSApple
(BN), the trained BN-DSSApple on MUS data (TRAIN-BN),
the incremental best attribute selection (BEST-ATTR), and
the BN-DSSApple with likelihood evidence (LH-EV). In BEST-
ATTR column, we report the results for the optimal attribute
set, with the number of selected attributes in parenthesis.

Finally, in Table 5 we compare the recall@k results for
the MUS evaluation of the improved versions of the BN
model, in order to cope with the transferability problem
discussed in Section 3.4. Firstly, the smallest improve-
ment is provided by the trained BN model (dubbed as
TRAIN-BN), where the parameters are fine-tuned onMUS

data with the Maximum Likelihood Estimation (MLE) al-
gorithm. The recall@1 improvement is marginal (around
+2.5%), while recall@2 shows a +6.5% with respect to the
plain BN model. We already commented the large im-
provements achieved by selecting the optimal attribute
set (BEST-ATTR model), whereas the gain in recall is be-
tween +14% and +21%. Of course, this analysis is derived
a posteriori, where the optimal number of attributes is
fixed after the evaluation. For this reason, the achieve-
ment of the model equipped with likelihood evidence
(LH-EV, methodology detailed in Section 3.4, where ex-
pert ground-truth data are derived from SES) is even
greater. For recall@1 the LH-EV outperforms TRAIN-BN
of around +4%, while being inferior to BEST-ATTR by
around -8%. For recall@2, instead, the likelihood evi-
dence achieves the best result outperforming also BEST-
ATTR by a +2.5%. Finally, for recall@3 the LH-EV model
significantly outscores TRAIN-BN (+13%), while being
comparable with the results of BEST-ATTR.

5. Conclusions
This case study focused on knowledge elicitation and
construction as well as discussed the application of likeli-
hood evidence to enhance performance and transferabil-
ity of the knowledge-based recommendation system BN-
DSSApple. Major limitations of the presented approach
concern the fact that the knowledge base is fully based
on qualitatively probability elicitation from a single hu-
man expert. Furthermore, transferability problem of the
crafted BN must be additionally investigated. Further
development of the method to other domains as well as
additional testing is required. Currently, deployment for
real-life evaluation is ongoing. In future work, the inte-
gration of additional evidence like microscopic images
of fungal spores will be considered.
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