
On Properties of Epistemic State Mappings

among Ranking Functions and Total Preorders

Jonas Haldimann1[0000�0002�2618�8721] and
Gabriele Kern-Isberner2[0000�0001�8689�5391]

1 FernUniversität in Hagen, 58084 Hagen, Germany
2 University of Dortmund, 44221 Dortmund, Germany

jonas.haldimann@fernuni-hagen.de
gabriele.kern-isberner@cs.tu-dortmund.de

Abstract. Ranking functions and total preorders on worlds are two
common models for epistemic states that can represent conditional be-
liefs. To further explore the connection between these frameworks, we
consider mappings among models of both frameworks. Especially inter-
esting are mappings that preserve desirable properties like syntax split-
tings, or are compatible with operations like marginalization and condi-
tionalization. In this paper, we introduce postulates for such mappings.
We evaluate the postulates for mappings within and across the two frame-
works, establishing dependencies as well as incompatibilities among the
postulates. The results will be useful for transferring methods developed
for ranking functions to the total-preorder framework and the other way
round.

1 Introduction

In the field of knowledge representation, there is a long tradition of employing
conditionals as fundamental objects. A conditional formalizes a defeasible rule
“If A then usually B” for logical formulas A,B and is often denoted as (B|A). As
conditional logic is more expressive than propositional logic, it requires a richer
semantics as well. There are di↵erent approaches to semantics for conditional
logic, e.g., [18, 1, 17, 20, 6, 4, 14]. These approaches often use either some form
of ranking functions [23] or total preorders on interpretations as models for
conditionals and conditional belief bases.

In this paper, we focus on these two kinds of models for conditionals, ranking
functions (or ordinal conditional functions, OCFs) and total preorders on worlds
(TPOs). Both models have their own advantages. TPOs are used in character-
isation theorems for AGM revisions [13] as well as system P inference [1, 17].
OCFs allow to model the strength of conditional beliefs by assigning numbers to
logical interpretations [23, 9]. Furthermore, some belief revision operators with
interesting properties have been defined for OCFs, e.g., [14]. To better under-
stand the connection between OCFs and TPOs, we investigate transformations
among these frameworks, i.e., functions that map OCFs to TPOs or TPOs to
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OCFs. Furthermore, we generalize by also including transformations from OCFs
to OCFs and TPOs to TPOs.

We formalize functions on these models within and across the two frame-
works as epistemic state mappings and propose postulates that govern epistemic
state mappings. The postulates require the epistemic state mappings to pre-
serve certain properties of the models like the entailed inference relation and
syntax splittings. Syntax splitting is a concept describing that beliefs about dif-
ferent parts of the signature are uncorrelated [19, 21]. Other postulates ensure
compatibility with the operations marginalization and conditionalization. These
operations are relevant e.g. for some forms of forgetting [5, 7, 3], syntax splitting,
and some aspects of belief revision [15, 22]. We investigate relationships among
our postulates in general as well as for each framework in particular. Our results
elaborate dependencies among the postulates, and they also unveil situations
where certain combinations of postulates cannot be satisfied simultaneously.

In summary, the main contributions of this paper are:

– Introduction of epistemic state mappings for TPOs and OCFs
– Coverage of marginalization and conditionalization for the iterated case via

the introduction of restricted TPOs and restricted OCFs
– Formalization of desirable properties of epistemic state mappings in terms

of general postulates
– Establishment of relationships among the postulates and of realizability re-

sults for the postulates and for subsets thereof.

This paper is a shorter version of a text submitted to NMR2021 [10].
The following text is structured as follows. After giving some background

on conditional logic, ranking functions and total preorders in Section 2, we in-
troduce marginalization, conditionalization, and syntax splitting in Section 3.
We proceed to introduce the concept of epistemic state mappings and postu-
lates for such mappings in Section 4. Then, we analyse the relationship among
the postulates for epistemic state mappings from TPOs to TPOs in Section 5.1
and among the postulates for epistemic state mappings from OCFs to OCFs in
Section 5.2. In Section 5.3, we consider epistemic state mappings from OCFs to
TPOs, and in Section 5.4 we consider epistemic state mappings from TPOs to
OCFs. In Section 6, we conclude and point out future work.

2 Background: Conditional Logic, Ranking Functions,

and Total Preorders

A (propositional) signature is a finite set ⌃ of identifiers. For a signature ⌃, we
denote the propositional language over ⌃ by L⌃ . Usually, we denote elements
of the signatures with lowercase letters a, b, c, . . . and formulas with uppercase
letters A,B,C, . . .. We may denote a conjunction A ^ B by AB and a negation
¬A by A for brevity of notation. The set of interpretations over a signature ⌃
is denoted as ⌦⌃ . Interpretations are also called worlds and ⌦⌃ is called the
universe. An interpretation ! 2 ⌦⌃ is a model of a formula A 2 L⌃ if A holds
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in !. This is denoted as ! |= A. The set of models of a formula (over a signature
⌃) is denoted as Mod⌃(A) = {! 2 ⌦⌃ | ! |= A}. A formula A entails a formula
B if Mod⌃(A) ✓ Mod⌃(B). Two formulas A and B are equivalent, denoted as
A ⌘ B, if they have the same models, i.e., Mod⌃(A) = Mod⌃(B).

A conditional (B|A) connects two formulas A,B and represents the rule “If A
then usually B”. For a conditional (B|A) the formula A is called the antecedent

and the formula B the consequent of the conditional. The conditional language
over a signature ⌃ is denoted as (L|L)⌃ = {(B|A) | A,B 2 L⌃}. The set (L|L)⌃
is a flat conditional language as it does not allow nesting conditionals.

We use a three-valued semantics of conditionals in this paper [8]. For a world
! a conditional (B|A) is either verified by ! if ! |= AB, falsified by ! if ! |= AB,
or not applicable to ! if ! |= A. Conditionals are usually considered in the context
of epistemic states. An epistemic state is a structure that represents all beliefs
that are relevant for an agent’s reasoning.

There exist di↵erent kinds of models for epistemic states that can handle
conditionals. Two approaches to this are ranking functions and total preorders
on possible worlds.

A ranking function [23], also called ordinal conditional function (OCF), is a
function  : ⌦⌃ ! N0 [ {1} such that �1(0) 6= ;. The intuition of an OCF is
that the rank of a world is lower if the world is more plausible. Therefore, OCFs
can be seen as some kind of “implausibility measure”. OCFs are extended to
formulas by (A) = min!2Mod(A) (!) with min;(. . .) = 1. An OCF  models

a conditional (B|A), denoted as  |= (B|A) if (AB) < (AB), i.e., if the
verification of the conditional is strictly more plausible than its falsification.
The uniform ranking function uni with uni(!) = 0 for every ! 2 Mod⌃(A)
represents the state of complete ignorance.

A total preorder (TPO) is a total, reflexive, and transitive binary relation.
The meaning of a total preorder � on ⌦⌃ as model for an epistemic state is
that !1 is at least as plausible as !2 if !1 � !2 for !1,!2 2 ⌦⌃ . The strict
version of a TPO � is the relation � defined by !1 � !2 if !1 � !2 and
!2 6� !1. TPOs on worlds are extended to consistent formulas by A � B if
min(Mod⌃(A),�) � min(Mod⌃(B),�). A TPO � models a conditional (B|A),
denoted as � |= (B|A), if AB � AB, i.e., if the verification of the conditional is
strictly more plausible than its falsification.

3 Marginalization, Conditionalization, Syntax Splitting

We want to consider transformations among models of epistemic states repre-
sented by ranking functions or total preorders. To establish a notion for the
domain of such transformations, we define the sets MTPO(⌃) and MOCF (⌃)
containing all models over a certain signature ⌃:

MTPO(⌃) = {� ✓ ⌦⌃ ⇥⌦⌃ | � total preorder over ⌦⌃}

MOCF (⌃) = { : ⌦⌃ 7! N0 [ {1} |  ranking function}
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3.1 Conditionalization and Marginalization on TPOs and OCFs

Two operations on epistemic states that we will use in this paper are condition-
alization and marginalization. Conditionalization restricts the set of worlds that
are considered in an epistemic state. After the conditionalization with a formula
A the resulting state only considers the elements of Mod⌃(A) as possible worlds.

A notion of conditionalization for TPOs where the models of A are shifted to
the uppermost layer has been introduced in [15]. Here, we will use the concept of
conditionalization where the models of A are removed entirely from the epistemic
state. To capture the outcome of such a conditionalization, we extend the notion
of OCFs and TPOs.

Definition 1 (restricted OCF/TPO). A restricted ranking function over a

set M ✓ ⌦⌃ is a function  : M ! N0 [ {1} such that �1(0) 6= ;. Restricted

ranking functions are extended to formulas by (A) = min!2Mod(A)\M (!) with
min;(. . .) = 1.

A TPO � on a set M ✓ ⌦⌃ as model for an epistemic state is also called

a restricted total preorder. Restricted total preorders on worlds are extended to

formulas by A � B if min(Mod⌃(A) \M,�) � min(Mod⌃(B) \M,�).

The intuition of restricted OCFs and TPOs is the same as for usual OCFs
and TPOs: Worlds with lower rank or position in the ordering are more plausible.
For a signature ⌃, a formula A 2 L⌃ and with MA = Mod⌃(A) we define

MTPO(⌃, A) = {� ✓ MA ⇥MA | � total preorder over MA}

MOCF (⌃, A) = { : MA ! N0 [ {1} |  ranking function}.

The restricted OCFs and TPOs properly include the original notation as
MI(⌃) = MI(⌃,>) for I 2 {TPO ,OCF}. For state  2 MI(⌃, A), we call
sig( ) = ⌃ the signature of  and dom( ) = Mod⌃(A) the domain of  . Now
we can define conditionalization using restricted OCFs/TPOs. This definition of
conditionalization is based on the usual notion of conditionalization [23, 22] but
was extended to cover restricted TPOs and OCFs as well.

Definition 2 (conditionalization of restricted OCFs/TPOs). The con-
ditionalization of ranking functions over Mod⌃(B) to the models of a formula

A 2 L⌃ is a function MOCF (⌃, B) ! MOCF (⌃, A ^ B),  7! |A such that

|A(!) = (!)� (A) for ! 2 Mod⌃(A ^B).
The conditionalization of total preorders over Mod⌃(B) to the models of a

formula A 2 L⌃ is a function MTPO(⌃, B) ! MTPO(⌃, A ^ B), � 7! �|A
such that !1 �|A !2 i↵ !1 � !2 for !1,!2 2 Mod⌃(A ^B).

Marginalization on the other hand restricts the epistemic state to a sub-
signature of the original signature. We extended the notion of marginalization
in [2, 16] to cover restricted TPOs and OCFs.

Definition 3 (marginalization). The marginalization of OCFs from a signa-

ture ⌃ to a sub-signature ⌃0
✓ ⌃ is a function MOCF (⌃) ! MOCF (⌃0),  7!

|⌃0 such that |⌃0(!) = (!) for ! 2 ⌦⌃0 [23, 2].
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The marginalization of TPOs from a signature ⌃ to a sub-signature ⌃0
✓ ⌃

is a function MTPO(⌃) ! MTPO(⌃0), � 7! �|⌃0 such that !1 �|⌃ !2 i↵

!1 � !2 for !1,!2 2 ⌦⌃0 [2, 16].

Note that a world ! of a sub-signature ⌃0
✓ ⌃ is considered as a formula

when evaluated in the context of ⌃, i.e., the rank of ! 2 ⌦⌃0 with respect to
an OCF  over ⌃ is the rank of the world !0

2 ⌦⌃ with the lowest rank that
coincides with ! on the variables in ⌃0.

The marginalizations of OCFs and TPOs presented above are special cases
of general forgetful functors Mod(%) from ⌃-models to ⌃0-models given in [2]
where ⌃0

✓ ⌃ and % is the inclusion from ⌃0 to ⌃. Informally, a forgetful
functor forgets everything about the interpretation of the symbols in ⌃ \ ⌃0

when mapping a ⌃-model to a ⌃0-model.
For MI(⌃,>) = MI(⌃), the marginalization/conditionalization of the re-

stricted OCFs/TPOs coincides with the marginalization/conditionalization of
OCFs/TPOs.

3.2 Syntax Splitting

Syntax splitting was first introduced as property of belief sets in [19]. The basic
idea is that a belief set contains independent information over di↵erent parts of
the signature. The partition of the signature in these parts is called a syntax
splitting for the considered belief set. Syntax splittings are useful properties of
epistemic states, as they indicate that di↵erent parts of the state can be processed
independently of each other.

The notion of syntax splitting was extended to other representations of epis-
temic states such as TPOs and OCFs in [16]. Postulates for processing TPOs
and ranking functions have been introduced in [16, 12, 11]. We adapted these def-
initions to cover restricted TPOs/OCFs as well. For a partitioning {⌃1, . . . ,⌃n}

of a signature ⌃ and a world ! 2 ⌦⌃ , the world !j
2 ⌦⌃j denotes the variable

assignment of the variables in ⌃j as in ! in the following definitions.

Definition 4 (syntax splitting for restricted TPOs (adapted from [16])).

Let � be a TPO in MTPO(⌃, A). Let {⌃1, . . . ,⌃n} be a partitioning of ⌃ and

! 6=i :=
V

j=1,...,n
i 6=j

!j
for ! 2 ⌦ and i = 1, . . . , n. The partitioning {⌃1, . . . ,⌃n}

is a syntax splitting for � if

– there are formulas A1, . . . , An such that A ⌘ A1 ^ · · · ^An and Ai 2 ⌃i for

i = 1, . . . , n
– and, for i = 1, . . . , n and !1,!2 2 dom(�),

! 6=i

1 = ! 6=i

2 implies
�
!1 � !2 i↵ !i

1 �|⌃i
!i

2

�
.

A syntax splitting {⌃1, . . .⌃n} is denoted by ⌃ = ⌃1 [̇ · · · [̇⌃n.

Definition 5 (syntax splitting for restricted OCFs (adapted from [16])).

Let  be an OCF in MOCF (⌃, A). A partitioning {⌃1, . . . ,⌃n} of ⌃ is a syntax
splitting for  if
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– there are formulas A1, . . . , An such that A ⌘ A1 ^ · · · ^An and Ai 2 ⌃i for

i = 1, . . . , n
– and there are ranking functions i 2 MOCF (⌃i, Ai) for i = 1, . . . , n such

that (!) = 1(!1) + · · ·+ n(!n) for ! 2 dom().

This is denoted as  = 1 � · · ·� n.

The definitions of syntax splitting for restricted TPOs/OCFs yield the orig-
inal definition of syntax splitting for TPOs/OCFs by considering MI(⌃,>).

4 Postulates for Mappings on Epistemic States

To formalize the transformations among models of epistemic states we introduce
epistemic state mappings.

Definition 6. Let I1, I2 2 {TPO ,OCF}. An epistemic state mapping from I1
to I2, denoted as ⇠ : I1  I2, is a function family ⇠ = (⇠⌃,A) for signatures ⌃
and formulas A 2 L⌃ with ⇠⌃,A : MI1(⌃, A) ! MI2(⌃, A) such that A ⌘ B
implies ⇠⌃,A = ⇠⌃,B.

Example 1. The family of functions ⇠reverse that reverses every TPO defined
by ⇠reverse

⌃,A
(�) = �

0 with !1 �
0 !2 i↵ !2 � !1 for a signature ⌃, A 2 L⌃ ,

� 2 MTPO(⌃, A), and !1,!2 2 Mod⌃(A) is an epistemic state mapping from
TPOs to TPOs.

Every epistemic state mapping represents a way to transform epistemic states
of kind I1 to epistemic states of kind I2. Desirable properties of epistemic state
mappings (⇠⌃,A) can be stated in the form of postulates. Some of these postulates
use the fact that both OCFs and TPOs induce a TPO on their domain. For a
TPO �, the induced ordering l

�� is the order � itself. For an OCF , the induced

ordering l
�

is given by !1 l
�

!2 i↵ (!1) 6 (!2) for !1,!2 2 dom().

Postulates. Let I1, I2 2 {TPO ,OCF} and let (⇠⌃,A) be an epistemic state

mapping from I1 to I2. Let ⌃ be a signature and A 2 L⌃, and  2 MI1(⌃, A).

Let (C|D) 2 (L | L)
⌃
.

(IE)  |= (C|D) i↵ ⇠⌃,A( ) |= (C|D).
(wIE

)
)  |= (C|D) implies ⇠⌃,A( ) |= (C|D).

(wIE
(
) ⇠⌃,A( ) |= (C|D) implies  |= (C|D).

Let !1,!2 in dom( ).

(Ord) !1 l !2 i↵ !1 l⇠⌃,A( ) !2.

(wOrd
)
) !1 l !2 implies !1 l⇠⌃,A( ) !2.

(wOrd
(
) !1 l⇠⌃,A( ) !2 implies !1 l !2.
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(SynSplit) If sig( ) = ⌃1 [̇ · · · [̇ ⌃n is a syntax splitting for  , then ⌃1 [̇

· · · [̇⌃n is a syntax splitting for ⇠⌃,A( ).
(SynSplit

b
) If ⌃ = ⌃1 [̇ ⌃2 is a syntax splitting for  , then ⌃1 [̇ ⌃2 is a

syntax splitting for ⇠⌃,A( ).

Let ⌃0
✓ ⌃ with ⌃0

6= ; and A0
2 L⌃0 such that Mod⌃0(A0) = {!0

| ! 2

Mod⌃(A)} where !0
is the assignment of the variables in ⌃0

as in !.

(Marg) ⇠⌃0,A0( |⌃0) = ⇠⌃,A( )|⌃0

Let F 2 L⌃ with Mod⌃(F ) \ dom( ) 6= ;.

(Cond) ⇠⌃,A^F ( |F ) = ⇠⌃,A( )|F

The postulate (IE) requires inferential equivalence and states that the epis-
temic state mapping may not change the set of conditionals accepted by an
epistemic state. The epistemic state and its mapping induce the same infer-
ence relation with respect to conditionals. This is a quite strong postulate, the
postulates (wIE)) and (wIE() are weaker versions of (IE). Postulate (wIE))
states that an epistemic state mapping may not remove conditionals from the set
of inferred conditionals. Postulate (wIE() states that after an epistemic state
mapping, we may not accept additional conditionals.

The postulate (Ord) expresses the postulate (IE) in terms of the induced total
preorders of the epistemic states. Analogously (wOrd)) and (wOrd() represent
(wIE)) and (wIE(), respectively.

(SynSplit) states that an epistemic state mapping should preserve syntax
splittings of the epistemic state. (SynSplitb) is a special case of (SynSplit) for
syntax splittings in two sub-signatures.

The postulate (Marg) ensures the compatibility of an epistemic state map-
ping with marginalization. It states that changing the order in which marginal-
ization and the epistemic state mapping are applied does not matter. This pos-
tulate is illustrated in Figure 1a. Similarly, the postulate (Cond) ensures the
compatibility of an epistemic state mapping with conditionalization. (Cond) is
illustrated in Figure 1b.

It is easy to see that (IE) is equivalent to the conjunction of (wIE)) and
(wIE() and that (Ord) is equivalent to the conjunction of (wOrd)) and (wOrd().
Other relationships among the postulates, such as the following, are less obvious.

Proposition 1. The following relationships hold between the postulates:

1. (IE) is equivalent to (Ord).

2. (wIE
)
) is equivalent to (wOrd

)
).

3. (wIE
(
) is equivalent to (wOrd

(
).

Proof. Let ⇠ : I1  I2 be a epistemic state mapping with I1, I2 2 {TPO ,OCF}.
Ad (2): “(” Let (⇠⌃,A) satisfy (wOrd)). Let  2 MI1(⌃, A) and � =
⇠⌃,A( ). If  |= (D|C), then min(Mod⌃(CD),l ) l min(Mod⌃(CD),l ).

On Properties of Epistemic State Mappings among Ranking Functions and

Total Preorders

40



MI(⌃, A) MI(⌃
0, A)

MI(⌃, A) MI(⌃
0, A)

·|⌃0

·|⌃0

⇠ ⇠

Illustration of (Marg).

MI(⌃, A) MI(⌃, AF )

MI(⌃, A) MI(⌃, AF )

·|F

·|F

⇠ ⇠

Illustration of (Cond).

Fig. 2: Illustration of the postulates (Cond) and (Marg). The diagrams are supposed
to commutate.

In this case, (wOrd)) implies min(Mod⌃(CD),l�) l� min(Mod⌃(CD),l�).
This is equivalent to � |= (C|D). Therefore, (⇠⌃,A) satisfies (wIE)).

“)” Let (⇠⌃,A) satisfy (wIE)). Let  2 MI1(⌃, A) and � = ⇠⌃,A( ).
Let !1,!2 2 ⌦ with !1 l !2. Then,  |= (!1|!1 _ !2). (wIE)) implies that
� |= (!1|!1 _ !2). Therefore, !1 l� !2. We see that (⇠⌃,A) satisfies (wOrd)).
Ad (3): “(” Let (⇠⌃,A) satisfy (wOrd(). Let  2 MI1(⌃, A) and � =
⇠⌃,A( ). If � |= (D|C), then min(Mod⌃(CD),l�) l� min(Mod⌃(CD),l�).
In this case, (wOrd() implies min(Mod⌃(CD),l ) l min(Mod⌃(CD),l ).
This is equivalent to  |= (D|C). Therefore, (⇠⌃,A) satisfies (wIE().

“)” Let (⇠⌃,A) satisfy (wIE(). Let  2 MI1(⌃, A) and � = ⇠⌃,A( ).
Let !1,!2 2 ⌦ with !1 l� !2. Then, � |= (!1|!1 _ !2). (wIE() implies that
 |= (!1|!1 _ !2). Therefore, !1 l !2. We see that (⇠⌃,A) satisfies (wOrd().
Ad (1): This follows from (2) and (3) as (IE) is the conjunction of (wIE))
and (wIE() and (Ord) is the conjunction of (wOrd)) and (wOrd().

In the next sections, we will investigate the introduced postulates further for
specific combinations of I1 and I2.

5 Epistemic State Mappings of Di↵erent Types

In this section we investigate epistemic state mappings from TPOs to TPOs (sub-
section 5.1), OCFs to OCFs (sub-section 5.2), OCFs to TPOs (sub-section 5.3),
and TPOs to OCFs (sub-section 5.4) in more detail.

5.1 Mapping Total Preorders to Total Preorders

Let us first consider epistemic state mappings from TPOs to TPOs. If we want
(IE) or the equivalent (Ord) to hold, we do not have much choice.

Proposition 2. The only epistemic state mapping from TPOs to TPOs that

fulfils (Ord) is the identity.

From Proposition 2 it follows that (IE) or (Ord) imply (SynSplit), (Cond),
and (Marg) for epistemic state mappings from TPOs to TPOs as the identity
fulfils these postulates.
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5.2 Mapping Ranking Functions to Ranking Functions

Now consider the case where we map OCFs to OCFs. For such epistemic state
mappings all postulates are compatible, in the sense that all postulates can be
satisfied simultaneously by some epistemic state mapping.

Proposition 3. The epistemic state mapping ⇠ : OCF  OCF , 7! a ·  for

some a 2 N+
fulfils (Ord), (SynSplit), (Cond), and (Marg).

The epistemic state mappings in Proposition 3 are the only epistemic state
mappings fulfilling all postulates.

Proposition 4. All epistemic state mappings ⇠ : OCF  OCF that fulfil (Ord)

and (Cond) have the form  7! a ·  for some a 2 N+
.

Proof. Let ⇠ : OCF  OCF be an epistemic state mapping. First, we consider
OCFs with two worlds in their domain. Let !1,!2 be worlds and 1 : {!1,!2} !

N0, {!1 7! 0,!2 7! 1}. Let 01 = ⇠(1). Let a = 01(!2) � 01(!1). Because of
(Ord), we have a > 0.

Let !3,!4 be worlds with {!1,!2} \ {!3,!4} = ;. We show that for 2 :
{!3,!4} ! N0, {!3 7! 0,!4 7! b} with b 2 N+ and 02 = ⇠(2) it holds that
02(!4)� 02(!3) = a · b by induction over b.
Base Case: Let b = 1. Consider the OCF 3 : {!1,!2,!3,!4} ! N0, {!1,!3 7!

0,!2,!4 7! 1}. Let 03 = ⇠(3). (Ord) requires that 03(!1) = 03(!3) and
03(!2) = 03(!4). (Cond) requires that 03(!2)�03(!1) = a. Therefore, 03(!4)�
03(!3) = a = a · b. With (Cond) follows that 02(!4)� 02(!3) = a · b.
Induction Step: Let b = n+1. Let !5 /2 {!1,!2,!3,!4} be an additional world.
Consider the OCF 4 : {!3,!4,!5} ! N0, {!3 7! 0,!5 7! n,!4 7! n + 1}. Let
04 = ⇠(4). The induction hypothesis in combination with (Cond) requires that
04(!5) � 04(!3) = a · n and 04(!4) � 04(!5) = a. Hence, 04(!4) � 04(!3) =
a · (n+ 1). With (Cond) follows that 02(!4)� 02(!3) = a · b.

The statement proven by induction is extended to situations with {!1,!2}\

{!3,!4} 6= ; by comparing OCFs over {!1,!2} and {!3,!4} with OCFs over
{!5,!6} for additional worlds !5,!6 as in the base case of the induction.

Now, consider any restricted ranking function . Let ! 2 dom() and !0 2

�1(0) and 0 = ⇠(5). Because of (Ord) and because the minimal rank of
an OCF is 0, we have that 0(!0) = 0. The result above and (Cond) yields
0(!) = 0(!)� 0(!0) = a · ((!)� (!0)) = a · (!).

5.3 Mapping Ranking Functions to Total Preorders

In this sub-section, we want to investigate epistemic state mappings from OCFs
to TPOs on worlds.

Proposition 5 (⌧⇤). There is a unique epistemic state mapping ⌧⇤ : OCF  
TPO fulfilling (IE). This mapping is ⌧⇤ : OCF  TPO ,  7! l

�
.
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The mapping ⌧⇤ is surjective: For a given TPO � it is easy to construct
an OCF  such that � = ⌧⇤(). But ⌧⇤ is not injective as there are more
ranking functions than TPOs for any given (non-empty) signature. Furthermore,
⌧⇤ satisfies the other introduced postulates for epistemic state mappings.

Proposition 6. ⌧⇤ fulfils (SynSplit), (Marg), and (Cond).

Hence, (Ord) implies (SynSplit), (Marg), and (Cond) for epistemic state map-
pings from OCFs to TPOs.

5.4 Mapping Total Preorders to Ranking Functions

Finally, we consider epistemic state mappings that map a TPO to an OCF. Since
the functions in ⌧⇤ are not bijective, we cannot simply reverse them. On the
contrary, there is more than one epistemic state mapping ⇢ : TPO  OCF that
fulfils (Ord). That is not surprising as an OCF contains more information than a
TPO over the same domain. The additional information is the absolute distance
between worlds. The functions in ⇢ need to fill in this missing information.

Example 2. Let ⇢ : TPO  OCF be an epistemic state mapping defined as
follows. For � 2 MTPO(⌃, A) let L�

0 = min(dom(�),�) and L�
k
= min(dom(�

) \ (L�
0 [ · · · [ L�

k�1),�). Every set L�
k

corresponds to the k-th layer of �. The

sets L�
i

and L�
j

are disjunct for i 6= j. We define ⇠(�) =  with (!) = k such

that ! 2 L�
k
for every ! 2 dom(�). For example, the TPO ab � ab, ab � ab over

⌃ = {a, b} is mapped to  : {ab 7! 0, ab 7! 1, ab 7! 1, ab 7! 2} by ⇢.
This epistemic state mapping ⇢ fulfils (Ord).

To limit the possible outcomes of the transformation, we consider additional
postulates such as (SynSplit). Unfortunately, there is no epistemic state mapping
⇢ that fulfils both (Ord) and (SynSplit).

Proposition 7. There is no epistemic state mapping ⇢ : TPO  OCF that

fulfils (Ord) and (SynSplit).

This incompatibility persists if we consider the weaker (SynSplitb) instead of
(SynSplit) and (wIE)) instead of (IE).

Proposition 8. There is no epistemic state mapping ⇢ : TPO  OCF that

fulfils both (wIE
)
) and (SynSplit

b
).

Proof. Let ⌃ = {a, b, c, d} be a signature and � be the TPO over ⌃ displayed
in Figure 3. This TPO has the syntax splitting {a, b} [̇ {c, d}. Assume there
is an OCF  with syntax splitting {a, b} [̇ {c, d} such that !1 � !2 implies
(!1) < (!2). Then there are OCFs 1 : ⌦{a,b} ! N0 and 2 : ⌦{c,d} ! N0

such that  = 1 � 2. Let 1(ab) = 0, 1(ab) = i, 1(ab) = j, 1(ab) =
k, 2(cd) = 0, 2(cd) = l, 2(cd) = m, and 2(cd) = n. As !1 � !2

implies (!1) < (!2) for every !1,!2 2 ⌦⌃ we have that

m+ j = 1(ab) + 2(cd) = (abcd) < (abcd) = 1(ab) + 2(cd) = i+ n.
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�

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

ab cd

Fig. 3: Total preorder � on ⌃ = {a, b, c, d} with syntax splitting {a, b} [̇ {c, d}. There
is no OCF with that syntax splitting that induces a superset of �.

MOCF (⌃, A) MOCF (⌃
0, A)

MTPO(⌃, A) MTPO(⌃0, A)

·|⌃0

·|⌃0

⇢ ⌧⇤

MOCF (⌃, A) MOCF (⌃, AF )

MTPO(⌃, A) MTPO(⌃, AF )

·|F

·|F

⇢ ⌧⇤

Fig. 5: Illustration of Proposition 9. Both diagrams commutate. Precondition of both
propositions is that ⇢ : TPO  OCF fulfils (Ord).

Analogously, we get j > n from (abcd) > (abcd) and m > i from (abcd) >
(abcd). The combination of these inequations is a contradiction. The assumed
ranking function  cannot exist.

The combination of (wIE() and (SynSplit) is consistent, as we will see later.
Any epistemic state mapping ⇢ from TPOs to OCFs satisfying (Ord) is com-

patible with ⌧⇤ (Prop. 5) with respect to marginalization and conditionalization.

Proposition 9. Let ⇢ : TPO  OCF be an epistemic state mapping that fulfils

(Ord). For every TPO � 2 MTPO(⌃, A) and ⌃0
✓ ⌃ and F 2 L⌃ it holds that

⌧⇤(⇢(�)|⌃0) = �|⌃0 and ⌧⇤(⇢(�)|F ) = �|F .

It would be useful if a transformation from a TPO to an OCF preserved
marginalization and conditionalization in the way ⌧⇤ does for the other direction.
But Postulate (Cond) is unfulfillable in combination with (Ord). (Cond) is even
incompatible with the weaker Postulate (wIE)).

Proposition 10. There is no epistemic state mapping ⇢ : TPO  OCF that

fulfils (Cond) and (wIE
)
).

Proof. Let ⌃ = {a, b} be a signature and �1,�2 be the TPO over ⌃ displayed
in Figure 6a. We have �1|a = �2|a and �1|b = �2|b. Let 1 = ⇢(�1) and
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�
1

ab

āb

ab̄ āb̄

�
2

ab

āb

ab̄

āb̄

TPOs �1 and �2 on ⌃ = {a, b} showing
that (Cond) is incompatible with (wIE))
for mappings from TPOs to OCFs in the
proof of Proposition 10.

�
1

ab

āb

ab̄

āb̄

�
2

ab

āb

ab̄

āb̄

TPOs �1 and �2 on ⌃ = {a, b} showing
that (Marg) is incompatible with (wIE))
for mappings from TPOs to OCFs in the
proof of Proposition 11.

Fig. 7: Counterexamples in the proofs of Propositions 10 and 11.

2 = ⇢(�2). If (wIE)) and (Cond) were true it would imply 1(ab) = 1|b(ab) =
2|b(ab) = 2(ab) and 1(ab) = 1|a(ab) = 2|a(ab) = 2(ab). This contradicts
(wIE)) as (wIE)) requires 1(ab) > 1(ab) and 2(ab) < 2(ab).

(Marg) is also unfulfillable in combination with (Ord) or (wIE)) in general.

Proposition 11. There is no epistemic state mapping ⇢ : TPO  OCF that

fulfils (wIE
)
) and (Marg).

Proof. Let ⌃ = {a, b} be a signature and �1,�2 be the total preorders over
⌃ displayed in Figure 6b. Let ⌃1 = {a} and ⌃2 = {b}. We have �1|⌃1

=�2|⌃1

and �1|⌃2
=�2|⌃2

. Let 1 = ⇢(�1) and 2 = ⇢(�2). If (wIE)) and (Marg) were

true it would imply 1(ab) = 1|⌃1
(ab) = 2|⌃1

(ab) = 2(ab) and 1(ab) =

1|⌃2
(ab) = 2|⌃2

(ab) = 2(ab). This contradicts (wIE)) as (wIE)) requires

1(ab) > 1(ab) and 2(ab) < 2(ab).

The Propositions 8, 10, and 11 all showed that (wIE)) in combination with
some of the other postulates cannot be fulfilled. (wIE() on the other hand
can be fulfilled in combination with these other postulates. But the following
triviality result shows that there is only one epistemic state mapping fulfilling
the combination of (wIE() and (Cond).

Proposition 12. The only epistemic state mapping ⇢ : TPO  OCF that fulfils

(wIE
(
) and (Cond) maps every TPO to the uniform ranking function uni.

Proof. Let ⇢ be an epistemic state mapping fulfilling (wIE() and (Marg). Let
⌃ be a signature and !1,!2 2 ⌦⌃ with !1 6= !2. Choose a third world !3 2 ⌦⌃
with !3 /2 {!1,!2} and consider the TPOs !3 �1 !2 �1 !1 �1 !4, . . . ,!n

and !3 �2 !1 �2 !2 �2 !4, . . . ,!n with {!4, . . . ,!n} = ⌦⌃ \ {!1,!2,!3}. Let
1 = ⇢(�1) and 2 = ⇢(�2). The postulate (wIE() requires that

1(!2) 6 1(!1) and 2(!1) 6 2(!2). (⇤)

Let A = !3 _ !1 and B = !3 _ !2. Conditionalization yields �0
A
= �1|A = �2|A

and �
0
B
= �1|B = �2|B. Postulate (Cond) requires 1|A = ⇢(�0

A
) = 2|A and
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1|B = ⇢(�0
B
) = 2|B. This implies 1(!1) = 2(!1) and 1(!2) = 2(!2). With

(⇤) it follows that 1(!2) 6 1(!1) = 2(!1) 6 2(!2) = 2(!2). Therefore, we
can replace the 6 in this chain of (in-)equations by =. Let C = !1 _!2. We can
see that both �1|C = {!1 � !2} and �2|C = {!2 � !1} are mapped to the
uniform ranking function uni due to (Cond).

Since we can choose any two worlds as !1,!2 in this argumentation, (Cond)
requires that any TPO is mapped to the uniform ranking function uni. This
mapping to uni fulfils all three postulates.

Note that these results only apply to epistemic state mappings defined for
all TPOs. Mappings that are defined over a certain subset of TPOs might still
fulfil combinations of postulates.

6 Conclusion

In this paper, we introduced the notion of epistemic state mappings, i.e., map-
pings within and across the frameworks of OCFs and TPOs. We proposed postu-
lates for these mappings that ensure the preservation of certain properties of the
epistemic state across the mapping. The properties considered include the set
of entailed conditionals and syntax splitting. Other postulates ensure compat-
ibility with the operations marginalization and conditionalization, respectively.
Furthermore, we investigated the relationships among the proposed postulates
in general and for each combination of the considered framework. Some postu-
lates are entailed by other postulates, e.g., (SynSplit) entails (SynSplitb), (IE)
is equivalent to (Ord). We also showed that there are combinations of the pos-
tulates which cannot be satisfied simultaneously, e.g., there is no epistemic state
mapping from TPOs to OCFs that fulfils both (wIE)) and (SynSplitb). In some
cases we identified all possible epistemic state mapping satisfying a certain com-
bination of postulates, e.g., the only mapping from TPOs to OCFs that fulfils
both (wIE)) and (SynSplitb) is the trivial mapping of every TPO to uni.

Our current work includes extending the investigation of epistemic state map-
pings and their properties for establishing further relationships between OCFs
and TPOs. Furthermore, we will consider epistemic state mappings among par-
ticular subclasses of TPOs and OCFs. We expect to find interesting and relevant
subclasses such that epistemic state mappings over these subclasses fulfil combi-
nations of postulates that are not fulfilled by epistemic state mappings over the
full sets of TPOs and OCFs.
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