
The power of Parallelism in Membrane Computing

Rudolf Freund

Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Wien, Austria

rudi@emcc.at

Abstract: Maximal parallelism has been an important fea-
ture of membrane systems from the beginning, i.e., only
non-extendable multisets of rules are applied to the un-
derlying configuration. During the last two decades many
new variants of parallel derivation modes have been in-
vestigated, for example, non-extendable sets of rules are
used instead of non-extendable multisets of rules. In many
cases, computational completeness can be obtained. Re-
cently, derivation modes applying multisets of rules affect-
ing or generating the maximal number of objects or yield-
ing the maximal difference between the objects in the cur-
rent and the derived configuration have been shown to al-
low for computational completeness even when using only
very restricted variants of rules.

1 Introduction

When membrane systems were introduced in [37] more
than two decades ago, the application of non-extendable
multisets of rules was one of the basic features of this
bio-inspired model of computing. An introduction to this
fascinating area is documented in two textbooks, see [38]
and [39]. For actual information see the P systems web-
page [42] and the issues of the Bulletin of the International
Membrane Computing Society and of the Journal of Mem-
brane Computing.

The basic model of membrane systems (P systems,
see [37] and [38]) can be seen as a multiset rewriting sys-
tem where objects evolve in parallel in all the regions of a
hierarchical membrane structure, but the resulting objects
may also pass through the membranes surrounding a mem-
brane region. In every derivation step a non-extendable
multiset of rules is applied. The result of a computation is
extracted when the system halts, i.e., when no rule is appli-
cable any more. The multiset rewriting rules often can be
restricted to non-cooperative rules of the form a → v and
catalytic rules of the form ca → cv, where c is a catalyst,
a is a single object and v is a multiset of objects. Catalysts
are special objects which allow only one object to evolve
in its context, but in their basic variant never evolve them-
selves. P systems using only these two types of rules are
called catalytic, and if only catalytic rules are allowed we
speak of purely catalytic P systems.

Copyright c⃝2021 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
4.0).

In the context of catalytic and purely catalytic P sys-
tems, the question how many catalysts are needed for ob-
taining computational completeness has been one of the
most intriguing challenges from the beginning. Without
catalysts only regular (semi-linear) sets can be generated
when using the standard maximally parallel derivation
mode and the standard halting mode. For catalytic P sys-
tems with only one catalyst a lower bound was established
in [32]: P systems with one catalyst can simulate partially
blind register machines, i.e., they can generate more than
just semi-linear sets. At least when using additional con-
trol mechanisms, even one catalyst can be sufficient to ob-
tain computational completeness, see [28]: for example, in
P systems with label selection, only rules from one set of a
finite number of sets of rules in each computation step are
used; in time-varying P systems, the available sets of rules
change periodically with time. For many other variants of
P systems using specific control mechanism for the appli-
cation of rules the interested reader is referred to the list of
references, for example, see [1, 2, 3, 6, 7, 8, 9, 10, 12, 14,
15, 16, 17, 18, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 34, 35].

In [24] it was shown that without any additional ingredi-
ents like a priority relation on the rules as used in the origi-
nal definition computational completeness can be obtained
by showing that register machines with n registers can be
simulated by (purely) catalytic P systems with (n+3) n+2
catalysts.

In [8], the idea of using a priority relation on the rules
was revived, but in a very weak form: overall in the sys-
tem, catalytic rules have weak priority over non-catalytic
rules. Even without using more than this weak priority
of catalytic rules over the non-catalytic (non-cooperative)
rules, computational completeness could be established
for catalytic P systems with only one catalyst. Moreover,
starting from this result, an even stronger result has been
established in [12], where computational completeness for
catalytic P systems with only one catalyst is shown when
the derivation mode maxob jects is used, i.e., only those mul-
tisets of rules are taken which affect the maximal number
of objects in the underlying configuration.

In this paper, after recalling some classic results, I will
focus on the research which has been started in [12] and
then has been continued in [11] and in [13]. I will con-
sider several variants of derivation modes based on non-
extendable multisets of rules and taking only those for
which (i) the number of affected objects is maximal, (ii)
the number of objects generated by the application of the

multiset of rules is maximal, or (iii) the difference of ob-
jects between the underlying configuration and the config-
uration after the application of the multiset of rules is max-
imal. In case of catalytic P systems, for all these variants
one can also take such multisets of rules without request-
ing them to fulfill the condition to be non-extendable.

2 Definitions

The set of natural numbers n ≥ 0 is denoted by N. For any
two natural numbers m,n, m ≤ n, [m..n] denotes the set of
natural numbers {k | m ≤ k ≤ n}. Moreover, m⊕n +1 is
defined as m+1 for 1 ≤ m < n and n⊕n +1 = 1.

For an alphabet V , the free monoid generated by V un-
der the operation of concatenation, i.e., the set contain-
ing all possible strings over V is denoted by V ∗. The
empty string is denoted by λ . A multiset M with under-
lying set A is a pair (A, f) where f : A → N is a map-
ping. If M = (A, f) is a multiset then its support is de-
fined as supp(M) = {x ∈ A | f (x) > 0}. A multiset is
empty (respectively finite) if its support is the empty set
(respectively a finite set). If M = (A, f) is a finite multi-
set over A and supp(M) = {a1, . . . ,ak}, then it can also be
represented by the string a f (a1)

1 . . .a f (ak)
k over the alphabet

{a1, . . . ,ak}, and, moreover, all permutations of this string
precisely identify the same multiset M. The set of all mul-
tisets over V is denoted by V ◦. The cardinality of a set or
multiset M is denoted by |M|.

For further notions and results in formal language the-
ory I refer to textbooks like [19] and [40].

2.1 Register Machines

Register machines are well-known universal devices for
computing on (or generating or accepting) sets of vectors
of natural numbers. The following definitions and propo-
sitions are given as in [12].

Definition 1. A register machine is a construct

M = (m,B, l0, lh,P)

where

• m is the number of registers,

• P is the set of instructions bijectively labeled by ele-
ments of B,

• l0 ∈ B is the initial label, and

• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD(r),q,s); p ∈ B\{lh}, q,s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-
deterministically jump to instruction q or s.

• p : (SUB(r),q,s); p ∈ B\{lh}, q,s ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the
value of register r by one (decrement case) and jump
to instruction q, otherwise jump to instruction s (zero-
test case).

• lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the
contents of each register and by the value of the current
label, which indicates the next instruction to be executed.
M is called deterministic if the ADD-instructions all are of
the form p : (ADD(r),q).

Throughout the paper, BADD denotes the set of labels
of ADD-instructions p : (ADD(r),q,s) of arbitrary regis-
ters r, and BSUB(r) denotes the set of labels of all SUB-
instructions p : (SUB(r),q,s) of a decrementable register
r. Moreover, for any p∈B\{lh}, Reg(p) denotes the regis-
ter affected by the ADD- or SUB-instruction labeled by p;
for the sake of completeness, in addition Reg(lh) = 1 is
taken.

In the accepting case, a computation starts with the in-
put of an l-vector of natural numbers in its first l registers
and by executing the first instruction of P (labeled with l0);
it terminates with reaching the HALT -instruction. Without
loss of generality, we may assume all registers to be empty
at the end of the computation.

In the generating case, a computation starts with all reg-
isters being empty and by executing the first instruction of
P (labeled with l0); it terminates with reaching the HALT -
instruction and the output of a k-vector of natural numbers
in its last k registers. Without loss of generality, we may
assume all registers except the last k output registers to be
empty at the end of the computation.

In the computing case, a computation starts with the in-
put of an l-vector of natural numbers in its first l registers
and by executing the first instruction of P (labeled with
l0); it terminates with reaching the HALT -instruction and
the output of a k-vector of natural numbers in its last k
registers. Without loss of generality, we may assume all
registers except the last k output registers to be empty at
the end of the computation.

For useful results on the computational power of regis-
ter machines, we refer to [36]; for example, to prove our
main theorem, we need the following formulation of re-
sults for register machines generating or accepting recur-
sively enumerable sets of vectors of natural numbers with
k components or computing partial recursive relations on
vectors of natural numbers:

Proposition 1. Deterministic register machines can ac-
cept any recursively enumerable set of vectors of natural
numbers with l components using precisely l+2 registers.
Without loss of generality, we may assume that at the end
of an accepting computation all registers are empty.

Proposition 2. Register machines can generate any recur-
sively enumerable set of vectors of natural numbers with k
components using precisely k+2 registers. Without loss of
generality, we may assume that at the end of a generating
computation the first two registers are empty, and, more-
over, on the output registers, i.e., the last k registers, no
SUB-instruction is ever used.

Proposition 3. Register machines can compute any par-
tial recursive relation on vectors of natural numbers with l
components as input and vectors of natural numbers with
k components as output using precisely l+2+ k registers,
where without loss of generality, we may assume that at
the end of a successful computation the first l+2 registers
are empty, and, moreover, on the output registers, i.e., the
last k registers, no SUB-instruction is ever used.

In all cases it is essential that the output registers never
need to be decremented.

Remark 1. For any register machine, without loss of gen-
erality we may assume that the first instruction is an ADD-
instruction on register 1: in fact, given a register ma-
chine M = (m,B, l0, lh,P) with having a another instruc-
tion as its first instruction, we can immediately construct
an equivalent register machine M′ which starts with an in-
crement immediately followed by a decrement of the first
register:

M′ =
(
m,B′, l′0, lh,P

′) ,
B′ = B∪{l′0, l

′′
0},

P′ = P∪{l′0 : (ADD(1), l′′0 , l
′′
0), l′′0 : (SUB(1), l0, l0)}.

2.2 Simple P Systems

Taking into account the well-known flattening process,
which means that computations in a P system with an ar-
bitrary membrane structure can be simulated in a P sys-
tem with only one membrane, e.g., see [25], in this paper
we only consider simple (catalytic, purely catalytic) P sys-
tems, i.e., with the simplest membrane structure of only
one membrane:

Definition 2. A simple P system is a construct

Π = (V,C,T,w,R)

where

• V is the alphabet of objects;

• C ⊂V is the set of catalysts;

• T ⊆ (V \C) is the alphabet of terminal objects;

• w ∈ V ◦ is the multiset of objects initially present in
the membrane region;

• R is a finite set of evolution rules over V ; these evo-
lution rules are mutiset rewriting rules u → v with
u,v ∈V ◦.

The P system Π is called catalytic, if R contains only non-
cooperative rules of the form a → cv and catalytic rules of
the form ca → cv, where c ∈C is a catalyst, a is an object
from V \C, and v is a multiset over V \C. The P system
Π is called purely catalytic, if R contains only catalytic
rules.

The multiset in the single membrane region of Π con-
stitutes a configuration of the P system. The initial con-
figuration is given by the initial multiset w; in case of ac-
cepting or computing P systems the input multiset w0 is
assumed to be added to w, i.e., the initial configuration
then is ww0.

A transition between configurations is governed by the
application of the evolution rules, which is done in a given
derivation mode. The application of a rule u → v to a mul-
tiset M results in subtracting from M the multiset identified
by u, and then in adding the multiset identified by v.

2.3 Variants of Derivation Modes

The definitions and the corresponding notions used in this
subsection follow the definitions and notions elaborated in
[33] as well as in [12] and [13].

Given a P system Π = (V,C,T,w,R), the set of multi-
sets of rules applicable to a configuration C is denoted by
Appl(Π,C); this set also equals the set Appl(Π,C,asyn)
of multisets of rules applicable in the asynchronous
derivation mode (abbreviated asyn).

Given a multiset R of rules in Appl(Π,C), we write
C R−→ C′ if C′ is the result of applying R to C. The num-
ber of objects affected by applying R to C is denoted by
Aff(C,R). The number of objects generated in C′ by the
right-hand sides of the rules applied to C with the mul-
tiset of rules R is denoted by Gen(C,R). The difference
between the number of objects in C′ and C is denoted by
∆ob j(C,R).

The set Appl(Π,C,sequ) denotes the set of multisets of
rules applicable in the sequential derivation mode (abbre-
viated sequ), where in each derivation step exactly one rule
is applied.

The standard parallel derivation mode used in P systems
is the maximally parallel derivation mode (max for short).
In the maximally parallel derivation mode, in any compu-
tation step of Π we choose a multiset of rules from R in
such a way that no further rule can be added to it so that
the obtained multiset would still be applicable to the exist-
ing objects in the configuration, i.e., in simple P systems
we only take applicable multisets of rules which cannot be
extended by further (copies of) rules and are to be applied
to the objects in the single membrane region:

Appl(Π,C,max) ={R ∈ Appl(Π,C) |
there is no R′ ∈ Appl(Π,C)

such that R′ ⊃ R}.

We first consider the derivation mode maxob jectsmax
where from the multisets of rules in Appl(Π,C,max) only
those are taken which affect the maximal number of ob-
jects. As with affecting the maximal number of objects,
such multisets of rules are non-extendable anyway, we will
also use the notation maxob jects. Formally we may write:

Appl(Π,C,maxob jectsmax) = {R ∈ Appl(Π,C,max) |
there is no R′ ∈ Appl(Π,C,max)

such that Aff(C,R) < Aff(C,R′)}

and

Appl(Π,C,maxob jects) = {R ∈ Appl(Π,C,asyn) |
there is no R′ ∈ Appl(Π,C,asyn)

such that Aff(C,R) < Aff(C,R′)}.

As already mentioned, both definitions yield the same
multiset of rules.

In addition to these well-known derivation modes, in
this paper we also consider several new variants of deriva-
tion modes as already introduced in [11], where instead of
looking at the number of affected objects we take into ac-
count the number of generated objects and the difference
of objects between the derived configuration and the cur-
rent configuration, respectively.

maxGENob jectsmax a non-extendable multiset of rules R
applicable to the current configuration C is only taken
if the number of objects generated by the application
of the rules in R to the configuration C is maximal
with respect to the number of objects generated by the
application of the rules in any other non-extendable
multiset of rules R′ to the configuration C:

Appl(Π,C,maxGENob jectsmax) = {R ∈ Appl(Π,C,max) |
there is no R′ ∈ Appl(Π,C,max)

such that Gen(C,R) < Gen(C,R′)}.

max∆ob jectsmax a non-extendable multiset of rules R ap-
plicable to the current configuration C is only taken
if the difference ∆C = |C′| − |C| between the num-
ber of objects in the configuration C′ obtained by the
application of R and the number of objects in the un-
derlying configuration C is maximal with respect to
the differences in the number of objects obtained by
applying any other non-extendable multiset of rules:

Appl(Π,C,max∆ob jectsmax) = {R ∈ Appl(Π,C,max) |
there is no R′ ∈ Appl(Π,C,max)

such that ∆ob j(C,R) < ∆ob j(C,R′)}.

Like for maxob jectsmax in comparison with maxob jects
we now can also consider the variants of the other maxi-
mal derivation modes where we do not start with imposing
the restriction of being non-extendable on the applicable
multisets:

maxGENob jects a multiset of rules R applicable to the cur-
rent configuration C is only taken if the number of
objects generated by the application of the rules in R
to the configuration C is maximal with respect to the
number of objects generated by the application of the
rules in any other multiset of rules R′ to the configu-
ration C:

Appl(Π,C,maxGENob jects) = {R ∈ Appl(Π,C,asyn) |
there is no R′ ∈ Appl(Π,C,asyn)

such that Gen(C,R) < Gen(C,R′)}.

max∆ob jects a multiset of rules R applicable to the cur-
rent configuration C is only taken if the difference
∆C = |C′|− |C| between the number of objects in the
configuration C′ obtained by the application of R and
the number of objects in the underlying configura-
tion C is maximal with respect to the differences in
the number of objects obtained by applying any other
multiset of rules:

Appl(Π,C,max∆ob jects) = {R ∈ Appl(Π,C,asyn) |
there is no R′ ∈ Appl(Π,C,asyn)

such that ∆ob j(C,R) <∆ob j(C,R′)}.

We illustrate the difference between these new deriva-
tion modes in the following examples, thereby emphasiz-
ing on catalytic and non-cooperative rules:

Example 1. To illlustrate the derivation modes
maxGENob jectsmax as well as max∆ob jectsmax, con-
sider a simple P system with the initial configuration caa
and the set of rules {a → b,ca → cd}.

In case of the derivation mode maxGENob jectsmax, only
the multiset of rules {ca → cd,a → b} can be applied,
as Gen(caa,{ca → cd})= 2 and Gen(cab,{a → b})= 1
and therefore Gen(caa,{ca → cd,a → b})= 3, whereas
Gen(caa,{a → b,a → b})= 2. Hence, the only possible
derivation with the derivation mode maxGENob jectsmax is

caa
{ca→cd,a→b}−−−−−−−−→ cdb. In this special case,

Appl(Π,caa,maxGENob jectsmax) =

Appl(Π,caa,maxob jects).

On the other hand, with the derivation mode
max∆ob jectsmax both rules yield the same difference of 0,
i.e., ∆ob j(caa,{ca → cd}) = ∆ob j(caa,{a → b}) = 0,
which yields all two non-extendable multisets of rules
{ca → cd,a → b} and {a → b,a → b} to be applicable to
the underlying configuration caa, i.e.,

Appl(Π,caa,max∆ob jectsmax) = Appl(Π,caa,max).

Now let us take the set of rules {a → bb,ca → cd}. Ob-
serving that Gen(caa,{a → bb})= 2 and ∆ob j(caa,{a →
bb}) = 1, we obtain the following sets of applicable mul-
tisets of rules:

Appl(Π,caa,maxGENob jectsmax) =
{{a → bb,a → bb},{a → bb,ca → cd}},

Appl(Π,caa,max∆ob jectsmax) = {{a → bb,a → bb}}.

Finally, let us take the set of rules {a→ λ ,ca→ cd}. As
Gen(caa,{a→ λ})= 0 and ∆ob j(caa,{a→ λ}) =−1, we
obtain the following sets of applicable multisets of rules:

Appl(Π,caa,maxGENob jectsmax) =
Appl(Π,caa,max∆ob jectsmax) = {{a → λ ,ca → cd}}.

Example 2. Consider a simple purely catalytic P sys-
tem with the initial configuration c1c2aa and the following
rules:

1. c1a → c1

2. c2a → c2b
3. c2a → c2bb

We immediately observe the following:

1. Gen(c1c2aa,{c1a → c1})= 1,
2. Gen(c1c2aa,{c2a → c2b})= 2,
3. Gen(c1c2aa,{c2a → c2bb})= 3.

In case of the derivation mode maxGENob jectsmax, the
multiset of rules {c1a → c1,c2a → c2bb} has to be ap-
plied. Hence, the only possible derivation with the deriva-

tion mode maxGENob jectsmax is c1c2aa
{c1a→c1,c2a→c2bb}−−−−−−−−−−−−→

c1c2bb. In this special case,
Appl(Π,c1c2aa,maxGENob jectsmax) =
Appl(Π,c1c2aa,maxob jects).

If we do not start from non-extendable multisets of
rules, we obtain the same results, i.e., in the deriva-
tion mode maxGENob jects, the multiset of rules {c1a →
c1,c2a → c2bb} has to be applied, and the only possi-
ble derivation with the derivation mode maxGENob jects is

c1c2aa
{c1a→c1,c2a→c2bb}−−−−−−−−−−−−→ c1c2bb.

In the same way, for the difference of generated and
consumed objects we obtain:

1. ∆ob j(c1c2aa,{c1a → c1})=−1,
2. ∆ob j(c1c2aa,{c2a → c2b})= 0,
3. ∆ob j(c1c2aa,{c2a → c2bb})= 1.

As for the derivation mode max∆ob jectsmax, also for the
derivation mode maxGENob jectsmax we obtain that the mul-
tiset of rules {c1a→ c1,c2a→ c2bb} has to be applied and
that the only possible derivation with the derivation mode

max∆ob jectsmax is c1c2aa
{c1a→c1,c2a→c2bb}−−−−−−−−−−−−→ c1c2bb.

On the other hand, if we do not start from non-
extendable multisets of rules, now the rule c1a → c1 must
not be applied because it would decrease the number of
objects, i.e., in the derivation mode max∆ob jects we obtain
that the – not non-extendable – multiset of rules {c2a →
c2bb} has to be applied, and the only possible derivation

with the derivation mode max∆ob jects is c1c2aa
{c2a→c2bb}−−−−−−−→

c1c2abb.

3 Some Classic Results

In this section I recall some classic results for P systems
being computationally complete:

Theorem 4. Every (computation of a) register machine M
can be simulated by a simple P system Π. If M is deter-
ministic, then the simulation in Π is deterministic, too.

Proof. Let M = (m,B, l0, lh,P) be an arbitrary register ma-
chine with the first n registers being the decrementable
ones and the registers n+ 1, . . . ,m being the output reg-
isters.

Then we construct an equivalent simple P system Π =
(V,T, l0,R) as follows (as we do not use catalysts, we omit
C in the definition of Π):

V = {ar | 1 ≤ r ≤ m}∪B
∪ {p, p′, p′′, p̃, p̄ | p : (SUB(r),q,s) ∈ P},

T = {ar | n+1 ≤ r ≤ m},
R = {p → arq, p → ars | p : (ADD(r),q,s) ∈ P}

∪ {p → p′p′′, p′ → p̃, p′′ar → p̄,
p̃ p̄ → q, p̃p′′ → s |
p : (SUB(r),q,s) ∈ P}∪{lh → λ}.

The contents of a register r is represented by the corre-
sponding number of copies of the symbol ar.

An ADD-instruction p : (ADD(r),q) is simulated by the
rules p → arq and p → ars.

A SUB-instruction p : (SUB(r),q,s) is simulated by the
following rules:

1. p → p′p′′;

2. p′ → p̃, p′′ar → p̄

(executed in parallel if register is not empty);

3. p̃p′′ → s (if register was empty),

p̃p̄ → q (if register was not empty).

The HALT-instruction lh : HALT is simulated by the
rule lh → λ .

Theorem 5. (see [5]) Every (computation of a) register
machine M withat least two decrementable registers can
be simulated by a simple catalytic P system Π and a simple
purely catalytic P system Π′.

Proof. Let M = (m,B, l0, lh,P) be an arbitrary register ma-
chine with the first n registers being the decrementable
ones and the registers n+ 1, . . . ,m being the output reg-
isters. According to Remark 1, the first instruction is as-
sumed to be an ADD-instruction on register 1. Moreover,
without loss of generality we may assume that to output
registers no SUB-instructions are applied and that at the
end of a halting computation all registers which allow for
SUB-instructions are empty.

As in the original construction given in [24], n cat-
alysts are used, each of these catalysts being needed

for decrementing one of the registers allowing for SUB-
instructions; moreover, the idea of “paired catalysts” is
taken over, i.e., the catalyst cr works together with the cat-
alyst cr⊕n1 (this is the reason why we need at least two
decrementable registers). The contents of a register r is
represented by the corresponding number of copies of the
symbol ar.

The following abbreviations for specific multisets (writ-
ten as strings) are used:

Dn,r = Π j∈[1..n]\{r}d j and
D′

n,r = Π j∈[1..n]\{r,r⊕n1}d j.

The equivalent simple catalytic P system

Π = (V,C,T, l0Dn,1,R)

(observe that we start with an ADD-instruction on regis-
ter 1) now is constructed as follows:

V = {ar | 1 ≤ r ≤ m}∪B∪C∪D
∪ {p, p′, p̃, p̄ | p : (SUB(r),q,s) ∈ P},

C = {cr | 1 ≤ r ≤ n},
D = {dr | 1 ≤ r ≤ n},
T = {ar | n+1 ≤ r ≤ m},
R = {crdr → cr | 1 ≤ r ≤ n}∪{c1lh → c1}

∪ {cr p → crarqDn,Reg(q),cr p → crarsDn,Reg(s)
| p : (ADD(r),q,s) ∈ P}

∪ {crdr → cr | 1 ≤ r ≤ n}
∪ {cr p → cr p̄Dn,r, cr p → cr p′D′

n,r,
crar → cra′rD

′
n,r, cr p̄ → cr#,

cr⊕n1 p′ → cr⊕n1sDn,Reg(s),
cra′r → crdr⊕n1,cr⊕n1 p̄ → cr⊕n1 p̃D′

n,r,
cr p̃ → crqDn,Reg(q)

| p : (SUB(r),q,s) ∈ P}
∪ {x → # | x ∈ {#}∪{d j,a′j | 1 ≤ j ≤ n}

∪{p, p′, p̃ | p ∈ BSUB(r),1 ≤ r ≤ n}}.

For each catalyst cr we use a “dummy” symbol dr, which
keeps the catalyst cr busy whenever needed enforcing cr
to use the rule crdr → cr to keep the simulation alive.
When one of the instructions works on a specific register r,
then only the catalyst cr and in case of SUB-instructions
also catalyst cr⊕k1 is involved, whereas the catalysts cor-
responding to the other registers j have to be kept busy
by the corresponding rule c jd j → c j. For each SUB-
instruction labeled by the “program” symbol p also the
variants p′, p̃, p̄ are used.

The HALT-instruction lh : HALT is simulated by the
rule c1lh → c1 (observe that Reg(lh) = 1 is assumed).

Each ADD-instruction j : (ADD(r),k, l) is simulated by
the two rules cr p → crarxDk,Reg(x), x ∈ {q,s}.

Each SUB-instruction j : (SUB(r),k, l) is simulated in
at most four steps as shown in the table given below:

Simulation of the SUB-instruction p : (SUB(r),q,s if
register r is not empty register r is empty
cr p → cr p̄Dn,r cr p → cr p′D′

n,r
cr⊕n1dr⊕n1 → cr⊕n1 cr⊕n1dr⊕n1 → cr⊕n1
crar → cra′rD

′
n,r cr remains idle

cr⊕n1dr⊕n1 → cr⊕n1 cr⊕n1 p′ → cr⊕n1sDn,Reg(s)
cra′r → crdr⊕n1
cr⊕n1 p̄ → cr⊕n1 p̃D′

n,r
cr p̃ → crqDn,Reg(q)
cr⊕n1dr⊕n1 → cr⊕n1

The trap rules x → # guarantee that all the symbols x
are used in a correct way in the rules listed above for the
simulation of the register machine instructions. As soon
as the trap symbol # has been introduced, the derivation
finally will enter an infinite loop with the rule # → #. In
the case of catalytic P systems, the only non-cooperative
rules are these trap rules.

In case the assumption about register r being not empty
is wrong, then instead of the rule crar → cra′rD

′
n,r the trap

rule cr p̄ → cr# must be used. On the other hand, in case
the assumption about register r being empty is wrong, then
catalyst cr will not stay idle, but will be used with the
rule crar → cra′rD

′
n,r instead. Yet then in the third step

in sum 2n− 1 objects to be handled by only n catalysts
will be present in the configuration, which is impossible
and therefore will lead to the introduction of the trap sym-
bol #.

In the purely catalytic case, one additional catalyst cd+1
is needed for all the non-cooperative rules given above.
These trap rules, and only those, are associated with this
catalyst cd+1; for example, the trap rule # → # now is re-
placed by the rule cd+1# → cd+1#.

The construction given in the proof above works for
both catalytic and purely catalytic P systems. An improved
version for catalytic P systems with respect to the number
of rules needed for simulating SUB-instructions was pre-
sented at the Workshop on Membrane Computing 2015
(Satellite Workshop of UCNC 2015 in Auckland), see [4].
As this improved result for catalytic P systems is the best
known so far with respect to the number of rules needed
for simulating SUB-instructions, this specific construction
is recalled in the proof of the following theorem:

Theorem 6. For any register machine M =(m,B, l0, lh,P),
with n ≤ m being the number of decrementable regis-
ters, we can construct a simple catalytic P system Π =
(V,C,T,w,R) simulating the computations of M such that

|R| ≤ ADD1(P)+2×ADD2(P)+

5×SUB(P)+5×m+1,

where ADD1(P) denotes the number of deterministic
ADD-instructions in P, ADD2(P) denotes the number of
non-deterministic ADD-instructions in P, and SUB(P) de-
notes the number of SUB-instructions in P.

Proof. Again a register machine M = (m,B, l0, lh,P) with
n ≤ m decrementable registers is simulated by a catalytic
P system Π = (V,C,T,w,R).

For each of the n decrementable registers, we take a cat-
alyst cr and two specific symbols dr,er, 1 ≤ r ≤ n, for sim-
ulating SUB-instructions on these registers.

V = C∪D∪E ∪Σ∪{#}∪{p | p ∈ B}
∪ {p′, p̄, p̃ | l ∈ BSUB},

C = {cr | 1 ≤ r ≤ n},
D = {dr | 1 ≤ r ≤ n},
E = {er | 1 ≤ r ≤ n},
Σ = {ar | 1 ≤ r ≤ m},
T = {ar | 1 ≤ r ≤ n},
R = {lh → λ}

∪ {p → arqDn,q → arsDn
| p : (ADD(r),q,s) ∈ P}

∪ {p → p̄erDn,r, p → p′Dn,r,
p̄ → p̃D′

n,r, p′ → sDn, p̃ → qDn
| p : (SUB(r),q,s) ∈ P}

∪ {crar → crdr,crdr → cr,cr⊕n1er → cr⊕n1
| 1 ≤ r ≤ n},

∪ {dr → #,crer → cr# | 1 ≤ r ≤ n}
∪ {# → #}.

The initial configuration is

w = c1 . . .cnd1 . . .dn p1w0

where w0 stands for additional input present at the begin-
ning, for example, for the given input in case of accepting
systems.

Usually, every catalyst cr, r ∈ [1..n], is kept busy with
the symbol dr using the rule crdr → cr, as otherwise the
symbols dr would have to be trapped by the rule dr → #,
and the trap rule # → # then enforces an infinite non-
halting computation. Only during the simulation of SUB-
instructions on register r the corresponding catalyst cr is
left free for decrementing or for zero-checking in the sec-
ond step of the simulation, and in the decrement case both
cr and its “coupled” catalyst cr⊕n1 are needed to be free
for specific actions in the third step of the simulation.

For the simulation of instructions, we use the following
shortcuts:

Dn = ∏i∈[1..n] di,

Dn,r = ∏i∈[1..n]\{r} di,

D′
n,r = ∏i∈[1..n]\{r,r⊕n1} di.

Each ADD-instruction p : (ADD(r),q,s), for r ∈ [1..n],
is simulated by the rules p → arqDn and p → arsDm; in
parallel, the rules crdr → cr, 1 ≤ r ≤ n, have to be carried
out, as otherwise the symbols dr would have to be trapped
by the rules dr → #.

Each SUB-instruction p : (SUB(r),q,s), is simulated as
shown in the table listed below (the rules in brackets [and]
are those to be carried out in case of a wrong choice):

Simulation of the SUB-instruction p : (SUB(r),q,s) if
register r is not empty register r is empty
p → p̄erDn,r p → p′Dn,r
crar → crdr [crer → cr#] cr should stay idle
p̄ → p̃D′

n,r p′ → sDn

crdr → cr [dr → #] [dr → #]
p̃ → qDn
cr⊕n1er → cr⊕n1

In the first step of the simulation of each instruc-
tion (ADD-instruction, SUB-instruction, and even HALT-
instruction) due to the introduction of Dn in the previous
step (we also start with that in the initial configuration) ev-
ery catalyst cr is kept busy by the corresponding symbol
dr, 1 ≤ r ≤ m. Hence, this also guarantees that the zero-
check on register r works correctly enforcing dr → # to be
applied, as in the case of a wrong choice two symbols dr
are present.

The HALT-instruction lh : HALT is simulated by the
rule lh → λ ; observe that no objects ar for 1 ≤ r ≤ n are
present any more when lh has appeared.

Remark 2. Exactly the same construction as elaborated
above can be used when allowing for n+2 catalysts, with
catalyst cn+1 being used with the state symbols and cata-
lyst cn+2 being used with the trap rules. If only one ad-
ditional catalyst cn+1 is allowed to be used with all the
non-cooperative rules, a slightly more complicated simu-
lation of SUB-instructions is needed, see [41], where for
catalytic P systems

|R| ≤ 2×ADD1(P)+3×ADD2(P)+

6×SUB(P)+5×m+1,

and for purely for catalytic P systems

|R| ≤ 2×ADD1(P)+3×ADD2(P)+

6×SUB(P)+6×m+1,

was shown.

Remark 3. In case of deterministic register machines, es-
pecially in the accepting case, every sequence of consec-
utive ADD-instructions is bounded by a constant only de-
pending on the given register machine. Hence, in this case
the calculations for |R| in Theorem 6 and in Remark 2 can
omit the ADD-instructions, because any fixed sequence of
consecutive ADD-instructions can be included directly in
the last simulation step of the preceding SUB-instruction,
see the concept of generalized register machines as used
in [17] and also cited in [41].

Remark 4. The use of the trap symbol # to enforce the
computation never to stop is a typical element of many
proofs to be found in the literature. Only very few vari-
ants of P systems are known so far which allow for a de-
terministic simulation of the SUB-instruction and in that
way for a deterministic simulation of a deterministic reg-
ister machine like the unrestricted variant considered in

Theorem 4. Therefore I already now want to emphasize
this important feature of most of the simple P systems in-
vestigated in the following sections to allow for an even
deterministic simulation.

4 Catalytic P Systems with One Catalyst

In [12] it was shown that computational completeness can
be obtained with simple P systems and only one cata-
lyst when using the derivation mode maxob jects instead of
max. Then in [11] computational completeness was estab-
lished for simple P systems with only one catalyst using
the derivation modes maxGENob jectsmax, max∆ob jectsmax,
maxGENob jects, and max∆ob jects. The results exhibited in
this section are optimal with respect to the number of cat-
alysts for catalytic P systems working in these derivation
modes, because such P systems when given multisets of
non-cooperative rules can only generate semi-linear sets.

Theorem 7. For any register machine with at least two
decrementable registers we can construct a catalytic P sys-
tem with only one catalyst and working in the derivation
mode maxob jects which can simulate every step of the regis-
ter machine in n+1 steps where n is the number of decre-
mentable registers.

Proof. We use the trick as elaborated in Remark 1 for get-
ting a specific variant of register machines: without loss of
generality, we start with an ADD-instruction on register 1,
but we also change the register machine program in such
a way that after a SUB-instruction on register n two inter-
mediate instructions are introduced, i.e., as in Remark 1,
we use an ADD-instruction on register 1 immediately fol-
lowed by a SUB-instruction on register 1.

We then may simulate the resulting register machine
fulfilling these additional constraints M = (m,B, l0, lh,P)
by a corresponding catalytic P system with one membrane
and one catalyst Π=(V,{c},T,(l0,1),R). Without loss of
generality, we may assume that, depending on its use as an
accepting or generating or computing device, the register
machine M, as stated in Proposition 1, Proposition 2, and
Proposition 3, fulfills the condition that on the output reg-
isters we never apply any SUB-instruction. Moreover, we
take the most general case of a register machine computing
a partial recursive function on vectors of natural numbers
with l components as input and vectors of natural numbers
with k components as output using n decrementable regis-
ters, where without loss of generality, we may assume that
at the end of a successful computation the first n registers
are empty, and, moreover, on the output registers, i.e., the
last k registers, no SUB-instruction is ever used.

The main idea behind the construction is that all the
symbols except the catalyst c and the output symbols
(representing the contents of the output registers) go
through a cycle of length n + 1 where n is the number
of decrementable registers of the simulated register ma-
chine. When the symbols are traversing the r-th section

of the first n sections, they “know” that they are to proba-
bly simulate a SUB-instruction on register r of the register
machine M.

V = {ar | n+1 ≤ r ≤ m}
∪ {(ar, i) | 1 ≤ r ≤ n, 1 ≤ i ≤ n+1}
∪ {(p, i) | p ∈ BADD, 1 ≤ i ≤ n+1}
∪ {(p, i) | p ∈ BSUB(r),

1 ≤ i ≤ r+1, 1 ≤ r ≤ n}
∪ {(p, i)−,(p, i)0 | p ∈ BSUB(r),

r+2 ≤ i ≤ n+1, 1 ≤ r ≤ n−1}
∪ {c,e,#},

T = {ar | n+1 ≤ r ≤ m}.

The alphabet V of symbols includes register symbols
(ar, i) for every decrementable register r of the register
machine and only the register symbol ar for each of the
k output registers r, m− k+1 ≤ r ≤ m.

The construction includes the trap rule #→ # which will
always keep the system busy and prevent it from halting
and thus from producing a result as soon as the trap sym-
bol # has been introduced, yet the only rule introducing
this trap symbol is the single rule e → #.

For letting the register symbols cycle with a period of
n+1 the following rules are used:

(ar, i)→ (ar, i+1),1 ≤ r ≤ n;
(ar,n+1)→ (ar,1).

(1)

For simulating ADD-instructions we need the following
rules:

Increment p : (ADD(r),q,s):

c(p, i)→ c(p, i+1), 1 ≤ i ≤ n. (2)

If r is a decrementable register:

c(p,n+1)→ c(q,1)(ar,1),
c(p,n+1)→ c(s,1)(ar,1).

(3)

If r is an output register:

c(p,n+1)→ c(q,1)ar,
c(p,n+1)→ c(s,1)ar

(4)

The catalyst has to be used with the program symbol
which otherwise would stay idle when the catalyst is used
with a register symbol, and the multiset of rules applied
in this way would use one object less and thus violate the
condition of using the maximal number of objects.

For simulating SUB-instructions we need the following
rules:

Decrement and zero-test p : (SUB(r),q,s):

c(p, i)→ c(p, i+1), 1 ≤ i < r
(p,r)→ (p,r+1), c(ar,r)→ ce. (5)

In case that register r is empty, i.e., there is no object
(ar,r), then the catalyst will stay idle in step r as there is
no other object with which it could react.

If r < n:

ce → c, e → #,(p,r+1)→ (p,r+2)−;

c(p,r+1)→ c(p,r+2)0.
(6)

If in the first step of the simulation phase the catalyst did
manage to decrement the register, it produced e. Thus, in
the second simulation step, the catalyst has three choices:

1. the catalyst c correctly erases e, and to the program
symbol (p,r + 1) the rule (p,r + 1) → (p,r + 2)−

must be applied due to the derivation mode maxob-
jects; all register symbols evolve in the usual way;

2. the catalyst c takes the program symbol (p,r+1) us-
ing the rule c(p,r + 1) → c(p,r + 2)0, thus forcing
the object e to be trapped by the rule e → #, and all
register symbols evolve in the usual way;

3. the catalyst c takes a register object (ar+1,r+1), thus
leaving the object e to be trapped by the rule e → #,
the program symbol (p,r + 1) evolves with the rule
(p,r+1)→ (p,r+2)−, and all other register objects
evolve in the usual way.

In fact, only variant 1 now fulfills the condition given
by the derivation mode maxob jects and therefore is the only
possible continuation of the computation if register r is not
empty.

On the other hand, if register r is empty, no object e is
generated, and the catalyst c has only two choices:

1. the catalyst c takes the program symbol (p,r+1) us-
ing the rule c(p,r+1)→ c(p,r+2)0, and all register
symbols evolve in the usual way;

2. the catalyst c takes a register object (ar+1,r + 1)
thereby generating e, the program symbol (p,r + 1)
evolves with the rule (p,r+1)→ (p,r+2)−, and all
other register objects evolve in the usual way; this
variant leads to the situation that e will be trapped
in step r+ 2, as otherwise the program symbol stays
idle, thus violating the condition of the derivation
mode maxob jects. Hence, this variant in any case can-
not lead to a halting computation due to the introduc-
tion of the trap symbol #. We mention that in case no
register object (ar+1,r+1) is present we have to ap-
ply case 1 and thus have a correct computation step.

Both variants fulfill the condition for the derivation
mode maxob jects, but only variant 1 is not introducing the

trap symbol # and therefore is the only reasonable contin-
uation of the computation if register r is empty.

c(p, i)− → c(p, i+1)−, r+2 ≤ i ≤ n,

c(p,n+1)− → c(q,1),

c(p, i)0 → c(p, i+1)0, r+2 ≤ i ≤ n,

c(p,n+1)0 → c(s,1).

(7)

The catalyst has to be used with the program symbol
which otherwise would stay idle when the catalyst is used
with a register symbol, and the multiset of rules applied
in this way would use one object less and thus violate the
condition of using the maximal number of objects.

If r = n:

ce → c, e → #,

(p,n+1)→ (q,1), c(p,n+1)→ c(s,1).
(8)

We observe that in this case during the first step of the
next cycle we have to guarantee that in the zero-test case
the catalyst must be used with the program symbol, hence,
we will simulate an ADD-instruction on register 1, as the
introduction of the symbol e in the wrong variant of the
zero-test case must lead to introducing the trap symbol and
not allowing e to be erased by the catalytic rule ce → c.

The HALT-instruction lh : HALT is simulated by the
rule clh → c.

As the number of decrementable registers in generating
register machines needed for generating any recursively
enumerable set of (vectors of) natural numbers is only two,
the following result is an immediate consequence of the
preceding theorem:

Corollary 1. For any generating register machine with
two decrementable registers we can construct a catalytic
P system with only one catalyst and working in the deriva-
tion mode maxob jects which can simulate every step of the
register machine in 3 steps, and therefore such catalytic P
systems with only one catalyst and working in the deriva-
tion mode maxob jects can generate any recursively enumer-
able set of (vectors of) natural numbers.

The following results even yield deterministic simula-
tions of SUB-instructions of a register machine and thus
can even avoid trapping.

Theorem 8. (see [11]) For any register machine with at
least two decrementable registers we can construct a sim-
ple catalytic P system with only one catalyst, working in
the derivation mode max∆ob jectsmax or in the derivation
mode maxGENob jectsmax, which can simulate every step of
the register machine in n steps where n is the number of
decrementable registers.

Proof. Given an arbitrary register machine
M = (m,B, l0, lh,P) we will construct a correspond-
ing catalytic P system with one membrane and one
catalyst Π = (V,{c},T,w,R) simulating M. Without loss
of generality, we may assume that, depending on its use as
an accepting or generating or computing device, the regis-
ter machine M, as stated in Proposition 1, Proposition 2,
and Proposition 3, fulfills the condition that on the output
registers we never apply any SUB-instruction.

The following proof is given for the most general case
of a register machine computing any partial recursive re-
lation on vectors of natural numbers with l components as
input and vectors of natural numbers with k components
as output using precisely l + 2+ k registers, where with-
out loss of generality, we may assume that at the end of a
successful computation the first l + 2 registers are empty,
and, moreover, on the output registers, i.e., the last k reg-
isters, no SUB-instruction is ever used. In fact, the proof
works for any number n≥ 2 of decrementable registers, no
matter how many of them are the l input registers and the
working registers, respectively.

The main idea behind the construction is that all the
symbols except the catalyst c and the output symbols (rep-
resenting the contents of the output registers) go through a
cycle of length n where n is the number of decrementable
registers of the simulated register machine. When the
symbols are traversing the r-th section of the n sections,
they “know” that they are to probably simulate a SUB-
instruction on register r of the register machine M.

As in this construction the simulation of a SUB-
instruction takes two steps, the second simulation step in
the case of a SUB-instruction on register n is shifted to
the first step of the next cycle. Yet in this case we have
to guarantee that after a SUB-instruction on register n the
next instruction to be simulated is not a SUB-instruction on
register 1. Hence, we use a similar trick as already used in
the proof of Theorem 7, i.e., we not only do not start with a
SUB-instruction, but we also change the register machine
program in such a way that after a SUB-instruction on reg-
ister n two intermediate instructions are introduced, we use
an ADD-instruction on register 1 immediately followed by
a SUB-instruction on register 1, whose simulation will end
at most in step n, as we have assumed n ≥ 2.

The following construction is elaborated in such a way
that it works both for the derivation mode max∆ob jectsmax
and the derivation mode maxGENob jectsmax.

We now simulate the resulting register machine fulfill-
ing these additional constraints M = (m,B, l0, lh,P) by a
corresponding simple P system with one catalyst:

Π = (V,{c},T,c(l0,1),R).

V = {ar | n+1 ≤ r ≤ m}
∪ {(ar, i) | 1 ≤ r ≤ n,1 ≤ i ≤ n}
∪ {(p, i) | p ∈ BADD,1 ≤ i ≤ n}
∪ {(p, i) | p ∈ BSUB(r),1 ≤ i ≤ r+1}

∪ {(p, i)−,(p, i)0 | p ∈ BSUB(r),r+2 ≤ i ≤ n}
∪ {c,e,d}

T = {ar | n+1 ≤ r ≤ m}.

The construction includes the dummy symbol d which is
erased by the rule d → λ . The effect of applying these
rules due to the requirement of the chosen multisets of
rules to be non-extendable will be ignored in the following
calculations for ∆ob j(C,R) and Gen(C,R).

The symbols ar, n+1≤ r ≤m, represent the output reg-
isters. For the decrementable registers, we use the symbols
(ar, i), 1 ≤ r ≤ n,1 ≤ i ≤ n, which go through a loop of n
steps. The main idea now is that the only case when such a
symbol can be used to decrement register r is when i = r,
i.e., in the r-th step of the simulation cycle.

(ar, i)→ (ar, i+1),1 ≤ r < n;(ar,n)→ (ar,1). (9)

In the same way as the register symbols ar, the program
symbols (p, i) representing the label p from B undergo the
same cycle of length n.

For simulating ADD-instructions we need the following
rules:

Increment p : (ADD(r),q,s):

c(p, i)→ c(p, i+1)d, 1 ≤ i < n. (10)

The catalyst has to be used with the program sym-
bol which otherwise would stay idle when the catalyst is
used with a register symbol, and the difference of objects
∆ob j(C,R′) for this other non-extendable multiset of rules
R′ would be 0 whereas when using the program symbol
for the catalyst, we obtain ∆ob j(C,R)= 1 because of the
additional dummy symbol d.

In a similar way we can argue that in the case of the
derivation mode maxGENob jectsmax the number of gener-
ated objects is maximal when using the catalyst together
with the program symbol; in fact, if N is the total num-
ber of register symbols for decrementable registers in the
underlying configuration C, then with applying the set of
rules R described so far we get Gen(C,R)= N + 3 in con-
trast to Gen(C,R′)= N − 1+ 3 = N + 2 where using the
catalyst with the rule c(ar,r) → ced, as described below
for the simulation of the SUB-Instruction, results in the
multiset of rules R′.

If r is a decrementable register, we end the simulation
using one of the following rules:

c(p,n)→ c(q,1)(ar,1),c(p,n)→ c(s,1)(ar,1). (11)

If r is an output register, we end the simulation using
one of the following rules introducing output symbols not
to be changed any more:

c(p,n)→ c(q,1)ar,c(p,n)→ c(s,1)ar. (12)

As in both cases, together with the program sym-
bol a new register symbol is generated, we again have
∆ob j(C,R) = 1, thus guaranteeing that the catalyst must
take (p,n) and cannot take (an,n) instead.

A similar argument again holds in the case of the deriva-
tion mode maxGENob jectsmax as the number of generated
objects is only maximal when using the catalyst together
with the program symbol; again we have Gen(C,R)= N +
3 with this multiset of rules R in contrast to Gen(C,R′)=
N − 1+ 3 = N + 2 when using the catalyst with the rule
c(ar,r)→ ced results in the multiset of rules R′.

For simulating SUB-instructions we need the following
rules:

Decrement and zero-test p : (SUB(r),q,s):

c(p, i)→ c(p, i+1)d, 1 ≤ i < r. (13)

For 1 ≤ i < r, we again use the dummy symbol d to
obtain ∆C = 1 and thus also having one more object gen-
erated, to enforce the catalyst to take the program symbol.

(p,r)→ (p,r+1), c(ar,r)→ ced. (14)

In case that register r is empty, i.e., there is no object
(ar,r), then the catalyst will stay idle as in this step there is
no other object with which it could react. In case that reg-
ister r is not empty, i.e., there is at least one object (ar,r),
then one of these objects (ar,r) must be used with the cat-
alyst c as the rule c(ar,r) → ced implies ∆ob j(C,R)= 1,
whereas otherwise, if all register symbols are used with
the rule (ar,r)→ (ar,r+1), then ∆ob j(C,R)= 0.

In the same way we argue that with using the rule
c(ar,r) → ced we get one object generated more than
if we use the rule (ar,r) → (ar,r + 1) for that symbol
(ar,r), i.e., Gen(C,R)= N − 1+ 3 = N + 2 in contrast to
Gen(C,R′)= N.

If r < n−1:

ce → cdddd, (p,r+1)→ (p,r+2)−,

c(p,r+1)→ c(p,r+2)0dd.
(15)

If in the first step of the simulation phase the catalyst did
manage to decrement the register, it produced e. Thus, in
the second simulation step, the catalyst has three choices:

1. the catalyst c correctly “erases" e using the rule
ce → cdddd, and to the program symbol (p,r + 1)
the rule (p,r+1)→ (p,r+2)− must be applied due
to the fact that both derivation modes max∆ob jectsmax
and maxGENob jectsmax only allow for non-extendable
multisets of rules; all register symbols evolve in
the usual way; in total we get ∆ob j(C,R)= 3 and
Gen(C,R)= N +6;

2. the catalyst c takes the program symbol (p,r+1) us-
ing the rule c(p,r+1)→ c(p,r+2)0dd, and all reg-
ister symbols evolve in the usual way; in total we get
∆ob j(C,R)= 2 and Gen(C,R)= N +4;

3. the catalyst c takes a register object, the program
symbol (p,r + 1) evolves with the rule (p,r + 1) →
(p,r + 2)−, and all other register objects evolve in
the usual way; in total we get ∆ob j(C,R)= 1 and
Gen(C,R)= (N −1+3)+1 = N +3.

In total, only variant 1 fulfills the condition given by the
derivation mode max∆ob jectsmax that ∆ob j(C,R) is maxi-
mal, and therefore is the only possible continuation of the
computation if register r is not empty.

A similar argument holds for the derivation mode
maxGenob jectsmax with respect to the number of generated
objects ∆ob j(C,R).

On the other hand, if register r is empty, no object e is
generated, and the catalyst c has only two choices:

1. the catalyst c takes the program symbol (p,r+1) us-
ing the rule c(p,r+1)→ c(p,r+2)0dd, and all reg-
ister symbols evolve in the usual way; in total we get
∆ob j(C,R)= 2 and Gen(C,R)= N +4;

2. the catalyst c takes a register object (ar+1,r + 1)
thereby generating ed, the program symbol (p,r+1)
evolves with the rule (p,r + 1) → (p,r + 2)−, and
all other register objects evolve in the usual way;
this variant leads to ∆ob j(C,R)= 1 and Gen(C,R)=
(N −1+3)+1 = N +3.

In total, variant 1 is the only possible continuation of the
computation if register r is empty.

c(p, i)− → c(p, i+1)−d, r+2 ≤ i < n,
c(p,n)− → c(q,1)d,

c(p, i)0 → c(p, i+1)0d, r+2 ≤ i < n,
c(p,n)0 → c(s,1)d.

(16)

Again the catalyst has to be used with the program sym-
bol to get ∆ob j(C,R)= 1 and Gen(C,R)= N + 3, which
otherwise would stay idle when the catalyst is used with a
register symbol, and the multiset of rules applied in this
way would only yield ∆ob j(C,R)= 0 and Gen(C,R′)=
N −1+3 = N +2.

If r = n−1:

ce → cdddd, (p,n)→ (q,1),

c(p,n)→ c(s,1)dd.
(17)

In this case, we directly go to the first step of the next
cycle.

If r = n:

ce → cdddd, (p,n+1)→ (q,2),

c(p,n+1)→ c(s,2)dd.
(18)

In this case, the second step of the simulation is already
the first step of the next cycle, which means that in this
case of r = n the next instruction to be simulated is an
ADD-instruction on register 1.

To complete the proof we have to implement the final
HALT -instruction lh : HALT with the rule c(lh,1)→ cdd.
In this way, finally no program symbol is present any
more in the configuration. As we have assumed all decre-
mentable registers to be empty when the register machine
halts, this means the constructed simple P system will also
halt after having erased the dummy symbols d in the next
step.

We finally observe that the proof construction given
above is even deterministic if the underlying register ma-
chine to be simulated is deterministic.

In a similar way, the same result can even be shown for
the derivation modes max∆ob jects and maxGENob jects, where
the condition of non-extendability for the multisets of rules
to be applied is not required.

Theorem 9. For any register machine with at least two
decrementable registers we can construct a simple cat-
alytic P system with only one catalyst, working in the
derivation mode max∆ob jects or in the derivation mode
maxGENob jects, which can simulate every step of the reg-
ister machine in n steps where n is the number of decre-
mentable registers.

As the number of decrementable registers in generating
register machines needed for generating any recursively
enumerable set of (vectors of) natural numbers is only two,
from the theorems above we obtain the following result:

Corollary 2. For any generating register machine with
two decrementable registers we can construct a simple P
system with only one catalyst and working in the deriva-
tion mode max∆ob jectsmax, maxGENob jectsmax, max∆ob jects,
or maxGENob jects which can simulate every step of the
register machine in 2 steps, and therefore such catalytic
P systems with only one catalyst and working in the in
the derivation mode max∆ob jectsmax, maxGENob jectsmax,
max∆ob jects, or maxGENob jectsmax can generate any recur-
sively enumerable set of (vectors of) natural numbers.

The even more important achievement than the rather
expected computational completeness established with
(the proof of) Theorem 8 and Theorem 9 is the
fact that with the derivation modes max∆ob jectsmax,
maxGENob jectsmax, max∆ob jects, and maxGENob jects only
one catalyst is needed to obtain computational complete-
ness, which is the optimal result with respect to the num-
ber of catalysts, because with non-cooperative rules, only
semilinear sets can be generated. Moreover, the simula-
tion of a deterministic register machine is deterministic in
the P system, too.

5 Purely Catalytic P Systems

The technique used for catalytic P systems in the proof
of Theorem 8 cannot be taken over to purely catalytic
P systems, where the number of rules to be used in ev-
ery step is bounded by the number of catalysts. Hence,
a similar technique as already known from the proof of
the classic result given in Theorem 4 is used for prov-
ing Theorem 10, yet still the result to be obtained with
the derivation modes max∆ob jectsmax, maxGENob jectsmax,
max∆ob jects, and maxGENob jects is better than that one
known for the derivation mode max, because one catalyst
less is needed.

Theorem 10. For any register machine with n ≥ 2 decre-
mentable registers we can construct a simple purely cat-
alytic P system with only n catalysts, working in one of
the derivation modes max∆ob jectsmax, maxGENob jectsmax,
max∆ob jects, or maxGENob jects, which can simulate any
computation of the register machine.

Proof. Given an arbitrary register machine
M = (m,B, l0, lh,P) with n decrementable registers
we will construct a corresponding simple purely catalytic
P system with n catalysts

Π = (V,{ck | 1 ≤ k ≤ n},T,w,R)

simulating M. Without loss of generality, we may assume
that, depending on its use as an accepting or generating
or computing device, the register machine M, as stated
in Proposition 1, Proposition 2, and Proposition 3, ful-
fills the condition that on the output registers we never
apply any SUB-instruction. Moreover, according to Re-
mark 1 we may assume that the first instruction is an ADD-
instruction on the first register. Finally, we assume the n
decrementable registers to be the first ones.

The following proof again is elaborated for all
the derivation modes max∆ob jectsmax, maxGENob jectsmax,
max∆ob jects, and maxGENob jects, with only a few subtle
technical details to be mentioned additionally.

The main part of the proof is to show how to simu-
late the instructions of M in Π; in all cases we have to
take care that the n catalysts are kept busy – using corre-
sponding dummy objects dr – in order to guarantee that
the simulation is executed in a correct way; especially we
have to guarantee that one of the rules using the catalysts
ck,1 ≤ k ≤ n, must be used if possible, i.e., a catalyst can
only stay idle if the underlying configuration does not con-
tain any object which can evolve together with the catalyst.
Again the priority between different rules for a catalyst is
guarded by the number of objects on the right-hand side
of the rules, which argument applies for all the derivation
modes under consideration, as every rule in a purely cat-
alytic P system has exactly two objects on its left-hand
side.

During the simulation of all instructions, we use the fol-
lowing multisets:

D′
n,r = ∏i∈[1..n]\{r,r⊕n1} di, 1 ≤ r ≤ n.

As the first instruction to be simulated is an ADD-
instruction on the first register, we start with the initial
multiset

w = l0l′0D′
n,1 ∏

i∈[1..n]
ci.

As usual, the number of objects ar in a configuration
represents the number stored in register r at that moment
of the computation. Objects ar for r > n are never changed
again, as they represent output registers.

V = {ar | 1 ≤ r ≤ m}∪{âr | 1 ≤ r ≤ n}
∪ {p, p′ | p ∈ BADD ∪{lh}}
∪ {p, p′, p̄, p̂ | p ∈ BSUB(r),1 ≤ r ≤ n}
∪ {ck,dk | 1 ≤ k ≤ n}∪{d},

T = {ar | n+1 ≤ r ≤ m}.

The dummy objects di, 1 ≤ i ≤ n, are used to keep the
corresponding catalyst ci busy whenever it is not needed
during the simulation of a SUB-instruction, which is ac-
complished by the following rule erasing di, but instead
introducing the necessary amount of objects d to keep the
catalyst ci away from erasing a register object ar:

cidi → cid4, 1 ≤ k ≤ n.

Moreover, for erasing d we use the rules

ckd → ck, 1 ≤ k ≤ n.

In the derivation mode max∆ob jects these erasing rules can
only be used at the end of a computation when no other
rules can be applied any more.

The remaining rules in the set R of catalytic rules can
be captured from the description of how the simulation of
the register machine instructions works as described in the
following:

• p : (ADD(r) ,q,s), with p∈BADD, q,s∈B, 1≤ r ≤m.

An ADD-instruction can be simulated in one step by
letting every catalyst make one evolution step:

cReg(p)p → cReg(p)qq′ardD′
n,Reg(q) or

cReg(p)p → cReg(p)ss′ardD′
n,Reg(s),

cReg(p)⊕n1 p′ → c2d4.

We recall that all other catalysts ci with i ∈ [1..n] \
{Reg(p),Reg(p)⊕n 1} are forced to apply the rule
cidi → cid4. The dummy objects d are used to guar-
antee that the rules given above, with in sum at least
5 objects on their right-hand sides, have priority over
the rules crar → crârd2, 1 ≤ r ≤ n, with in sum only
4 objects on their right-hand sides.

• p : (SUB(r) ,q,s), with p ∈ BSUB, q,s ∈ B, 1 ≤ r ≤ n.

decrement case

If the value of register r (denoted by |reg(r)|) is not
zero then the number of register objects ar is de-
creased by one using the corresponding rule crar →
crârd2 in the first step of the simulation. In sum three
steps are needed for the simulation, see table below.

zero-test case.

If the value of register r is zero, then the correspond-
ing catalyst is already free for eliminating the label
object p so that already in the second step of the sim-
ulation the simulation of the next instruction s can be
initiated. In sum only two steps are needed for the
simulation of this case, see table below.

The following table summarizes the rules to be used
for the simulation of the SUB-instruction on regis-
ter r, 1 ≤ r ≤ n, i.e., we use the following rules; we
emphasize that again the simulation is deterministic.

step |reg(r)| rule for cr and cr⊕n1
1 > 0 crar → crârd2

cr⊕n1 p′ → cr⊕n1 p̄d10D′
n,Reg(p)

= 0 cr p → crd2

cr⊕n1 p′ → cr⊕n1 p̄d10D′
n,Reg(p)

2 > 0 cr p̄ → cr p̂d3

cr⊕n1 p → cr⊕n1d9D′
n,Reg(p)

= 0 crd → cr (
∗)

cr⊕n1 p̄ → cr⊕n1ss′d6D′
n,Reg(s)

3 > 0 cr p̂ → c1qq′d2D′
n,Reg(q)

cr⊕n1âr → cr⊕n1d4

The the rule crd → cr marked with (∗) is only ap-
plied in the derivation modes max∆ob jectsmax and
maxGENob jectsmax as well as maxGENob jects, whereas
in the derivation mode max∆ob jects it will not be ap-
plied as it would decrease the difference between
generated and consumed objects.

• lh : HALT .

Taking into account that we have defined Reg(lh) = 1,
we take:

c1lh → c1dd

c2l′h → c2dd

After the register machine has halted (with the first n
registers being empty), which is simulated by the rules

above, finally all dummy objects generated during the sim-
ulation steps before are deleted by using the rules

cid → ci, 1 ≤ i ≤ n.

Whereas in the derivation modes max∆ob jectsmax and
maxGENob jectsmax as well as maxGENob jects some of these
objects d can already be erased during the simulation
of SUB-instructions, see above, in the derivation mode
max∆ob jects, these erasing rules are only executed at the
end of the computation. These observations complete the
proof.

As a consequence, we obtain the following result:

Corollary 3. Purely catalytic P systems working in any of
the derivation modes max∆ob jectsmax, maxGENob jectsmax,
max∆ob jects, or maxGENob jects are computationally com-
plete, i.e., they can compute any partial recursive relation
on natural numbers.

Yet besides this computational completeness result,
the even more relevant achievement of the result estab-
lished with Theorem 10 is the fact that, when we com-
pare with the results given in (the proof of) Theorem 5,
with all these new derivation modes, i.e., max∆ob jectsmax,
maxGENob jectsmax, max∆ob jects, and maxGENob jects, only
one catalyst for each decrementable register is needed,
which is an improvement of needing one catalyst less than
with the derivation mode max, and moreover the simula-
tion is deterministic, hence, no trapping is needed.

6 Conclusion

In this overview paper I have collected several classic as
well as many new results established just recently for sim-
ple P systems working in variants of the maximally paral-
lel derivation mode allowing for computational complete-
ness. In case of the parallel derivation modes (i) affect-
ing or (ii) generating the maximal number of objects or
(iii) yielding the maximal difference between the objects
in the current and the derived configuration, in simple
catalytic P systems only one catalyst is needed to obtain
computational completeness, which is the optimal result
with respect to the number of catalysts, because with non-
cooperative rules only semi-linear sets can be obtained. In
case of simple purely catalytic P systems at least one cata-
lyst less is needed than in the classic proofs showing com-
putational completeness.

Acknowledgements

I am very grateful to Gheorghe Păun for involving me
from the beginning in this new area of membrane sys-
tems. Moreover, many results as presented above have
been developed together with my other co-authors, espe-
cially with my colleague Marion Oswald at the TU Wien
and the “Moldovan team” Artiom Alhazov, Sergiu Ivanov,
and Sergey Verlan.

References

[1] Alhazov, A., Aman, B., Freund, R.: P systems with anti-
matter. In: Gheorghe, M., Rozenberg, G., Salomaa, A.,
Sosík, P., Zandron, C. (eds.) Membrane Computing – 15th
International Conference, CMC 2014, Prague, Czech Re-
public, August 20–22, 2014, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 8961, pp. 66–85.
Springer (2014). https://doi.org/10.1007/978-3-319-14370-
5_5

[2] Alhazov, A., Aman, B., Freund, R., Păun, Gh.: Mat-
ter and anti-matter in membrane systems. In: Jürgensen,
H., Karhumäki, J., Okhotin, A. (eds.) Descriptional Com-
plexity of Formal Systems – 16th International Work-
shop, DCFS 2014, Turku, Finland, August 5–8, 2014. Pro-
ceedings. Lecture Notes in Computer Science, vol. 8614,
pp. 65–76. Springer (2014). https://doi.org/10.1007/978-3-
319-09704-6_7

[3] Alhazov, A., Freund, R.: P systems with toxic objects. In:
Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zan-
dron, C. (eds.) Membrane Computing – 15th International
Conference, CMC 2014, Prague, Czech Republic, August
20–22, 2014, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 8961, pp. 99–125. Springer (2014).
https://doi.org/10.1007/978-3-319-14370-5_7

[4] Alhazov, A., Freund, R.: Small catalytic P systems. In:
Dinneen, M. (ed.) Proceedings of the Workshop on Mem-
brane Computing 2015 (WMC2015), (Satellite Workshop
of UCNC2015), August 2015, CDMTCS Research Report
Series, vol. 487, pp. 1–16. Centre for Discrete Mathematics
and Theoretical Computer Science, Department of Com-
puter Science, University of Auckland, Auckland, New
Zealand (2015)

[5] Alhazov, A., Freund, R.: Variants of small universal P sys-
tems with catalysts. Fundam. Informaticae 138(1–2), 227–
250 (2015). https://doi.org/10.3233/FI-2015-1209

[6] Alhazov, A., Freund, R., Ivanov, S.: Variants of energy-
controlled P systems. In: Proceedings of NIT 2016 (2016)

[7] Alhazov, A., Freund, R., Ivanov, S.: Variants of P sys-
tems with activation and blocking of rules. Nat. Comput.
18(3), 593–608 (2019). https://doi.org/10.1007/s11047-
019-09747-5

[8] Alhazov, A., Freund, R., Ivanov, S.: Catalytic P systems
with weak priority of catalytic rules. In: Freund, R. (ed.)
Proceedings ICMC 2020, September 14–18, 2020, pp. 67–
82. TU Wien (2020)

[9] Alhazov, A., Freund, R., Ivanov, S.: P systems with lim-
iting the number of objects in membranes. In: Freund, R.
(ed.) Proceedings ICMC 2020, September 14–18, 2020, pp.
83–98. TU Wien (2020)

[10] Alhazov, A., Freund, R., Ivanov, S.: P systems with limited
number of objects. Journal of Membrane Computing 3, 1–
9 (2021). https://doi.org/10.1007/s41965-020-00068-6

[11] Alhazov, A., Freund, R., Ivanov, S.: Variants of simple P
systems with one catalyst being computationally complete.
In: Vaszil, Gy. (ed.) Proceedings ICMC 2021 (2021)

[12] Alhazov, A., Freund, R., Ivanov, S.: When cat-
alytic P systems with one catalyst can be computation-
ally complete. Journal of Membrane Computing (2021).
https://doi.org/10.1007/s41965-021-00079-x

[13] Alhazov, A., Freund, R., Ivanov, S., Oswald, M.: Variants
of simple purely catalytic P systems with two catalysts. In:
Vaszil, Gy. (ed.) Proceedings ICMC 2021 (2021)

[14] Alhazov, A., Freund, R., Ivanov, S., Verlan, S.: (Tis-
sue) P systems with vesicles of multisets. In: Csuhaj-
Varjú, E., Dömösi, P., Vaszil, Gy. (eds.) Proceedings
15th International Conference on Automata and For-
mal Languages, AFL 2017, Debrecen, Hungary, Septem-
ber 4-6, 2017. EPTCS, vol. 252, pp. 11–25 (2017).
https://doi.org/10.4204/EPTCS.252.6

[15] Alhazov, A., Freund, R., Leporati, A., Oswald, M., Zan-
dron, C.: (Tissue) P systems with unit rules and energy
assigned to membranes. Fundam. Informaticae 74(4), 391–
408 (2006)

[16] Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Par-
tial halting and minimal parallelism based on arbitrary
rule partitions. Fundam. Inform. 91(1), 17–34 (2009).
https://doi.org/10.3233/FI-2009-0031

[17] Alhazov, A., Freund, R., Sosík, P.: Small P systems with
catalysts or anti-matter simulating generalized register ma-
chines and generalized counter automata. Comput. Sci. J.
Moldova 23(3), 304–328 (2015)

[18] Alhazov, A., Freund, R., Verlan, S.: P systems working in
maximal variants of the set derivation mode. In: Leporati,
A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Mem-
brane Computing – 17th International Conference, CMC
2016, Milan, Italy, July 25-29, 2016, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 10105,
pp. 83–102. Springer (2017). https://doi.org/10.1007/978-
3-319-54072-6_6

[19] Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Lan-
guage Theory. Springer (1989)

[20] Freund, R.: Energy–controlled P systems. In: Păun, Gh.,
Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane
Computing, pp. 247–260. Springer (2003)

[21] Freund, R.: Purely catalytic P systems: Two catalysts can
be sufficient for computational completeness. In: Alha-
zov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Yu. (eds.)
CMC14 Proceedings – The 14th International Conference
on Membrane Computing, Chis, inău, August 20–23, 2013,
pp. 153–166. Institute of Mathematics and Computer Sci-
ence, Academy of Sciences of Moldova (2013)

[22] Freund, R.: P automata: New ideas and results. In: Bor-
dihn, H., Freund, R., Nagy, B., Vaszil, Gy. (eds.) Eighth
Workshop on Non-Classical Models of Automata and Ap-
plications, NCMA 2016, Debrecen, Hungary, August 29–
30, 2016. Proceedings. books@ocg.at, vol. 321, pp. 13–40.
Österreichische Computer Gesellschaft (2016)

[23] Freund, R.: How derivation modes and halting condi-
tions may influence the computational power of P sys-
tems. Journal of Membrane Computing 2(1), 14–25 (2020).
https://doi.org/10.1007/s41965-019-00028-9

[24] Freund, R., Kari, L., Oswald, M., Sosík, P.: Computation-
ally universal P systems without priorities: two catalysts
are sufficient. Theoretical Computer Science 330(2), 251–
266 (2005). https://doi.org/10.1016/j.tcs.2004.06.029

[25] Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Ver-
lan, S., Zandron, C.: Flattening in (tissue) P systems. In:
Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Yu.,

Rozenberg, G., Salomaa, A. (eds.) Membrane Comput-
ing, Lecture Notes in Computer Science, vol. 8340, pp.
173–188. Springer (2014). https://doi.org/10.1007/978-3-
642-54239-8_13

[26] Freund, R., Oswald, M.: Partial halting in P systems.
Int. J. Found. Comput. Sci. 18(6), 1215–1225 (2007).
https://doi.org/10.1142/S0129054107005261

[27] Freund, R., Oswald, M.: Catalytic and purely catalytic
P automata: control mechanisms for obtaining compu-
tational completeness. In: Bensch, S., Drewes, F., Fre-
und, R., Otto, F. (eds.) Fifth Workshop on Non-Classical
Models for Automata and Applications – NCMA 2013,
Umeå, Sweden, August 13 – August 14, 2013, Proceed-
ings. books@ocg.at, vol. 294, pp. 133–150. Österreichis-
che Computer Gesellschaft (2013)

[28] Freund, R., Oswald, M., Păun, Gh.: Catalytic and purely
catalytic P systems and P automata: Control mechanisms
for obtaining computational completeness. Fundam. In-
form. 136(1–2), 59–84 (2015). https://doi.org/10.3233/FI-
2015-1144

[29] Freund, R., Păun, Gh.: How to obtain computational
completeness in P systems with one catalyst. In: Neary,
T., Cook, M. (eds.) Proceedings Machines, Computations
and Universality 2013, MCU 2013, Zürich, Switzerland,
September 9–11, 2013. EPTCS, vol. 128, pp. 47–61 (2013).
https://doi.org/10.4204/EPTCS.128.13

[30] Freund, R., Păun, Gh., Pérez-Jiménez, M.J.: Polarization-
less P systems with active membranes working in the min-
imally parallel mode. In: Akl, S.G., Calude, C.S., Din-
neen, M.J., Rozenberg, G., Wareham, T. (eds.) Uncon-
ventional Computation, 6th International Conference, UC
2007, Kingston, Canada, August 13-17, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4618, pp. 62–76.
Springer (2007). https://doi.org/10.1007/978-3-540-73554-
0_8

[31] Freund, R., Rogozhin, Yu., Verlan, S.: P systems with
minimal left and right insertion and deletion. In: Durand-
Lose, J., Jonoska, N. (eds.) Unconventional Computation
and Natural Computation – 11th International Conference,
UCNC 2012, Orléan, France, September 3–7, 2012. Pro-
ceedings. Lecture Notes in Computer Science, vol. 7445,
pp. 82–93. Springer (2012). https://doi.org/10.1007/978-3-
642-32894-7_9

[32] Freund, R., Sosík, P.: On the power of catalytic P systems
with one catalyst. In: Rozenberg, G., Salomaa, A., Sem-
pere, J.M., Zandron, C. (eds.) Membrane Computing – 16th
International Conference, CMC 2015, Valencia, Spain, Au-
gust 17–21, 2015, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 9504, pp. 137–152. Springer
(2015). https://doi.org/10.1007/978-3-319-28475-0_10

[33] Freund, R., Verlan, S.: A formal framework for static (tis-
sue) P systems. In: Eleftherakis, G., Kefalas, P., Păun,
Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane Com-
puting, Lecture Notes in Computer Science, vol. 4860, pp.
271–284. Springer (2007). https://doi.org/10.1007/978-3-
540-77312-2_17

[34] Freund, R., Verlan, S.: (Tissue) P systems work-
ing in the k-restricted minimally or maximally parallel
transition mode. Nat. Comput. 10(2), 821–833 (2011).
https://doi.org/10.1007/s11047-010-9215-z

[35] Krithivasan, K., Păun, Gh., Ramanujan, A.: On controlled
P systems. Fundam. Inform. 131(3–4), 451–464 (2014).
https://doi.org/10.3233/FI-2014-1025

[36] Minsky, M.L.: Computation. Finite and Infinite Machines.
Prentice Hall, Englewood Cliffs, NJ (1967)

[37] Păun, Gh.: Computing with membranes. Journal of
Computer and System Sciences 61(1), 108–143 (2000).
https://doi.org/10.1006/jcss.1999.1693

[38] Păun, Gh.: Membrane Computing: An Introduction.
Springer (2002). https://doi.org/10.1007/978-3-642-56196-
2

[39] Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Ox-
ford Handbook of Membrane Computing. Oxford Univer-
sity Press (2010)

[40] Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal
Languages. Springer (1997). https://doi.org/10.1007/978-
3-642-59136-5

[41] Sosík, P., Langer, M.: Small (purely) catalytic
P systems simulating register machines. Theo-
retical Computer Science 623, 65–74 (2016).
https://doi.org/10.1016/j.tcs.2015.09.020

[42] The P Systems Website. http://ppage.psystems.eu/

http://ppage.psystems.eu/

	Introduction
	Definitions
	Register Machines
	Simple P Systems
	Variants of Derivation Modes

	Some Classic Results
	Catalytic P Systems with One Catalyst
	Purely Catalytic P Systems
	Conclusion

