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Abstract: Informative representations play an important
role in learning and intelligent functions of artificial and
biological systems. Sparsity constraint in neural network
models has been known to be effective in producing in-
formative representations of sensory data. In this work,
the structure in low-dimensional representations created
by a class of generative neural network models of unsu-
pervised learning was analyzed to establish the relation be-
tween the sparsity constraint imposed in the representation
layer and the effectiveness of unsupervised concept learn-
ing. It was demonstrated that sparsity constraint allows
to achieve two essential objectives in successful realistic
learning: increasing the effective conceptual capacity of
latent representations, while simultaneously limiting the
range of latent activations. Sparsity emerges as a simple
and effective mechanism of producing functional concep-
tual representations of complex sensory data in both artifi-
cial and biological systems. The results provide empirical
support for the connection between unsupervised genera-
tive learning and conceptual latent representations corre-
lated with characteristic patterns in the sensory inputs and
clarify the role of the sparsity constraint in improving the
quality and conceptual capacity in generative representa-
tion learning.

1 Introduction

Unsupervised representations obtained with models of
generative self-learning were studied for considerable time
with the intent to identify and separate informative com-
ponents and patterns in the data to improve performance
of learning models. Hierarchical representations obtained
with Restricted Botzmann Machines (RBM), Deep Belief
Networks (DBN) [1, 2], and different types of autoencoder
models [3, 4] were proven to be effective in improving
learning performance in supervised classification [5].
In experimental studies in unsupervised concept learn-
ing with artificial intelligent systems interesting results of
spontaneous high-level concept sensitivity emerging in the
process of unsupervised learning were reported. An in-
triguing effect of spontaneous formation of concept sen-
sitive neurons activated by images in certain higher-level
category was observed [6] with a massive deep sparse au-
toencoder neural network model trained in entirely unsu-
pervised process with a massive set of real-world images.
Representations of deep variational autoencoder models
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were studied in [7], demonstrating effective disentangled
representations with data of several different types in en-
tirely unsupervised learning under the constraints of re-
dundancy reduction. Higher-level concept-related struc-
tures were observed in the representations of generative
neural network models with strong redundancy reduction
with data representing backbone Internet traffic and terrain
surveillance images [8].
These and a number of other results [9, 10] demonstrated
that latent representations created by models of unsuper-
vised generative learning a result of training under the
constraints of minimization of generative error and strong
redundancy reduction may acquire non-trivial structure
associated and correlated with characteristic patterns, or
concepts in the training dataset, assumed to be a represen-
tative set of observable sensory inputs.
In a number of results, sparsity constraint [6, 11] intro-
duced based on observations in biological neural networks
was suggested to be effective in improving the effective-
ness of learning. Essentially, sparsity constraint means
limiting the number of active neurons participating in pro-
cessing inputs, with more details on specific implemen-
tation in the studied models provided in the sections that
follow. While sparse models became in many cases part of
standard architecture of neural network models and grow-
ing number of studies supported and highlighted effec-
tiveness of sparse models in producing informative rep-
resentations of visual data, general principles that explain
the effectiveness of sparsity remained less clear. What is
the underlying cause of effectiveness of sparsity in pro-
cessing sensory data? Is it effective in combination with
specific architectural choices such as convolutional neural
networks widely used with visual data, or has more gen-
eral nature and can be applied and observed with broader
range of models and data?
The importance of these questions is highlighted by very
recent results in experimental neuroscience indicating es-
sential and ubiquitous role of low-dimensional sparse rep-
resentations in interpretation of sensory data by animals
and humans [12, 13]. Together with the results in learn-
ing of machine systems, they point at a general causes for
effectiveness of sparse representations in generative learn-
ing, regardless of the nature of the learning system. To
address these questions, in this work we follow the direc-
tion of research outlined in [14] with the objective to in-
vestigate the effect of the sparsity constraint by comparing
characteristics and topological structure of latent represen-
tations of images of basic geometric shapes obtained with



neural network models of unsupervised generative learn-
ing. Comparing characteristics of latent distributions of
similar sets of image data obtained with models with and
without sparsity constraint in the encoding layer allowed
to make essential observations on how sparsity affects the
structure of latent representations and effectiveness of un-
supervised generative learning and to advance in under-
standing the causes of effectiveness of sparsity as a mech-
anism of production of informative low-dimensional rep-
resentations of sensory inputs.
The paper is organized as follows: in Section 2 the model
and data used in the study are described. Section 3 con-
tains the results of experiments with generative models
with sparsity constraint (sparse representation layer) and
those without it (flat representation layer) are presented.
Section 4 contains a brief discussion of results and the con-
nections to the current state of the research in the field.

2 Methods

The models used to produce unsupervised latent repre-
sentations of images modeling visual sensory inputs had
the architecture of a convolutional autoencoder [15] with
strong dimensionality reduction in the encoding layer pro-
ducing latent representation with the coordinates of the ac-
tivations of encoding neurons. The data was represented
by a dataset of images of basic geometric shapes, greyscale
and color, as described in this section.

2.1 Convolutional Autoencoder Model

The models were of a common type of a convolutional
autoencoder, with the addition of a deep dimensionality
reduction stage producing latent representation as shown
in Figure 1. The dimension of the latent layer was vari-
able and different in two studied classes of models. The
first class (denoted ”F”) had a flat latent layer with the di-
mension of 3 to 10 chosen based on discussed results in
sensory processing in biological systems. These models
did not have sparsity constraint on activations in the latent
layer. The second class of models, ”S” had the latent di-
mension of up to 10, with sparsity constraint imposed in
the latent layer as L1 regularization [16] limiting the norm
of activations of the encoding neurons producing sparse
latent representation. The models were implemented with
Keras/Tensorflow [17], for measurement and visualization
of distributions common machine learning libraries and
packages were used.
The compression of information achieved in the repre-
sentation layer of the model was approximately 1,300 for
greyscale and 4,000 for color images of size (64,64). An
advantage of the chosen architecture is that it allowed to
measure and visualize the distributions of data in the latent
representation directly by visualizing activations of neu-
rons in the encoding layer of the model.

Figure 1: Convolutional autoencoder model with strong
dimensionality reduction

2.2 Data

Two datasets of images of basic geometric shapes of the
size 64 × 64 pixels, greyscale and color were used. The
first dataset, Shapes-G contained the total of 600 – 1,000
greyscale images of circles, triangles and backgrounds
with variation in size in the range 0.3 – 1.0 of the image
size (that is, 0.3 × 64 pixels), with variation of contrast of
fore- vs. background for each size.
The second dataset (Shapes-C) was a color version of
Shapes-G with the total of 1,200 images of the following
combinations: red and blue circles of varying size with
grey background of varying contrast; red and blue trian-
gles with varying size and background; red and blue hor-
izontal bands (wide red bands, narrow blue bands), with
varying background; and empty grey backgrounds with
varying contrast.
The composition of the dataset allowed to experiment with
data of different complexity: while the conceptual content
of the first dataset (Shapes-G, including grey backgrounds)
was three concepts, for the Shapes-C data it was 7 (with
wide and narrow bands of different color considered as
different concepts).

2.3 Training

The models were trained in an unsupervised autoencoder
mode to achieve good reproduction of inputs measured by
the cost function, such as Mean Squared Error (MSE) and
binary cross-entropy (BCE). Several criteria of effective-
ness of unsupervised training were used, such as mon-
itoring the cost function and cross-categorical accuracy
that both shown significant improvement in unsupervised
training with minimization of the generative error. Ad-
ditionally, generative performance of trained models was
measured by comparing a subset of input images to their
reproduction by trained models as illustrated in Figure 2.

Figure 2: Evaluation of generative quality (top row: input;
bottom: interpretation)



2.4 Unsupervised Latent Representations

A trained model performs the encoding transformation
from the observable data space X ∈ O to the latent repre-
sentation y ∈ R obtained with the activations of the latent
layer of the encoder model E : O→ R, and the genera-
tive transformation from the latent representation to the
observable space G : R→ O as:

y = E(X); X ′(y) = G(y) (1)

where X ′ is the generated image or interpretation of input
X by the model. The distance between the original input
X and its interpretation X ′ then indicates the ability to in-
terpret inputs in the observable data and training of a gen-
erative model is equivalent to minimization of the norm
||X , X ′ = G(E(X))|| defined by the cost function on the
training set of samples in the observable space.
The structure in the latent representation that emerges as a
result of unsupervised training can be observed and evalu-
ated with a number of methods:

1. By applying unsupervised clustering such as DB-
Scan, MeanShift and variations [18] in the represen-
tation to identify density distribution in general unla-
beled data sample as well as concept samples.

2. By evaluating distributions of general and concept
data samples in the representation space via direct
observation, multi-dimensional histograms and other
methods.

3. By producing observable images of latent positions
with the methods of generative probing and scanning
[14].

2.5 Sparsity Constraint

Sparsity constraint was imposed in the encoding layer of
the model as L1 regularization with the value of 10−5-
10−6. Level one regularization means a constraint on the
sum of absolute values of activations of the neurons in
the encoding layer and in most cases resulted in no more
than two to three neurons being active at any interpretation
task, consistent with the results in visual sensory system in
humans that indicated sparse, low-dimensional activation
pattern in interpretation of visual data [12].

3 Results

To examine the effect of sparsity constraint on unsuper-
vised latent representations, methods of comparative anal-
ysis were applied to representations created by models
of similar neural network architecture with sparsity con-
straint imposed in the representation layer and without it.
This approach allowed to clarify the role and demonstrate
the significance of sparsity constraint for the ability of the
learning model to create effective conceptual representa-
tions of the training data.

3.1 Learning Quality

As described in the previous section, the success of gener-
ative learning was judged by the improvement in the value
of the cost function and by the quality of reproduction of
images, similar to those the models were trained with. The
outcomes of two evaluations were mostly consistent, that
is, models with significant improvement in the cost func-
tion had better interpretation quality and vice versa, those
with better generative quality also had better training met-
rics.
In this experiment, training results of models of differ-
ent architectures, flat and sparse, were compared with the
dataset Shapes-C of higher conceptual complexity. Ten
models of each type were trained independently with the
dataset Shapes-C with evaluation of learning quality fac-
tors, such as:

• Learning success, the fraction of models that were
able to interpret a representative set of images suc-
cessfully

• Generative quality indicated by a factor in the range
[0,1] measured on the test set, average over the mod-
els;

• Average maximum activation recorded on the test set

as shown in Table 1. The number in the type such as ”F3”
indicates the dimensionality of the latent layer whereas
”AL” indicates an activation limit, a constraint on the max-
imum absolute value of the activations in the encoding
layer.

Table 1: Comparative learning metrics, flat and sparse
models

Model Success Quality Activation

Sparse (S5) 0.8 0.71 18.6
Sparse (S8) 0.7 0.64 18.3

Sparse (S10) 0.9 0.88 19.6
Flat (F3) 0.4 0.77 90.8

Flat (F3-AL) 0.2 0.8 26
Flat (F5-AL) 0.6 0.8 26

Flat (F10-AL) 0.8 0.9 26

Approximately 80% of flat models without maximum ac-
tivation constraint (F3) were successful in learning one
color concept (i.e., only the red shapes or blue shapes).
This is consistent with the results of experiments with a
greyscale shapes dataset [14] that indicated that flat mod-
els of the type used in the study were generally successful
in learning the concepts with the greyscale data of concep-
tual complexity 3. Note as well that flat models of higher
dimensionality were successful in learning more complex
data (F5-AL, F10-AL) but it came at the cost of signifi-
cant increase in the number of active synapses in the case



of fully interconnected layers. For example, F10-AL flat
model vs. S10 sparse model would have (10− 3)×Dh
more active synapses in the encoding layer, where Dh, the
size of the next hidden layer (100 - 300 for the studied
models).
These results indicated that sparsity constraint imposed in
the representation layer allowed models to maintain the ef-
fectiveness of learning with more complex data of higher
conceptual content, whereas flat models were either sig-
nificantly less successful in training, or required more re-
sources such as higher activations and / or the number of
active synapses. The causes of this difference will be dis-
cussed in the following sections.
Another important conclusion that can be drawn based on
results in this section and the earlier ones obtained with the
greyscale dataset is that for a given complexity of data and
model architecture there exists a certain limit or threshold
Tf of conceptual content that can be learned successfully
in a given low-dimensional subspace of the representation
space defined by the coordinates of activations of active
neurons. If and when the threshold is exceeded, in a flat
model with realistic activations constraints (F3-AL, Table
1), the learning performance begins to deteriorate. In the
next section, the role of activation constraint will be dis-
cussed in more detail.

3.2 Activation Constraint

For a realistic learning system, biological or artificial op-
erating autonomously in the real world, the range of ac-
tivations up to the maximum values can be essential as
it directly translates into the operational cost of the sys-
tem in both energy and physical resources. Particularly,
very strong activations expressed in a biological system
as an electric voltage may require significant resources to
maintain currents under control. Thus keeping activations
within a limited range and preventing high activation val-
ues can be an essential objective and a constraint for a re-
alistic learning system.
In the experiments with the models in this work it was ob-
served that whereas flat and sparse models were able to
attain similar levels of generative quality with the data of
limited conceptual content (dataset Shapes-G), an essen-
tial difference was found with data of higher conceptual
complexity in the dataset of color images, Shapes-C. Suc-
cessful flat models with good generative quality, without
sparsity constraint in the representation layer were signifi-
cantly more rare (as indicated by the learning success fac-
tor, Table 1) and produced significantly higher activations,
up to an order of magnitude higher than recorded in the
sparse models.
A straightforward explanation of this finding can be given
based on the earlier results [14] that demonstrated topolog-
ical structure of latent representations of greyscale image
data as broad polygonal regions, or ”columns” associated
with characteristic types of images in the training data.
If such a structure were to be extended to the data with

higher conceptual content, the number of concept regions
would need to increase correspondingly and packing of the
concept regions in the latent space would require larger
volumes, translating, in the latent coordinates, to greater
ranges of variation of activations of encoding neurons.
To verify this hypothesis, a constraint on the maximum ab-
solute value was imposed in flat models preventing activa-
tions from exceeding set maximum value by absolute mag-
nitude. The maximum was chosen similar to, and slightly
greater than the average maximum activations observed in
sparse models. The observed result was that flat models
were significantly less successful in generative learning
(model F3-AL, Table 1), indicated by their ability to in-
terpret images from the dataset.
From these results and the results of section 2.2 it follows
that increasing conceptual complexity of the data from 3 to
7 resulted in a strong deterioration of the learning ability
of the flat models pointing at the value of the conceptual
threshold for low-dimensional flat models, 3 ≤ Tf < 7. It
also showed that sparsity offered a simple and effective so-
lution to the high activations problem, allowing to ”pack”
higher conceptual content within the allowed range of ac-
tivations.

3.3 Generative Structure of Latent Representations

Methods of topological analysis of latent representations
such as latent probing and scanning developed in [14] al-
low to explicitly describe and visualize the structure of la-
tent representations that emerges as a result of the unsuper-
vised training process under the constraints of generative
learning. It was hypothesized [19] that low-dimensional
conceptual representations of sparse models are comprised
of subspaces or ”slices” in the representation space w =
(i, j,k) indexed by small subsets of active neurons partic-
ipating in production of low-dimensional representations,
with i, j,k being the indices of active neurons that define
the slice w.
Producing latent scans of representations of sparse genera-
tive models trained with dataset Shapes-C allowed to con-
firm this hypothesis and explicitly describe the structure
of the resulting sparse representation space. The method
involves producing an array (a hypercube) of images gen-
erated by a trained model from latent positions in a grid
associated with a latent region of interest; by adjusting pa-
rameters of the grid it allows to describe the generative
structure that emerges in the latent space as a result of un-
supervised learning to any level of detail.
To identify the structure, sparse models with dimensional-
ity d of the encoding layer that were trained with Shapes-C
were presented with a subset of images representing char-
acteristic patterns in the dataset, T . By recording latent
positions l(T ) = E(T ) as defined by equation (1), it was
possible to detect the allocation of concepts in the dataset
to slices w(d,3) in the d-dimensional latent representa-
tion space. The examples of distributions of concepts in
d-slices for d = 5,8,10 are shown in Table 2, with slices



indexed by the tuples of indices of participating neurons,
i = 1 . . .d.
As can be seen from the results in Table 2, sparse archi-

Table 2: Stacked structure in latent representations of
sparse models

Concept S10 S8 S5

Circle, red (3,4,5) (3,7) (2,5)
Circle, blue (1,2,10) (1,2,8) (1,3)
Circle, blue, small (1,2,10) (1,3) (1,3)
Triangle, red (5,8) (7) (2,5)
Triangle, blue (1,2) (8) (1,3,5)
Band, red wide (3,4,5) (2,7) (1,5)
Band, blue narrow (2,8 (1,3,8) (3)
Background, grey (3,5) (1,6) (5)

tecture of the representation layer indeed distributed the
patterns in the training data quite efficiently between avail-
able slices in the stacked representation space. The stacked
structure of the latent representations was exhibited by all
sparse models though different arrangement of slices could
be used by individual models, for example, another S10
model used slices (3,4,10) and (2,9,10) for red and blue
circles respectively, indicating that slice allocation is deter-
mined by the training process as is not invariant between
individual models trained with the same data.
With the slices of interest in the d-dimensional represen-
tation space thus identified, in the next step latent scan-
ning was applied in the slices associated with representa-
tive samples of visual concepts to examine the generative
structure in the slice subspaces identified by neuron in-
dices w = (i, j,k). By producing generative scans of the
slices as an array of observable images one can under-
stand how activations of specific neurons are interpreted
by a sparse model. The examples of generative scans
of a sparse representation, model S10 and a flat three-
dimensional representation (model F3, no activation con-
straint) are shown in Figures 4 and 5 respectively.

Figure 3: Generative scan, stacked representation

Clearly, the sparse model distributed the concepts in the
training data between different low-dimensional slices in
its 10-dimensional latent representation space as shown
in Fig.4, in direct confirmation of the stacked structure of
sparse representations hypothesis discussed earlier. On the

other hand, the flat model with a three-dimensional latent
representation and no activation limit attempted to pack all
concepts into single low-dimensional latent space avail-
able to it, resulting in the maximum activation value of 86,
compared to under 20.0 for stacked models (Figure 5).

Figure 4: Generative scan, flat representation

From generative scans in Fig.4, 5 it can be observed that
the topology of latent regions associated with distinct con-
cepts is continuous and well-defined, shaped as broad
slanted ”columns” in the flat latent space or slice sub-
spaces, with characteristic parameters of images such as
color, shape, size and contrast encoded in the latent po-
sition. These observations are consistent with the earlier
results on greyscale data [14] as well as the experimental
results on the architecture of biological sensory systems
[12, 13] pointing to the possibility of a general character
of this effect. It is also a direct experimental confirmation
of the manifold assumption [20] common in unsupervised
and semi-supervised learning.

3.4 Conceptual Capacity of Sparse Representations

The results discussed in the previous sections allow to
describe the concept learning ability of sparse models in
terms of topological structure of effective latent repre-
sentations, namely, stacked low-dimensional representa-
tions spaces (slices) defined by collections of active neu-
rons participating in producing interpretations of sensory
data. In a way, each slice is thus equivalent to a flat low-
dimensional representation of constant dimensionality. It
was commented earlier based on comparison of interpre-
tation ability of flat models with datasets of different com-
plexity that there appears to be a threshold of maximum
conceptual content Tf (M,D) that can be successfully in-
terpreted by a flat model of given architecture M with a
given type of observable data D. The results in the ear-
lier sections indicated that for the generative architecture
in this work, 3≤ Tmx < 7.
For a sparse system of dimension d and slice dimension l
defined, as commented earlier by the sparsity constraint in
the encoding layer, the total conceptual capacity Km, i.e.,
the maximum number of independent concepts the model
can learn successfully can be described by the formula:

Km = fe f ×N(d, l)×Tf (2)

Here, N(d, l) is the number of slices and fe f ≤ 1, efficiency
factor related to the ability of the model to maximize the
use of available slices. In the case of simple single encod-
ing layer models similar to those used in this work, N(d, l)



is the binomial coefficient, Bd,l .
From (2) the bound on the conceptual capacity of a sparse
model S5 with the latent dimension of 5 and 3-dimensional
slices (d = 5, l = 3) can be readily estimated as 10×Tmx,
whereas for a general model with an N-dimensional sparse
latent layer it would be:

Km(SN)≤
N (N−1) (N−2)

6
×Tmx ∼

1
6

N3 Tmx (3)

with sufficiently large dimensionality of the sparse layer,
N. Accordingly, sparsity allows to strongly increase con-
ceptual capacity of generative models with only a small
addition of neurons in the latent layer and without signifi-
cant increase in the cost of processing of sensory inputs as
the number of active neurons remains constant.

4 Conclusions

The analysis of distributions of image data in the latent
representations of generative self-learning models in this
work resulted in several essential findings:

1. For a given type, content and characteristic parame-
ters of data and model architecture D,M there exists,
under the constraints of realistic learning, a natural
threshold Tf (D,M) for the effective number of char-
acteristic patterns or concepts that can be learned suc-
cessfully.

2. Models with flat architecture of the encoding layer
can maintain learning performance if either: concep-
tual content of the data does not exceed the threshold
Tf ; or by expanding the volume of the latent repre-
sentation space necessary to encode the conceptual
content, resulting in higher activations of encoding
neurons.

3. Models with sparsity constraint in the encoding layer
can bypass the conceptual threshold by creating
stacked representation spaces and associating low-
dimensional slices with subsets of concepts.

4. An empirical formula for evaluation of maximum
conceptual content of sparse models.

These results demonstrated that sparsity allows to achieve
two essential objectives in successful realistic learning: in-
creasing the effective conceptual capacity of the latent rep-
resentations, while limiting the range of latent activations.
Thus, sparsity emerges as a simple and effective adapta-
tion that allows to produce functional conceptual repre-
sentations of complex sensory data in both artificial and
biological systems.
Low-dimensional representations, especially those ob-
tained in unsupervised learning can be of interest due to
growing evidence that similar systems of sensory neurons
can play an important role in processing sensory data by

biological systems. Recent results demonstrated that ef-
fective representations of sensory data such as images,
audio signals and odors can be produced by small sets
of active neurons in biological neural networks [12, 13]
creating effective low-dimensional representations of the
sensory data. Connecting the results in experimental
neuroscience with the findings of this work where low-
dimensional representations of simple image data were
created artificially may offer interesting insights and con-
nections between learning processes in biological and ar-
tificial intelligent systems.
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