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Abstract: In the networks used to connect Internet of
Things devices, we may encounter several communica-
tion models, the most common of which is Publisher-
Subscriber. These models describe parallel communica-
tion, synchronous or asynchronous, and can usually be de-
scribed or simulated using membrane systems. In this pa-
per, we focus on the simulation of communication in the
Internet of Things (IoT) using a membrane system. The
structure of membranes describing the components of IoT
devices is proposed, as well as evolution rules, and the re-
lation to generating and receiving data by devices.

In addition to the membrane structure and the rules, the
auxiliary program code is provided for manipulation and
transformation between the IoT data and the objects in the
membranes.

1 Introduction

Membrane computing is a framework of parallel dis-
tributed processing introduced in 1998 by Gheorghe Pǎun.
Research in this area is very dynamic and the new possibil-
ities of application of this paradigm are constantly emerg-
ing. Information is available in [6, 7, 8], or the bibliogra-
phy at [10].

The intent of Membrane computing is to model dis-
tributed computation using a hierarchy of membranes in
cells. Mathematical models of membrane systems have
been called P Systems, which refers to Gheorghe Pǎun.

Nowadays, the Internet of Things (IoT) is an important
part of our lives. It includes various types of systems,
from simple sensors (detecting for instance the tempera-
ture, motion, humidity, water, light, distance, RFID) and
actuators (for example, alarms or mechanisms for han-
dling windows, lighting) or passive recipients of data (e.g.
displays) to more complex devices combining multiple
sensors and actuators, communication points, gateways to
other network types, and end devices (computers, mobile
phones, etc.) which can control other devices. We en-
counter the Internet of Things at home, in shops, industry,
agriculture, in the environment of large cities,. . .

Since the origin of the idea of IoT, various concepts have
gradually emerged to describe communication between in-
terconnected devices. Because the IoT devices are often
battery-powered and therefore require energy-efficient op-
eration, their communication is very specific.
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Recently, the number of cyber attacks on IoT devices
has been increasing, and the sensitivity of data generated
by these devices has been growing as well, especially with
regard to medical devices. The repositories of data, the
place of their processing, and security of transfer are a fre-
quent subject of discussion.1

Because there is usually a network of devices running in
parallel, IoT is a typical example of parallel data process-
ing. Parallel data processing can also be described using
membrane systems, where the data flow among devices is
simulated using evolution rules.

The use of membranes or similar principles in the world
of the Internet of Things has been considered for years.
Villari et al. in [11] introduce the concept of “osmotic
computing” as a paradigm, the main purpose of which is to
increase the accessibility of resources and services in the
computer network (e.g. IoT network), including cloud ser-
vices. Some of the micro-services traditionally provided
mainly from the cloud (physically in large data centers)
gradually migrate to the edge of the network (edge com-
puting), i.e. they are performed on devices in the inter-
nal network. The paradigm is motivated by procedures
from biology or chemistry, where solvent molecules pass
through a semi-permeable membrane into other regions in
the environment with higher solute concentration (osmo-
sis).

The issue is further developed by the paper [9], which
considers the way in which micro-services in particular
can migrate between the cloud and edge resources and fo-
cuses more on the Internet of Things.

Villari et al. in [12] call the paradigm described in
the previous mentioned papers by OSMOSIS and build
on it the dynamic management of resources and services
(MELs = MicroELements) on the Internet of Things, fo-
cusing mainly on the security functions of the network.
Datta and Bonnet in [2] show the use of MELs in securing
connected “smart” cars and other similar devices.

In the previous mentioned papers, MELs can pass
between devices through software defined membranes
(SDMs). The principle of SDM is very clearly explained
in [12]. However, SDMs are a special part of the whole
system, they themselves represent an interface, rather than
a specific device. In this paper, we can represent the IoT
devices themselves by membranes and their communica-

1For example, some risks of using smart light bulbs
are described in https://www.trendmicro.com/vinfo/

us/security/news/cybercrime-and-digital-threats/

researchers-use-smart-light-bulbs-to-infiltrate-networks.

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/researchers-use-smart-light-bulbs-to-infiltrate-networks
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/researchers-use-smart-light-bulbs-to-infiltrate-networks
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/researchers-use-smart-light-bulbs-to-infiltrate-networks


tion by the corresponding evolution rules, with the addi-
tion of code to transform data into objects and vice versa.

2 Preliminaries

2.1 Membrane Systems

We assume the reader to be familiar with the basics of the
formal language theory and membrane computing. For
further details we refer to [4] and [8].

The basis of membrane systems is a membrane structure
inspired by the structure of a biological cell. A membrane
can contain objects and/or other (nested) membranes. Ob-
jects can be handled using rules, in some membrane sys-
tems there are also rules for manipulating membranes.

One membrane is the main one (it contains all the oth-
ers), we call it “the skin membrane”. The remaining mem-
branes always have one parental membrane in which they
are contained.'
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Figure 1: Example of Membrane Structure

The membrane structure can be represented graphically
using Venn diagrams, brackets, or a tree of nodes repre-
senting membranes. The membrane structure presented
in Figure 1 by Venn diagram is represented by the string
[ [ [ ]3 [ ]4 ]2 [ ]5 [ [ ]7 ]6 ]1, and by the tree of nodes shown in
Figure 2. Analogously to the diagram representation, the
tree has one main (root) node, all other nodes have exactly
one parent node. t1
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Figure 2: Tree of nodes

The membranes are identified by their labels. The mem-
brane structure presented in Figures 1 and 2 uses simple
numbers as labels.

Each membrane has its region: the space delimited by
the given membrane, all contained objects and subordinate
membranes (with their contained objects) are situated in
this region. The region of a membrane corresponds to the
subtree in the tree representation of the structure.

Definition 1 ([7], [1]). Let H be a set of labels. A P System
of a degree m, m≥ 1, is a construct

Π = (V,µ,w1, . . . ,wm,R1, . . . ,Rm)

where:

(i) V is a nonempty alphabet, its elements are called ob-
jects,

(ii) µ is a membrane structure consisting of m mem-
branes, the membranes are labeled by the elements
of H,

(iii) wi, 1≤ i≤m, are strings representing multisets over
V associated with the region of the i-th membrane in
µ ,

(iv) Ri, 1 ≤ i ≤ m, are finite sets of evolution rules as-
sociated with the region of the i-th membrane in µ;
an evolution rule is a pair (u,v), also written u→ v,
where

• u is a string over V ,
• v = v′ or v = v′δ , where v′ is a string over{

ahere,aout ,ain j

∣∣ a ∈V, 1≤ j ≤ m
}

, and δ is a
special symbol /∈ V representing dissolution of
membrane.

The objects can be transported by the evolution rules
through membranes due to the targets out (to the parental
membrane) or in (to the child membrane specified by the
index), or they remain in the original membrane (the here
target).

Details and examples can be found in [7] and [1].

2.2 Internet of Things

There are many definitions of the Internet of Things, but
none of them is fully descriptive. In [5] we can find five
definitions taken from different sources, and in addition
several partial definitions. We can compose from these
definitions the following:

Definition 2 ([5]). The Internet of Things (IoT) is a net-
work of various types of smart objects (things) and de-
vices. The things are connected to the Internet and com-
municate with each other with minimum human inter-
face. They are embedded with abilities as sensing, analyz-
ing, processing and self-management based in interopera-
ble communication protocols and specific criteria. These
smart things should have unique identities and personali-
ties.

Communication in the Internet of Things usually takes
place in the form of a client-server, i.e. the server de-
vice provides information and the client device requests
this information. There are several common communica-
tion models (or communication patterns) used in IoT net-
works, but these two models are very common: Request-
Response and Publisher-Subscriber.

The Request-Response model comes from traditional
computer networks. Clients send a request for data to



servers; the addressed server responds and delivers the re-
quested data. In this model, the client must know not only
the identity but also the address of the server in order to be
able to contact it.

The Publisher-Subscriber model is closer to the needs
of the Internet of Things. There are three types of compo-
nents: publishers produce data, subscribers consume and
process data, and the controller (often called broker) as
the central point of the network mediates data (not com-
munication). Publishers send data to the controller, not to
subscribers, they don’t even know about the existence of
subscribers. Each node with the role of a subscriber sub-
scribes particular types of data (often called topics) to the
controller, and the controller sends the requested data to
all the subscribers interested in them. Sensors are exam-
ple of publishers (producers), actuators and displays are
examples of subscribers (consumers).
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Figure 3: The Publisher-Subscriber communication model
(subscriptions and forwarding)

Figure 3 shows an example network with three pub-
lishers, two subscribers and one controller, where each
subscriber is interested in data from two different sources
(publishers).

In practice, several different higher-level protocols are
used in IoT networks, such as MQTT, XMPP, CoAP,
AMQP, or simply HTTP as for classic computer net-
works, and most of them can communicate in both
request-response and publisher-subscriber modes, how-
ever, publisher-subscriber is slightly more suitable for IoT.

More details about IoT network communication mod-
els, including protocols, can be found in [3].

3 Membrane Structure and Messages

An IoT system can either be completely separate, inde-
pendent of another network, or it can be connected to the

Internet (usually via a central device). For simplicity, we
will assume the first option, i.e. a closed system with no
connection to the outside world.

We can represent the whole system with a membrane
structure and evolution rules, but in addition we need an
interface to real devices. This interface will take data from
a sensor and transform it into an object that the respective
membrane will take over and processes with an evolution
rule, and conversely take an object from a membrane and
transform it into data that it passes to the proper actuator
or display element.

The objects processed by membranes also contain se-
mantic information (specific data from sensors, sender
identification, etc.), but from the point of view of evolu-
tion rules, each object is a whole. For example, if a de-
vice generates different data item-by-item, two different
objects are created and processed by two different evolu-
tion rules. For example, two temperature sensors (internal
and external) in one device create two objects with dif-
ferent numbers indicating temperature, and with different
source designations.

4 Simulation of Publisher-Subscriber
Model

4.1 Membrane Structure

There are several possibilities to construct a membrane
structure of an IoT system, every possibility implies dif-
ferent evolution rules. Since communication usually takes
place via a central device called controller, we can either
represent all devices (including the controller) with mem-
branes embedded in the skin membrane, or the controller
can play the role of the skin membrane. In both cases, the
objects will always be transferred via the controller.

We will focus on the second case (the controller as the
skin membrane). The considered structure has three lev-
els: inside the skin membrane (controller) there is the sec-
ond level for IoT devices, and the third level is presented
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Figure 4: Example of IoT Membrane Structure with Pub-
lishers and Subscribers



by components (inside IoT devices) acting as publishers or
subscribers. Each IoT device carries one or more compo-
nents.

Figure 4 shows the membrane structure of an example
IoT system with one controller and three IoT devices. The
first device contains one publisher (a sensor) and one sub-
scriber (an actuator), the second device holds two pub-
lishers (e.g. it can be a weather station with a thermal
and moisture sensors). The third device consists of two
publishers and one subscriber: e.g. a smartphone with a
gyroscope and accelerometer as sensors (of course, a real
smartphone has many more sensors, here we have only a
simplified case), and its display can act as a subscriber.

4.2 Objects and Evolution Rules

Objects representing messages sent from publishers via
the controller to subscribers carry the following informa-
tion:

• data (e.g. temperature, moisture, motion, touch, im-
age from camera, etc.),

• direction related to the controller (from publisher or
to subscriber),

• both publisher IDs (device ID, component ID),
• for the direction from the controller to a subscriber,

both subscriber IDs.

For objects, we will use the following syntax:

• p(〈data〉 ,publisher deviceID,publisher componentID)
for the direction from a publisher to the controller,

• s(〈data〉 ,publisher deviceID,publisher componentID,
subscriber deviceID,subscriber componentID)
for the direction from the controller to subscribers.

Differentiation by the symbols p or s is needed for the cor-
rect operation of the controller.

First, for all publishers Pubi j, where i is the deviceID
and j is the componentID, we need the rule:

p(〈data〉 , i, j)→ p(〈data〉 , i, j)out

The generation of this symbol inside a publisher is solved
by the publisher’s code in the following subsection.

The next part of the path for this object leads through
the device carrying the publisher. For each device Devi
and for all components with the componentIDs denoted
by j where the j-th component is a publisher (Pubi j):

p(〈data〉 , i, j)→ p(〈data〉 , i, j)out

The object is now in the skin membrane. First, the con-
troller has to change the type of the object (from p to s),
and make as many copies of the object as the subscribers
have subscribed to, and add the subscriber information to
each object. This action is solved by the controller’s code
in the following subsection.

The p-type objects were transformed to s-type objects,
and these objects are transported by these rules from the

skin (the controller) membrane: for all devices Devi, for
all their components j and for all possible publishers
Pubkl :

s(〈data〉 ,k, l, i, j)→ s(〈data〉 ,k, l, i, j)inDevi

The last part of the path is from the i-th device into the
j-th subscriber. For all devices Devi, all their components
indexed by j which are subscribers and for all possible
publishers Pubkl :

s(〈data〉 ,k, l, i, j)→ s(〈data〉 ,k, l, i, j)inSubi j

4.3 Semantics and Auxiliary Code

The proposed evolution rules only address transfers be-
tween membranes, but in addition, the following opera-
tions need to be added:

• the ability to generate data by publishers,

• the ability to transform incoming published objects p
to the corresponding outgoing objects s forwarded to
subscribers,

• the ability to process data by subscribers.

The code in Algorithm 1 defines properties of objects, the
controller, devices and their components.

Algorithm 1: Controller, Device, Component
object:

objType, // from_publisher (p)
∣∣ to_subscriber (s)

data,
// the publisher’s and the subscriber’s IDs:
pub_devID, pub_compID,
sub_devID, sub_compID;

controller:
devices [],
subscriptions [] (pub_devID, pub_compID,

sub_devID, sub_compID);

device:
deviceID,
components [];

component:
deviceID, compID,
compType; // publisher

∣∣ subscriber

publisher(child of: component);
subscriber(child of: component);

This pseudocode assumes that for simplicity we use ob-
ject arrays or lists, which in addition to accessing mem-
bers offer other properties and functions (getting number
of members, easy addition of a new member, etc.).



Algorithm 2: Controller’s Code
function controller.Start()
begin

while true do if ((self.presentObjectInMembrane(&object)) and (object.objType = from_publisher)) then
// one published object must be copied to objects for all subscribers who have ordered it:
self.removeObjectFromMembrane(object);
resObjects = ""; // resulting multiset of objects for all subscribers
object.objType = to_subscriber;
for (i = 1 to self.devices.count) do

for ( j = 1 to self.devices[i].components.count) do
// if there is a subscription for the given publisher and subscriber, create and add the object:
if (self.subscriptions.find(object.pub_devID, object.pub_compID, i, j)) then

object.sub_devID = i;
object.sub_compID = j;
resObjects.add(object); // add the object into the multiset of objects

end
self.exportToMembrane(resObjects);

end
end

function controller.OrderSubscription(pub_devID, pub_compID, sub_devID, sub_compID)
begin

if ((self.devices[pub_devID].components[pub_compID].compType = = publisher) and
(self.devices[sub_devID].components[sub_compID] = = subscriber)) then

self.subscriptions.add(pub_devID, pub_compID, sub_devID, sub_compID);
end

Publishers and subscribers differ in their functions
rather than their properties. The following algorithms de-
scribe functions of the controller, publisher and subscriber.

Algorithm 2 shows two controller’s functions. The
first function describes a normal behavior of the con-
troller that checks in a loop whether an object of the type
“from_publisher” has appeared inside its membrane. If the
object is present, it is replaced by the string of the objects
of the type “to_subscriber”, one for every subscriber reg-
istered for subscription from the given publisher.

Alternatively, we could use the evolution rule replacing
one published object by the string of objects intended for
all subscribers registered for the given publisher’s data:

p(〈data〉 , i, j)→
⋃

k,l s(〈data〉 , i, j,k, l)here

(for all possible publishers), where i, j are the publisher’s
IDs and k, l are the IDs of all subscribers registered to re-
ceive objects originating from the given publisher. How-
ever, this procedure is disadvantageous: any change in
the registration of subscriptions would cause necessity of
changing these rules.

The function OrderSubscription() is called by sub-
scribers (or alternatively by devices) to sign up to sub-
scribe certain objects from a specific publisher. The con-
troller checks if the both components (the declared pub-
lisher and subscriber) are of the correct type, and adds the
corresponding entry to the list of subscriptions.

Algorithm 3: Publisher’s Code

// This function is called by the host device, the new
member of the components array is created:

function publisher.Start(deviceNum,
compNum,. . . )

begin
self.compType = publisher;
self.deviceID = deviceNum;
self.compID = compNum;
// Setting producing interval (if needed) and

other implementation-dependent settings.
end

// Called regularly according to the synchroniza-
tion interval, or when a predefined event occurs:

function publisher.Produce()
begin

new object;
object.objType = from_publisher;
object.data = GetDataFromSensor();
object.pub_devID = self.deviceID;
object.pub_compID = self.compID;
self.exportToMembrane(object);

end



We could also add an unsubscribe function that would
remove the surplus entry from the list of subscriptions.

In Algorithm 3 we can find two functions as well. The
first one initializes the given publisher, sets all the nec-
essary parameters, including the synchronization interval
in which the publisher should produce data, if necessary.
Publishers do not have to produce at regular intervals, they
can be linked e.g. to a specific event in the system, but a
function should be added for this reason.

The second function (Produce()) is called when the
given publisher has to produce data for a new object. The
object is created and exported to the membrane.

Algorithm 4: Subscriber’s Code

// This function is called by the host device, the new
member of the components array is created:

function subscriber.Start(deviceNum,
compNum,. . . )

begin
self.compType = subscriber;
self.deviceID = deviceNum;
self.compID = compNum;
// Other implementation-dependent settings.
while true do

if ((ObjectFound(&object)) and
(object.objType = = to_subscriber)) then

self.removeObjectFromMembrane(object);
self.ProcessData(object.data,
object.pub_devID,
object.pub_compID);

end
end

end

// Called when the device needs to receive
a certain type of messages (objects) from
a specific publisher via this subscriber:

function subscriber.Subscribe(devID, compID)
begin

controller.OrderSubscription(devID, compID,
self.deviceID, self.compID);

end

Algorithm 4 shows two functions for subscribers. The
first one is used to initiate the given subscriber and ensure
the subscriber’s normal behavior, i.e. when the ordered
object appears in the environment, this object is picked up
and processed accordingly.

The second function is called by the subscriber (or al-
ternatively by devices) to order subscriptions.

5 Discussion

The indicated membrane structure, rules and additional
code are one of the possible solutions, there are other pos-

sibilities.
The first possible change is to place the controller at the

level of other devices: the controller would not be identi-
fied with the skin membrane, but it would have its own
membrane inside the skin membrane. The rules would
need to be modified, especially the skin membrane would
forward all symbols “p” into the controller’s membrane
and all symbols “s” into other membranes according to the
added information.

The advantage of this solution is that the controller
could also contain components serving as publishers and
subscribers, the disadvantage is the longer path of objects.
In practice, this can be imagined as a central device con-
taining a display (subscriber) with a touch screen and but-
tons to control other devices (publishers), or to manage
subscriptions.

If we wanted to use the components in the controller
using the solution outlined in the previous sections, we
would have to add a membrane for a new “virtual” device
with the controller’s publishers and subscribers.

Another alternative would be only a two-level struc-
ture: a skin membrane representing the controller and in-
ner membranes representing the individual publishers and
subscribers. The advantage would be a shorter path of ob-
jects between a publisher and a subscriber (with no inter-
mediate stages in the form of device membranes), the dis-
advantage is the lower clarity of the structure.

In IoT we can encounter paradigms of cloud comput-
ing (data is sent to a cloud, the cloud can act as a con-
troller) or edge computing (data is usually preprocessed
where it originates, then it can be sent elsewhere). Cloud
computing and edge computing can also be included in the
model, only this somewhat complicates the path of the ob-
ject through the membranes, in real world we do not have
direct control over some part of this path.

This work was supported by The European Union un-
der European Structural and Investment Funds Opera-
tional Programme Research, Development and Education
project “Zvýšení kvality vzdělávání na Slezské univerzitě
v Opavě ve vazbě na potřeby Moravskoslezského kraje”,
CZ.02.2.69/0.0/0.0/18_058/0010238.
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