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Abstract: Estimation of proportions of SARS-CoV-2
genome variants (e.g. variant B.1.1.7 originating from
Britain, variant B.1.351 originating from South-Africa) in
a population is currently done by sequencing individual
samples, which demands individual laboratory processing
of each sample. This labor can be significantly reduced
by mixing several samples together and processing them
in one batch. Our project aims to estimate the proportion
of samples with given variants from such mixtures using
probabilistic modeling.

1 Introduction

Since December 2019, the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) is rapidly spreading
across the world, causing the coronavirus infectious dis-
ease (COVID-19) pandemic. Up to April 5, 2021, there
were 132 mil. cases of COVID-19 infection. Among these,
109 mil. cases have already had an outcome from which
there was 2.8 mil. deaths, resulting in an estimate of the
mortality rate around 2.5% [18].

Due to its worldwide spread and a mutation rate of about
2 mutations per month [9], the SARS-CoV-2 developed
multiple variants. Some emerging variants have accumu-
lated significantly more mutations and proved to be more
dangerous, causing concerns around the globe [4]. Scien-
tists estimate that continued transmission of SARS-CoV-2
and selective pressures, such as vaccines, are creating ideal
conditions for additional significant virus evolution [11].
Therefore, it is critical to characterize the virus strains fur-
ther and monitor the spread of the variants in the popula-
tion in order to inform public policies and assess the effec-
tiveness of containment strategies.

Monitoring of the SARS-CoV-2 variants requires con-
ducting many sequencing experiments to determine the
genome of the virus and to identify its mutations compared
to a reference genome. Based on this, it is then possi-
ble to decide which variant was sequenced. Some part of
the laboratory work is done individually for each sample,
which is time-consuming and resource-intensive. In this
work, we propose a model capable of estimating the pro-
portions of different variants in a pooled sample, which
allows to combine multiple samples into one sequencing
experiment.
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2 Problem description

2.1 Variants

In our experiments, we consider several variants of the
SARS-CoV-2 virus, which are characterized by specific
mutations described in the Table 1. For instance, if a par-
ticular SARS-CoV-2 genome has the nucleotide at posi-
tion 3267 mutated from cytosine to thymine, it has one
of the mutations characteristic for the variant which origi-
nated in the United Kingdom [14] and is known as a vari-
ant of concern alpha [16]. In the Pangolin SARS-CoV-2
lineage classification [15], it is denoted B.1.1.7. In this
paper, we will denote this variant by acronym UK listed
in the table. In our list of variants, we have included two
additional variant of concern (beta and gamma) as well as
several variants that had high prevalence in Slovakia in the
fall of 2020 and early 2021, which is the time from which
our data originate. For each variant, the table also con-
tains the minimum number of these characteristic muta-
tions which need to be observed in the genome in order to
be considered as belonging to a given variant in our study.
If a genome did not reach the number of characteristic mu-
tations for any considered variant, it was assigned the label
“other”.

This characterization was used on all samples from the
GISAID database (downloaded on Mar 4, 2021) [5], which
provides a comprehensive resource of more than 650 thou-
sands fully assembled SARS-CoV-2 genomes. Individ-
ual genomes were aligned to the SARS-CoV-2 reference
Wuhan/Hu-1/2019 by minimap2 [10]. Then, each se-
quence was assigned a label as described earlier. Fi-
nally, a matrix P was constructed, which consisted of
entries pk,i,a representing the relative frequency of nu-
cleotide a at genomic position i of variant k among aligned
genomes.

This matrix thus characterizes each variant not only
by the selected mutations listed in Table 1, but also cap-
tures any additional significant mutations present in the
genomic sequences classified to the variant. This approach
can be easily applied to a different set of variants by simply
modifying the input table of variants and their characteris-
tic mutations.

2.2 Sequencing data

In order to identify the SARS-CoV-2 variant of a new
patient, it is necessary to sequence an obtained sam-



Variant Acronym Required Mutations
P.1 (gamma) Brazil 8 T733C, C2749T, C3828T, A5648C, C12778T,
B.1.258 CZ 4 G12988T, G15598A, G18028T, T24910C, T26972C
B.1.177 EU1 4 C22227T, C28932T, G29645T, G21255C, C26801G
B.1.160 EU2 3 C4543T, G5629T, G22992A, T26876C
B.1.351 (beta) South.Afr 3 G23012A, A21801C, A23063T, G22813T
B.1.1.7 (alpha) UK 11 C3267T, C5388A, T6954C, A23063T, C23271A,

C23604A, C23709T, T24506G, G24914C, C27972T,
G28048T, A28111G, C28977T
C13860T, G17259T, C21614T, C21621A

B.1.1.170 UKBA318 3 G12824A, C25777T, G26062T, C29754T

Table 1: Characteristic mutations of individual variants considered in this study.

ple. In this work, the used samples were sequenced us-
ing the ARTIC amplicon protocol [17] and the Oxford
Nanopore MinION sequencer.

In the ARTIC protocol, the RNA of the virus is first
reverse transcribed into DNA and specific regions of
the DNA are amplified. These amplicons cover almost
the entire length of the genome with slight overlaps be-
tween adjacent regions. In our data, the amplicons had
length about 1700 bp. Amplified DNA was sequenced
by the MinION sequencer, and the resulting sequences are
called reads. The reads are then mapped to the reference
genome by tool minimap2 [10] and stored in the BAM for-
mat.

Because each read comes from a genome of a specific
variant, it is expected that it contains mutations that are
characteristic for this variant. When analyzing a mixture
of reads from different patient samples, the task at hand is
to estimate the proportions of reads coming from individ-
ual variants, based on the presence of mutations character-
istic for these variants.

3 Related work

There had been several attempts to identify SARS-CoV-2
variants from mixed samples. Most commonly, these were
wastewater-based epidemiological studies.

Crits-Christoph et al. [3] showed that single nucleotide
variants (SNVs)1 detected from the sewage water from
San Francisco Bay Area were significantly similar to local
California-based patient-derived genotypes, thus demon-
strating the possibility of identifying local SARS-CoV-2
variants in the wastewater samples. The SNVs were ob-
tained via SNV caller inStrain v1.3.2 [12] and the similar-
ity of genotypes was established via Fisher’s exact test.

Another study [6] analyzed 91 wastewater samples from
11 states in the USA and identified 7973 SNVs, of which
5680 were “novel” at the time of the analysis with respect
to the global clinically derived data. Interestingly, almost
half of the “novel” variants were confirmed within the next

1Single nucleotide variants are simple mutations substituting one
DNA base for another, not to be confused with virus variants, which are
groups of evolutionarily related viruses.

5 months after the analysis. This suggests that sewage
samples may provide a more comprehensive snapshot of
currently circulating SARS-CoV-2 variants in comparison
with solely clinical cases.

A wastewater study conducted in Spain [13] identified
238 SNVs and 6 deletions in comparison with the refer-
ence genome of SARS-CoV-2 isolate Wuhan-Hu-1. The
study used 40 samples, which were sequenced with AR-
TIC protocol v.3, analysed using the iVAR software.

In the wastewater study from Switzerland [7], the au-
thors showed that it is possible to use Illumina reads to de-
tect the variants before they appear in clinical cases. The
48 samples were collected as 24-hours composite or grab
samples. Amplicons were created using the ARTIC v.3
protocol and sequenced using Illumina NovaSeq 6000, re-
sulting in paired reads of length 250bp. The mutations
were identified from these reads using the V-pipe bioin-
formatics pipeline. These mutations were then compared
with the clinical cases from Switzerland in the GISAID
database for the presence of characteristic mutations of
the B.1.1.7 and B.1.351 variants using Fisher’s exact test.
The authors also looked at mutations co-occurring in the
same read and found further evidence of the presence of
the B.1.1.7 variant in Switzerland already in early Decem-
ber.

Mixed samples can also originate from environmental
sources other than sewage water. The first report on re-
covering near-complete SARS-CoV-2 genome sequences
from environmental surface swabs assessed the contami-
nation with the virus in a hospital [2]. The authors of this
study confirmed the low likelihood that SARS-CoV-2 con-
tamination on hospital surfaces contains infectious virus.

Although many studies have identified SARS-CoV-2
variants from mixed environmental samples, all have qual-
itative results. In this paper, we estimate the proportions
of the variants in the sample, which we believe is corre-
lated with the proportions of the variants circulating in the
community.



4 Model description

In our model, we assume that in a set of aligned reads
coming from one variant, the expected observed symbol
counts at any given position in genome are proportional
to the symbol frequencies among all sequences in a given
variant, which are captured in matrix P described in sub-
section 2.1. The observed symbol counts at a particular
position can be thus described by a multinomial distribu-
tion. To simplify the model, we further assume that indi-
vidual positions in the genome are independent. When se-
quencing a mixed sample, we assume that individual vari-
ants are present at some unknown proportions which are
represented as weights in a mixture model. We assume
that these proportions stay the same at all positions in the
genome. A more detailed description of the model is given
in the next subsection.

4.1 Basic model

Let Σ = {A,C,G,T} be the symbol alphabet. Let K de-
note the number of virus variants and L denote the length
of the reference genome. Let W = (w1, . . . ,wK) denote
the (unknown) weights of individual variants in a mixture.
Let pk,i,a denote the probability of observing symbol a at
position i in the k-th variant and Oi,a denote the count of
symbol a at position i in the observed reads.

The probability of observing symbol a at position i
in a mixture with weights W is then equal to mi,a(W ) :=
∑

K
k=1 wk · pk,i,a.
The total probability of observations O given mixture

weights W is then proportional to:

Pr[O|W ]∼
L

∏
i=1

∏
a∈Σ

mi,a(W )Oi,a .

The inference of the mixture weights from observations
can be then solved via maximisation of the log-likelihood
function:

W ∗ := argmax
W

L

∑
i=1

∑
a∈Σ

Oi,a · logmi,a(W ).

This task is equivalent to minimisation of cross-entropy
between m and O:

W ∗ := argmin
W
−

L

∑
i=1

∑
a∈Σ

Oi,a · logmi,a(W )

4.2 Minimisation and efficiency

The minimisation is done using the L-BFGS-B algorithm
[19] implemented in Python library scipy [8]. Since the
input data for the minimisation process are essentially two
tables of fixed sizes L×|Σ| and K×L×|Σ|, the time and
memory requirements of the optimisation process itself do
not depend on the amount of sequencing reads and neither

do the memory requirements of data preprocessing, allow-
ing for the efficient processing of gigabytes of sequencing
data even on common computers. All processes are easily
parallelizable and could be potentially accelerated using
a GPU.

4.3 Adding error model

Sequencing reads contain errors, where the symbol in the
read differs from the actual genome being sequenced. We
assume that these errors occur uniformly at random and
add them to the model as follows. Let ε ∈ (0,1) be the
substitution error rate. Let m̄i,a(W ) := 1−mi,a(W ) denote
the probability of observing a base different from base a
at position i in a mixture sample without sequencing er-
rors. The probability of observing symbol a at position i
in a mixture sample sequenced with errors is then equal to:

qi,a(W,ε) = (1− ε) ·mi,a(W )+
ε

3
· m̄i,a(W ).

The likelihood of observing O given mixture weights W
and substitution rate ε is then proportional to:

Pr[O|W,ε]∼
L

∏
i=1

∏
a∈Σ

qi,a(W,ε)Oi,a .

The error rate ε can be set to a particular value, or be
inferred simultaneously with the mixture weights W :

(W ∗,ε∗) := argmin
W,ε

−
L

∑
i=1

∑
a∈Σ

Oi,a · logqi,a(W,ε)

In our experiments, we used the latter option.

4.4 Evaluation of a posteriori probability of a given
read belonging to a particular variant

We can represent a read as a data set consisting of only one
read, i.e. Oi,a is equal to 1 if read has symbol a aligned to
reference’s position i, and 0 otherwise. Let V ∈ {1, . . . ,K}
be a random variable representing the variant that the read
belongs to. The likelihood of a read belonging to variant
k is equal to Pr[O|V = k] = Pr[O|W = ek], where ek is the
vector of length K with value 1 at position k and value 0
elsewhere. The probability of the read belonging to variant
k given its sequence is then, by the Bayes theorem, equal
to:

Pr[V = k|O] =
Pr[O|V = k] ·Pr[V = k]

∑
K
j=1 Pr[O|V = j] ·Pr[V = j]

.

Assuming a uniform prior Pr[V ] =
1
K

, the formula reduces
to:

Pr[V = k|O] =
Pr[O|V = k]

∑
K
j=1 Pr[O|V = j]

.

The notion of posterior probability enables us to clas-
sify individual reads into variants by choosing the variant



Variant Isolate
CZ UKBA-702, UKBA-722, UKBA-809,

UKBA-818

EU1 UKBA-716, UKBA-717

EU2 UKBA-701

UK UKBA-703, UKBA-704, UKBA-705,
UKBA-706, UKBA-707, UKBA-708,
UKBA-713, UKBA-714, UKBA-718,
UKBA-719, UKBA-720, UKBA-801,
UKBA-802, UKBA-803, UKBA-804,
UKBA-805, UKBA-806, UKBA-807,
UKBA-808, UKBA-814, UKBA-815,
UKBA-816, UKBA-817

UKBA318 UKBA-709, UKBA-710, UKBA-711,
UKBA-712, UKBA-723, UKBA-724

other UKBA-715

Table 2: Table of used samples

with the maximum a posteriori probability (MAP). We use
this read classification for visualization and filtering as dis-
cussed in the next section.

Unfortunately, this approach requires to set the substi-
tution rate ε in advance. In our experiments, we estimated
the substitution rate by first running the minimisation al-
gorithm on the available data.

5 Experiments

5.1 Simulated data

To evaluate the model, we created simulated data sets,
where the correct proportions of the variants were known.
We have used 37 FASTQ files from the ARTIC sequenc-
ing experiments, conducted at Biomedical Research Cen-
ter of the Slovak Academy of Sciences, using protocols
described in [1], where each SARS-CoV-2 sample was se-
quenced separately (using a different barcode).

The list of samples and their classification to variants is
shown in Table 2. Each file was mapped to the reference
and the resulting BAM files were merged to create four
mixed samples as follows:

1. 1x CZ, 1x EU1, 1x EU2, 1x UK (92840 reads, aver-
age base coverage 5858)

2. 4x CZ, 2x EU1, 1x EU2, 3x UK, 1x UKBA318
(264113 reads, average base coverage 16562)

3. 2x EU1, 1x EU2, 1x other (99711 reads, average base
coverage 6273)

4. 3x CZ, 2x EU1, 9x UK, 1x other (335601 reads, av-
erage base coverage 21044)

The true proportions of variants in the samples is calcu-
lated as the proportion of the sums of read lengths for each
variant.

5.2 Results on all reads

The results on the simulated mixes are shown in Table 3.
We can see that the model is able to distinguish between
present and absent variants, while significantly overesti-
mating the “other” variant in all samples.

In order to find an explanation for this discrepancy, we
analysed the posterior probabilities (see subsection 4.4) of
individual reads (see Figure 1). The analysis shows that
there are many “uncertain” reads (i.e. reads with no strong
affinity towards any variant), particularly so among reads,
classified into “other” variant.

We decided to formalize the notion of “uncertainty” and
filter out such reads from the data set before running the
model.

5.3 Filtering out uncertain reads

Let k-certainty of a read be defined as a sum of its k highest
posterior probabilities of belonging to a particular variant.

We decided to use 1-certainty criterion in our experi-
ments.

The pipeline works as follows: first we estimate the sub-
stitution error rate by running the model on the full data
set. Then, using the estimated error rate, we evaluate the
1-certainty for each read. Reads with 1-certainty below
a given threshold are then removed from the data set, and
the observed counts Oi,a are calculated. Finally, we run
the model on these counts, reporting the mixture weights
W as the final answer.

We ran our algorithm on the simulated mixes with dif-
ferent filtering thresholds. The estimated weights at dif-
ferent filtration thresholds are shown in Figure 2. The
KL-divergence between the true and estimated weights are
shown in Figure 3.

This heuristic works reasonably well on data sets with-
out reads from “other” variant (Figures 2a and 2b). How-
ever, it fails on data sets with “other” variant present
(Figures 2c and 2d) because reads from “other” variant
have generally lower 1-certainty (Figure 1), and are con-
sequently filtered out.

6 Discussion

We have demonstrated that our method can predict the
proportions of individual SARS-CoV-2 variants in mixed
samples when all variants in a sample are known to the
model (i.e. there are no reads from “other” variant).

In our future work on this topic, we would like to ad-
dress the following issues:



variant Mix #1 Mix #2 Mix #3 Mix #4
true estimated true estimated true estimated true estimated

Brazil 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
CZ 0.327 0.245 0.322 0.249 0.000 0.004 0.163 0.128

EU1 0.225 0.230 0.189 0.179 0.506 0.434 0.149 0.142
EU2 0.252 0.200 0.088 0.070 0.235 0.178 0.000 0.000

South.Afr 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000
UK 0.196 0.158 0.246 0.209 0.000 0.002 0.612 0.546

UKBA318 0.000 0.000 0.155 0.121 0.000 0.005 0.000 0.000
other 0.000 0.168 0.000 0.173 0.259 0.372 0.076 0.183

Table 3: Estimated weights for the simulated samples without any filtration. Note that the “other” variant is significantly
overestimated in all samples. Aside from that, the method is able to distinguish between present and absent variants.

Figure 1: The base coverage of a sequence by reads classified into individual variants by maximum a posteriori predictor
(MAP). The first simulated mix is shown in the left, the third in the right. The blue line represents the coverage by all reads
classified into a particular variant, the orange and red lines only reads with 1-certainty above 50% and 90%, respectively.
Reads that have been, both erroneously (first mix) and correctly (third mix) classified into “other” variant, have mostly
low 1-certainty. Even for correct variants, there are regions in the reference where the model cannot capture any reads.
These regions correspond well with the regions without characteristic mutations (see Table 1).



(a) Simulated mix #1 (b) Simulated mix #2

(c) Simulated mix #3 (d) Simulated mix #4

Figure 2: The estimated weights for each simulated mix at different thresholds of filtration of uncertain reads. The ver-
tical axis shows the filtration threshold. Lengths of individual color stripes represent their estimated weight for a given
threshold of filtration. The last row (denoted “real”) shows the true weights for each simulated mix. The lowest filtration
threshold does not filter out any reads (because it’s equal to 1/K, which is the lowest possible value for the 1-certainty).

Figure 3: The KL-divergence between the true and esti-
mated weights for different read filtration thresholds. The
horizontal axis shows the filtration threshold. The vertical
axis shows the resulting KL-divergence (lower is better).
It can be seen that the filtration method works reasonably
well for the mixes without “other” variant present (the first
and second mixes).

• As we discussed in the previous section, our model
tends to overestimate the “other” variant, and our cur-
rent filtering heuristics is not a robust solution. The
filtering may introduce bias into the estimation. This
issue may be addressed by a more systematic ap-
proach to defining the “other” variant.

• We would like to be able to evaluate confidence in-
tervals on our estimations. That would give us, for
example, the ability to rule out the presence of a vari-
ant with a low estimated weight.

• There are many non-informative reads coming from
the areas of the genome with no significant alter-
ations between individual variants. The proportion of
such reads is even higher when the reads are shorter
(e.g. obtained by Illumina sequencing). The goal is
to extend the model so that it could handle such data.

• The sequencing data shows severe non-uniformity of
the coverage. This issue may be addressed by a selec-
tive weighting of individual reads based on the cov-
erage at their position.

• The current model does not take into account inser-
tions and deletions, both in the individual variants and
during the sequencing process.

• The way we characterize the individual variants using
the averaging of all available data from the GISAID
database may incur a bias toward specific subvariants
(e.g. some countries, such as the UK, submit a much
higher number of sequence samples).

• Our approach splits all reads into individual bases,
thus potentially losing all long-range information.
In the future, we would like to adjust the model, so
that it would keep the reads intact.



• In our model we assume that the individual positions
are independent. But, the way the variant profiles
are created (by demanding at least n mutations to be
present in a sequence) introduces some dependency
between them. In the future, we would like to resolve
that inconsistency either by changing of the way the
variant profiles are estimated or by relaxing the as-
sumption in the model.

Code availability. The code is available at
https://github.com/fmfi-compbio/covid-pooling.
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