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Abstract: The standard SEIR equation-based models rep-
resent the state-of-the-art approach in epidemiological
modelling. Their drawbacks include unrealistic infection-
related contact estimates and difficulties in modelling non-
pharmaceutical interventions, such as contact reductions
or partial closures.

In this paper, we present our agent-based model that ad-
dresses the above-mentioned issues. It works with a pop-
ulation of individuals (agents) and their contacts are mod-
elled as a multi-graph social network according to real data
based on a Czech county. Custom algorithmic procedures
simulating testing, quarantine and partial closures of vari-
ous contact types are implemented.

The model can serve as a tool for relative comparison
of the efficacy of various policies. It was also used for a
study comparing various interventions in Czech primary
and secondary schools, using a graph based on real data
from a selected Czech school.

1 Introduction

Mathematical models play an important role in a variety
of scientific fields, including epidemiology. Mathematical
modelling has been an integral part of epidemiology for
more than 100 years. Epidemiological models serve many
different purposes, namely as a tool for hypothesis verifi-
cation, explanation of observed data, understanding basic
principles of infectious dynamics, prediction of the future
development and understanding the current one, calcula-
tion of fundamental epidemiological metrics.

During the current world-wide pandemic the interest
in epidemiological modelling significantly increased not
only in the scientific community, but also in the general
public. The ability to model and predict the development
of the epidemic became important from day to day.

There exists a variety of epidemic models, including
well established S(E)IR models[14, 5]. Our focus is on

modelling the impact of non-pharmaceutical interventions.
The non-pharmaceutical interventions and epidemiologi-
cal measures influence the development of the epidemic
significantly. Therefore, a proper epidemic model should
reflect these interventions and must be able to model them
and their impact on epidemic. Such a model may then be-
come an important tool in choosing most efficient policies.

In this paper we present our agent based model that was
designed for the purpose of comparing various interven-
tions, measures and policies. We focus on the simulation
of non-pharmaceutical interventions, such as partial clo-
sures, contact restrictions and quarantines. More details
on the model itself can be found in our preprint [6].

The interventions we simulate cover protective mea-
sures and contact restrictions. By protective measures
we understand masks, stronger hygiene, and general cau-
tiousness. Protective measures decrease the probability of
transmission of the disease when the infectious contact
happens. On the other hand, the contact restrictions de-
crease the probability that such contacts are realised. Con-
tact restrictions can be either flat, i. e. whole public places
are closed (school closures, shop closures, etc.), or indi-
vidual. Individual contact restrictions cover isolation or
quarantine of single individuals. The effective contact re-
striction on individual level requires to actively search for
individuals that were in contact with infectious ones. This
process is known as contact tracing.

All mentioned interventions play an important role in
the epidemic and the model should be able to reflect them.

Some of the available epidemiological models posses
mechanisms for modelling some of the mentioned inter-
ventions including contact tracing [17, 13, 12, 11, 8].

The paper is organised as follows. In the next section we
briefly explain the framework of our model and its main
properties. In Section 3 the principles of simulation of
individual interventions are described. Section 4 brings
discussion of the usage of the model, its capabilities and
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Figure 1: The structure of our model.

limitations. The final section is a conclusion.

2 Agent Based Epidemic Model

Our model can be classified as a multi agent model. A key
property of agent models is that they are built in a bottom-
up manner. We learn about the behaviour of the system as
a whole from the detailed description of its components by
means of agents and their interactions by computer simu-
lation. This is completely different approach than in clas-
sical compartment models, where the whole system is de-
scribed by set of equations.

The core of our model framework is formed by three
modules. They are depicted in the Fig. 1. Namely, they are
the SEIR model, the contact graph and the policy module.
Let us describe them briefly.

SEIR model

The SEIR model module is the base part of our model. It is
a standard epidemiological model of the S(E)IR type [5].
It works with a population of individuals (agents), each in-
dividual being in one of possible states. The basic states
are S (susceptible, healthy individuals), E (exposed, in-
fected but not yet infectious), I (infectious), R (recovered).
Our model, in addition, distinguishes the asymptomatic,
presymptomatic and symptomatic individuals; and an in-
fectious and post-infectious phase. Therefore it works
with 10 states in total. Additionally, each individual keeps
a flag whether it was detected. An example of possible
node life cycle is S → E → Ia → Is → Js → R, where
Ia stands for infectious presymptomatic, Is for infectious
symptomatic, J for not infectious, but yet positive.

One iteration of the model corresponds to one day, i. e.
an individual can change its state once a day. The transi-
tions between the states, in other words times for which
the individual stays in each state, are given by the parame-
ters of the disease (in this case COVID-19). For details on
model parameters used for COVID-19 simulations see [6].

The exception is the transition S→ E that depends both
on the infectiousness of the disease modelled (a global
model parameter β ; note that β has a different meaning

than in typical SEIR models) and the contact graph. This
transition is also the one influenced by non-pharmaceutical
interventions.

Contact Graph

While the majority of epidemiological models use syn-
thetic population (if any), our model uses a multi-graph
that is based on real data. The graph is built as a model
of a Czech county (a town together with its surrounding
villages). Great attention was given to the graph con-
struction so as it is as realistic as possible. Main data
sources used include Czech Statistical Office [10] (pop-
ulation data collected in 2011), State Administration of
Land Surveying and Cadastre [3], Open Street Map [2]
and publicly available database of schools [18]. Contacts
between individuals are established based on sociological
studies by PAQ [19] and MEDIAN [16, 15]. The con-
tacts between friends were generated by a modified ver-
sion of Barabasi-Albert algorithm [4]. The probabilities
of contacts were automatically optimised to fit Prem ma-
trices [20] (see Fig. 3).

The resulting graph has about 56 thousands nodes (rep-
resenting agents) and 2.8 millions edges (contacts between
agents). Nodes have a list of attributes, including sex, age
and economic activity. An example of an individual (and
a node in a graph) can be a 43 years old teacher, who lives
with his wife and three children in a family house. He has
12 friends, who he regularly meets, most of them are of
the similar age. Every day he commutes to work and regu-
larly visits his parents in a close village. All these activities
have to be reflected by contact edges in a graph.

The detailed explanation of the graph construction is out
of the scope of this paper and can be found in [6].

Formally, the contact graph is a multi-graph G= (V,E),
where V is a set of nodes, each node corresponding to one
individual in a population of the concerned agent model. E
is a set of undirected edges representing contacts between
individuals. The prefix multi refers to the fact that two
nodes can be connected with arbitrary number of edges
(see Fig. 2).

Figure 2: Illustration of two nodes and their edges in a
multi-graph.

Edges are divided into 30 layers, each layer refers to
a particular type of contact (such as family, work, leisure
time, etc.). Layers are associated with weights w that con-
trol the activity on the layer as a whole.



Each edge e stores three parameters pe, ie and le. pe is
the probability that a contact represented by the edge e is
realised in the current iteration, ie is the intensity of that
contact, and le is the type of the layer.

Each day the edge is activated with the probability

pactive(e) = wle pe. (1)

If the edge is activated and one of its nodes is in an
infectious state and the second node is in the state S, the
second node is moved to the state E with the probability

pS→E(e) = β ie, (2)

where β is a global parameter of the model (however may
differ for each node depending on its symptomaticity) and
corresponds to the disease modelled.

Policy Module

The Policy Module is an optional, yet important part of
the model. It is responsible for a simulation of policies
and interventions as will be described in the next section.
It communicates both with the model and with the contact
graph.

It has access to all parameters of the model and can
modify them. In addition it can ask the model to move
a particular node to a required state (besides normal state
transitions). It has the right to modify the graph, change
weights of layers or parameters of individual edges.

It is called between each two iterations of the SEIR
model.

3 Simulation of Interventions

The main purpose of the model presented in the previ-
ous section is the simulation of various interventions, their
study and comparison.

One family of interventions covers protective measures
(masks, distancing, hygiene) that make the infection trans-
mission during the contact with an infectious individual
less probable. This is modelled simply by reduction of
the model parameter β . The parameter β is a vector
over all individuals, so individual-based approach is possi-
ble. Also asymptomatic individuals have different β than
symptomatic ones. In addition, we distinguish between
a contact in a family (based on the type of the layer in
the graph), where less reduction is applied (no masks in
households), and other contacts. The reduction is con-
trolled by the rate parameter ranging from 0.0 to 1.0 that
reflects the compliance with protective measures. For the
reconstruction of a past progression of the epidemic we
use rates based on data from a sociological survey [19].

The other type of interventions covers contact restric-
tions. The global contact restrictions cover closures of
public places, such as school, shops or restaurants. In the
context of our model, they refer to restrictions of whole

layers. They are modelled by modifying the layer weights
wl (see Eq. (1)). For example, complete closing of schools
is realised by setting wl to zero for all l corresponding to
schools. Setting wl to 0.5 for all l work layers reduces
the probability of all work contacts (for example because
people switched to home-office). Again, for past epidemic
progression reconstruction data from [19] are used to set
up the layer weight coefficients.

Individual contact restrictions are the most challenging
ones from the modelling point of view. Isolation of indi-
vidual nodes requires to reduce probabilities of individual
edges adjacent to these nodes. This means local temporal
modifications of the graph.

If a node v is isolated, we modify the probabilities of all
his edges.

∀e ∈ v← : pnew
e ← peql , (3)

where ql are quarantine coefficients of individual layers
and v← is a set of edges adjacent to v.

An example of simple quarantine coefficient setup fol-
lows:

ql =

{
1 l is a family edge
0 otherwise.

(4)

We implemented three types of policies that use isola-
tion of individual nodes. Namely, they are self-isolation,
testing and contact tracing.

Self-isolation simply reflects the fact that a portion of
individuals that exhibit symptoms or do not feel well de-
cides to stay home on their own. In the model, as the
node starts to exhibit symptoms, it is isolated with a cer-
tain probability and it stays in its isolation as long as the
symptoms are present.

Second basic policy is the testing. The individuals are
tested with a probability θ . If the test is positive, they are
marked as detected. We typically use non-zero θ only for
symptomatic individuals (for the case of simplicity).

As soon as the individual is detected, it is sent to isola-
tion for a given number of days. The isolation ends with
a stop condition, which is optional. It can be two conse-
quent negative tests or just a number of days past from the
positive test. As soon as the stop condition is fulfilled, the
isolation stops, i.e. the edges of the node are returned to
their normal values (unless the second node of the edge is
isolated as well).

The last policy is contact tracing. Contact tracing in
the real life can be done in an individual manner, algorith-
mic simulation on the other hand requires a certain level
of simplification. The quarantine-detection-isolation life
cycle is depicted in the Fig. 4.

As soon as a node is detected it is sent into isolation,
i.e. the probabilities of its edges are modified as in (3),
the original values are backed up. After a given time, the
contact tracing takes place. All edges that were active in
the X days before the first symptoms of the node or Y days
before its detection are collected. (X , Y are parameters of
the contact tracing.)



Figure 3: Example of fit of contacts probabilities to Prem matrices. Household contacts in our graph on the left, contacts
according to Prem [20] on the right. Axes display age.

Figure 4: The algorithm of contact tracing procedure.

Then, the edges are filtered — that simulates the fact
that in reality all contacts are never successfully traced,
some are forgotten, some are not known at all.

The other nodes from the resulting set of edges are sent
to quarantine (i.e. isolated). A given number of days after
the contact, they are tested. If the test is positive, they
undergo the same procedure as detected nodes.

As soon as the node spends a given number of days in
isolation (or quarantine), the stop condition is applied in
the same way as in the testing policy, and the isolation
ends.

The most important parameter characterising the con-
tact tracing is its strength. We define it by the tuple
(p1, p2, p3, p4), where the four components correspond to

Table 1: Parameters of contact tracing.

parameter meaning
X the length of period to collect data

before the first symptoms
Y the length of period to collect data

before the detection
C the delay between detection and col-

lecting contacts
T the delay between the contact and

the test (for contacts)
(p1, p2, p3, p4) probabilities of recall (see Eq. (5))
ST the type of stop criterion

four types of contacts. During the filtering phase, the edge
e stays among the collected edges (i.e. is recalled) with the
probability

precall =


p1 if e is a family edge
p2 if e is a school or work edge
p3 if e is a leisure time edge
p4 otherwise

(5)

The policies can be activated or deactivated during the
simulation, their parameters may change during the run.

4 Discussion

The model is stochastic, extensively using random num-
bers, and the variance of results is typically quite high.
Therefore in our experiments we always use 1000 simu-
lations for 1000 fixed unique random seeds. Median and
mean values are then observed. The time needed for one
simulation is approx. 20 seconds on a common CPU.

An example of a possible experiment is depicted in the
Fig. 5. There the experiment compares five contact tracing
strategies of different strength in the scenario where no
other interventions are present.



The strength is defined only with probabilities 1.0 or
0.0 for simplicity, so all contacts from the particular group
are always collected. The following strategies were tested:
no contact tracing (0,0,0,0), tracing family contacts only
(1,0,0,0), tracing family, work and school (1,1,0,0),
tracing everything except “others” (1,1,1,0) and ideal
tracing (1,1,1,1). We can see that the ideal tracing does
not bring much improvement as compared with (1,1,1,0),
while the difference between no tracing and tracing family
only is more evident.

More experiments on contact tracing strategies com-
parison and their detailed results can be found in the
preprint [7].

The advantage of the model is its modularity. One mod-
ule can be easily replaced by its alternative. For example,
one can replace a contact graph by a contact graph specific
to a given environment. Such a graph was a graph built
for a school environment, based on real data collected in
one Czech school. The results of the simulation study of
spread of COVID-19 in a secondary school environment
can be found in [9].

5 Conclusion

In the paper we presented a novel agent-based epidemic
model. The main difference compared to other models
is that it uses a realistic contact graph instead of a syn-
thetic population. Another key feature is the simulation of
various non-pharmaceutical interventions that enables to
make relative comparisons between them and study their
efficacy.

The model is implemented in Python and is publicly
available on GitHub [1]. It is configurable and it is pos-
sible to write custom policies. An example of a policy we
have implemented and not mentioned in this paper is vac-
cination.

As a future work we plan to include export nodes that
will simulate the possibility of infection import from the
surrounding world.
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[6] Luděk Berec, Tomáš Diviák, Aleš Kuběna, René Levínský,
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schools and educational institutions). http://stistko.
uiv.cz/registr/vybskolrn.asp, 2021. Publicly avail-
able database.

[19] PAQ research. Život během pandemie. https://
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