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Abstract. COVID-19 is a life-threatening novel respiratory 
virus-borne disease, which was discovered in December 2019 
in Wuhan and subsequently spread globally. Monitoring and 
predicting COVID-19 epidemic data is crucial to control 
pandemic outbreaks. Machine learning-based methods, 
including deep learning, are promising approaches to predict 
COVID-19 data such as new cases, infected patients, and 
deaths. Our study focused on short-term COVID-19 
hospitalizations forecasting using two machine learning 
approaches— ensemble time-series method and multilayer 
perceptron (MLP) feedforward network method. Both methods 
make predictions based on hospitalization, polymerase chain 
reaction (PCR), and antigen (Ag) test data, which were 
collected between October 2020 and June 2021 in Slovakia for 
our study. The ensemble time-series method was more 
sensitive in the beginning of experimental period but failed 
when the number of hospitalizations began to drop. The MLP 
method was ineffective in the beginning because of lack of 
training data but improved when more robust data was 
available; this method is promising for monitoring the third 
wave of pandemic in Slovakia. 

1 Introduction 

The first patients with the novel coronavirus SARS-

CoV-2, were hospitalized in Wuhan, China in December 

2019 [1]. In January 2020 more cases were reported 

throughout China and abroad [2]. The most sensitive 

diagnostic method currently available for COVID-19 

testing is the polymerase chain reaction (PCR) test [3]. 

However, for effective screening, frequent repetition and 

fast reporting is more important than sensitivity [4], which 

makes rapid antigen (Ag) tests or loop-mediated isothermal 

amplification tests (LAMP) tests advantageous in COVID-

19 diagnostics. There are several studies on the relationship 

between symptom onset, positive PCR testing, and 

hospitalization. The fifth day post infection is a typically 

when symptom onset occurs, and most infected people test 

false negative before this day. The decrease in probability 

of false negativity is noted four days before symptoms 

onset, from 100% four days before onset to 67% one day 

before onset. On the day of onset, the probability of getting 

a false negative result is less than 40% [5]. From zero to 

four days after symptom onset, PCR tests from 

nasopharyngeal swabs are positive [6] in most infected 

individuals, with a peak in the first week after onset [7]. 

The median time between symptom onset and 

hospitalization is 5 days [6], and the median number of 

days from symptom onset to death was 14 and less in 

patients aged over 70 [8]. Despite these observations, 

which demonstrate the importance of time in COVID-19 

infections, predicting the number of hospitalized patients 

from positive tests and average hospitalization period is not 

straightforward and depends on personal and regional 

factors. A nationwide cohort study reported that 20% of all 

PCR-positive cases result in hospitalizations, and the 

proportion increases with age and multimorbidity [9]. In 

another study [10], stronger hospitalization risk is 

associated with men aged ≥ 75 years with comorbidities, 

particularly cardiovascular disease, diabetes chronic kidney 

disease, hyperlipidemia and obesity than in other groups. 

Predicting COVID-19 epidemic data and monitoring 

epidemiological changes of the virus spread are crucial for 

controlling pandemic outbreaks [1]. Machine learning 

methods, including deep learning, show promise in 

predicting COVID-19 epidemic data such as new cases, 

infected patients, and mortality. A multilayer perceptron 

(MLP) artificial neural network was used in [11] to create 

a worldwide model for predicting the maximum number of 

infected patients in a location from available data in time. 

The MLP was shown to have slightly better performance 

for analyzing contributing factors for COVID-19 spread 

and deaths than the radial basis function in [12]. The 

authors of [13] analyzed continuous variable quantum 

neural networks and quantum backpropagating MLP 

models for predicting COVID-19 cases in India and the 

USA. Both methods showed better performance than 
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classical artificial neural networks. MLP and adaptive 

network-based fuzzy inference systems showed promising 

results in outbreak predictions [14]. Hybrid machine 

learning prediction models of adaptive network-based 

fuzzy inference system and MLP-imperialist competitive 

algorithms were used in [15] to predict cases and mortality 

rate. Machine learning models, such as the linear 

regression, linear regressor polynomial, support vector 

regressor, random forest regressor, decision tree, and auto-

regressive moving average were used to predict outbreaks 

[16] [17] [18] with the highest accuracy being shown by the 

auto regressive moving-average [16] and random-forest 

approaches [18]. A random forest model was also proposed 

to predict mortality in the first 20–84 hours following 

hospitalization [19]. 

Deep learning forecasting methods for new or, new and 

recovered cases using recurrent neural networks were 

proposed in [20] and [21]. The authors tested the long 

short-term memory (LSTM), bidirectional LSTM, gated 

recurrent units, variational autoencoder, and convolutional 

LSTM; the variational autoencoder showed the best 

performance among all of these [20]. The convolutional 

LSTM outperformed other models in predicting new cases 

for a one-month period [21].   

However, the development and subsequent practical 

application of models based on deep learning requires high 

computing power [22], which aggravates the financial 

disparities between different universities [23]. At least a 

partial solution towards the democratization of research in 

the field of deep learning is to use commercial cloud 

computing platforms, which allow the direct purchase of 

necessary computing power [24]. This approach has proven 

to be effective and is beginning to be applied in fields such 

as information retrieval [25], flexible maintenance [26], 

and time-series prediction [27], [28]. 

Prediction of COVID-19 hospitalizations in Slovakia 

based on linear regression was firstly conducted by [29]. 

The problem of preventing the spread of the disease is 

complex, and multidisciplinary approaches, including 

artificial intelligence methods, are required.  

Our paper focuses on short-term COVID-19 

hospitalizations forecasting in Slovakia with a machine 

learning ensemble model implemented on the MS Azure 

[30] cloud computing platform and an MLP feedforward 

network implemented locally using in MATLAB [31]. The 

automated machine learning (AutoML) [32] approach 

enables acceleration of the development and deployment of 

machine learning models without extensive programming 

knowledge, making it suitable and user-friendly for 

epidemiologists and data analytics professionals.  

The goal of hospitalization predictions is to aid the 

preparedness of hospitals and health-care professionals to 

admit all patients required hospitalizations and provide 

them proper healthcare without rescheduling planned 

elective care; it also aids the redistribution of hospitalized 

patients among different regions and districts as needed. 

2 Methods 

We propose two different machine learning methods: the 

first based on ensemble learning and the second based on 

the MLP method. The first was developed and tested in real 

time during the second wave of pandemic in Slovakia. The 

second was tested retrospectively.   

2.1 Data acquisition 

We used the dataset provided by The Institute for 

Healthcare Analysis [33], publicly available on Github. The 

dataset includes COVID-19 statistics in Slovakia, i.e., the 

daily number of positive and total PCR and antigen (Ag) 

tests; number of hospitalized patients including daily 

hospital admissions and discharges; vaccination statistics, 

etc. Available hospitalizations data are divided by districts 

and regions because of reporting from every hospital every 

day.  

2.2 Preparing dataset for machine learning time-series 

ensemble method 

The model training time-series data were the daily 

numbers of PCR and Ag positive tests; daily percentage of 

positive PCR; and Ag tests from total PCR and Ag tests. 

All training data were filtered by a seven-day simple 

moving average (SMA) filter. We assumed that testing 

PCR or Ag positive leads to a hospitalization time of four 

and seven days on average, respectively. These time shifts 

were inspired by [29], where the average time for positive 

PCR and Ag test hospitalization was taken as three and 

seven days, respectively. We performed these time shifts 

with time-series training data; the schematic of a sample 

data preparation is shown on Fig. 1. The distributions of the 

variables in the dataset and correlations between all these 

variables with hospitalizations are provided in the 

Appendix. The last PCR and Ag test data from the dataset 

were used as inputs for predicting hospitalizations from 

time-series data. The ensemble method was trained on the 

entire time-series dataset with 1/14-day shifts until the first 

day of prediction without splitting into time periods. This 

means that a separate training dataset was used for every 14 

days, ending exactly before prediction, allowing the 

continuation of this time series using the data from the 

previous days for forecast computations. The method 

predicts for the next 14 days using the rest of time shifted 

data (Fig. 1). Because of the time shifting, we can use the 

last four days from PCR testing and last seven days from 

the Ag testing as future values and consider these as 

prediction inputs. In this way, we created input data, 

allocating the last sample representing 14 days, as a test set. 

We used 5-fold rolling origin cross validation (ROCV) with 

a fixed starting point on the remaining training data. 

Shifting the data by 1/5 thus created cross-validation folds, 

which ensured that there was no data leakage.  

2.3 Preparing dataset for MLP method 

The MLP trains with the input and output data. It needs 

to have a robust dataset to be well trained. Prediction was 

performed for 14 days using input data from 14 days before 

first prediction day. Training input data were moved by one 

day to the right until the end of the dataset. As in ensemble 

method, the inputs were created from daily PCR and Ag 

test data. In addition, hospitalizations in last 14 days were 

used. To enlarge the dataset, data from all regions of 

Slovakia (8 regions)  and  their  summaries  were  used  for  



 

Fig. 1. Preparing the training dataset for machine learning time-series 

ensemble method using time shifts. The example dataset (left) is divided 

into the training part (upper right) and prediction input part (bottom right) 

using time shifts. Missing days in the prediction input (labeled as 

“AUTO”) are automatically filled by MS Azure. The entire process results 

in 14 days of hospitalization forecasting (labeled as “14-DAYS 

PREDICTION”). The example is shown without normalization for better 

visualization. Following data are mentioned in the figure: number and 

percent of positive polymerase chase reaction tests (PCR and PCR%), 

number and percent of positive antigen tests (Ag and Ag%), number of 

hospitalized patients (Hosp).  

 

training. This dataset was nine times larger than one with 

only summary data. 

For example, in one of our models, trained from 

11/10/2020 till 02/02/2020 (i.e., 85 days) we obtained 58 

inputs and their outputs (14 × 58 inputs together with 14 × 

58 outputs moved by one day) once from every region and 

once from the whole of Slovakia, giving 58 × 9 = 522 input 

data and their outputs for training. We applied a seven-day 

moving average filter to the input data for preprocessing 

and normalization to simplify the function fit. All data were 

normalized to a scale of 0 to 1, with 1 corresponding to 1.5 

times the maximum value in positive or hospitalized inputs 

and 100% as the maximum if inputs are in percent. The 

dataset was divided randomly and 80% assigned as training 

data and 20% as validation data. The last 14 days before 

prediction period were used as the test data to get the final 

14 days prediction. The dataset was prepared in MATLAB 

2020b. 

2.4 Time-series ensemble method 

The time-series machine learning ensemble method was 

trained in the MS Azure cloud machine learning module, 

which is a cloud-based machine learning service with a 

user interface. This allows users without programming 

knowledge to train; all that needs to be done is to upload 

the training dataset, choose the built-in method and desired 

features, and click to start. Azure trains huge number of 

models by default and compares them. After considering 

several models (such as decision tree, random forest, 

AutoArima, ProphetModel, ElasticNet, GradientBoosting, 

and LassoLars) we chose the voting ensemble model 

because of smallest normalized root mean squared error 

(RMSE) on prediction gained by this model compared to 

other available machine learning models. Best performance 

of this model among all available models was confirmed in 

most of our experiments. The architecture of Azure Voting 

ensemble model is shown in Fig. 2. The model consists of 

six soft voting base regressors: three gradient boosting 

regressors, one random forest regressor and two decision 

tree regressors, each with different parameters. The voting 

ensemble model considers the predictions of every 

regressor, which are weighted and averaged, the final 

prediction being the weighted average from all regressors 

in the ensemble model. The hyperparameters used are listed 

in Table 1. 

After training the model, the online endpoint must be 

created. An online endpoint is an HTTPS endpoint which is 

called by the user to obtain output of trained model. It 

contains deployments to receive data and send responses in 

real time. Access to the endpoint is deployed through a 

Python script in combination with the prediction input data.   

2.5 MLP method 

For the 14-day prediction, we used a standard MLP with 

two hidden layers. We used 15 neurons with the hyperbolic 

tangent activation function in each hidden layers. The 

output layer with 14 neurons represents a multi-step 

prediction of hospitalization with a linear activation 

function at the output. 

The architecture of our MLP network is shown in Fig. 3. 

Training and validation data are randomly divided using 

early-stopping with six validation checks. The Levenberg–

Marquardt training algorithm was used, and performance 

measured using the mean squared error. 

2.6 Evaluating the results 

The results of both methods were evaluated with RMSE 

and mean absolute percentage error (MAPE) using the 

standard formulas 
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where n is number of fitted points, At is the actual value, 

and Ft is forecast value. 

 
 



 
Table 1. Hyperparameters used in Azure Soft Voting Ensemble model. 

Model Hyperparameters 

Gradient boosting 

regressor 1 

Loss: least squares regression Learning_rate: 0.01; N_estimators: 

600; Subsample: 0.95 

Criterion: “friedman_mse”; Min_samples_split: 0.007532; 

Min_samples_leaf: 0.006152; Max_depth: 5; Max_features: 0.9; 

Validation_fraction: 0.1; Tolerance: 0.0001 

Random forest regressor 

 

Bootstrap: True; N_estimators: 200; Subsample: 0.95; 

Criterion: “mse”; Min_samples_split: 0.001281; 

Min_samples_leaf: 0.001953; Max_depth: None; 

Max_features: 0.4 

 

Gradient boosting regressor 2 

Loss: least squares regression; Learning_rate: 0.1; 

N_estimators: 600; Subsample: 0.45; Criterion: “mse”; 

Min_samples_split: 0.052854; Min_samples_leaf: 0.023458; 

Max_depth: 3; Max_features: 0.1; Validation_fraction: 0.1; 

Tolerance: 0.0001 

 

 

Decision tree regressor 1 

 

Criterion: “mse”; Min_samples_split: 0.003709; 

Min_samples_leaf: 0.007595; Max_depth: None; 

Max_features: 0.9  

Splitter: “best” 

 

 

Gradient boosting regressor 3 

 

Loss: “hubel”; Alpha: 0.9; Learning_rate: 0.01; N_estimators: 

400; Subsample: 0.35; Criterion: “mse”; Min_samples_split: 

0.008992; Min_samples_leaf: 0.013218; Max_depth: 6; 

Max_features: 0.9; Validation_fraction: 0.1; Tolerance: 0.0001 

Decision tree regressor 2 

 

Criterion: “friedman_mse”; Min_samples_split: 0.007532; 

Min_samples_leaf: 0.009524; Max_depth: None; 

Max_features: None; Splitter: “best” 

Weights (w1–w6): 0.400,0.0667,0.0667,0.0667,0.2667,0.1333 

 

3 Results 

The results of the time-series machine learning ensemble 

method are shown in Table 2. The ensemble method 

performed well in first three predictions in February when 

hospitalizations had risen and in March when it predicted 

the peak of the second wave in Slovakia. When comparing 

with real hospitalizations cases, the RMSE and MAPE 

values were in the range of 61.62–91.49 and 1.43–2.19, 

respectively. The method failed to predict the drop in 

hospitalizations from April (RMSE: 440.19 and MAPE: 

16.21) and later (Fig. 4). The importance of the variables in 

the ensemble model is listed in Fig. 5. Highest importance 

showed percent of positive antigen test, following with 

positive antigen tests. Correlations of these variables in this 

model are shown in Appendix section. 

In contrast, the MLP prediction method was quite 

inaccurate during the first months of this year (RMSE in 

range of 114.81–328.64, MAPE in range 2.76–12.94). The 

prediction accuracy improved with time; more training 

samples led to better results. Table 3 gives the average 

RSME and MAPE values for all regions and for the whole 

of Slovakia. Values for all of Slovakia were computed as a 

summary of all regions. The best regional and summary 

results were obtained in May. 

Comparisons of the performances of both the proposed 

methods in three random time periods are shown in Table 2 

and Fig. 4. 

Predictions of MLP method in all regions and the whole 

of Slovakia in random time periods in May improved 

compared to those predicted earlier (Fig. 6, Table 3- 

marked bold). 

 
Table 2. Results of time series ensemble and MLP predictions for the whole of Slovakia. The MLP 

predictions were made directly for the whole Slovakia (and not as a summary of all regions 

predictions). Time periods are from the year 2021. 

 

 

Table 3. Results of MLP method: average RMSE and MAPE in all regions and entire Slovakia 

(obtained as summary of all regional predictions). Metrics were computed from a seven-day 

moving average of hospitalizations. Time periods are from the year 2021. 

 

 

 

Fig. 2. Architecture of our implemented voting ensemble time-series model in MS Azure. The time-series ensemble model consists of six base regressors 

whose predictions are weighted with weights (w1-w6) and enter the voting system. In the figure are mentioned following data: number and percent of 

positive polymerase chase reaction tests (PCR and PCR %), number and percent of positive antigen tests (Ag and Ag %).   

Time 

period 

Metrics 

Ensemble 

RMSE 

Ensemble  

MAPE 

MLP 

RMSE 

MLP 

MAPE 

3.2.–16.2. 

17.2.–2.3. 

61.62 

91.49 

1.43 

2.19 

328.64 

- 

9.31 

- 

5.3.–18.3. 82.71 1.93 114.81 2.76 

3.–16.4. 440.19 16.21 311.44 12.94 

Time 

period 

Metrics 

Average 

RMSE 

regions 

RMSE  

whole  

country  

Average 

MAPE 

regions 

MAPE  

whole  

country 

3.2.–16.2. 72.22 308.98 15.57 8.88 

5.3.–18.3. 41.67 140.71 8.77 3.31 

3.4.–16.4. 34.69 350.91 14.68 14.35 

1.5.–14.5. 17.81 66.95 17.77 5.94 



 

Fig. 3. Architecture of MLP feedforward network. Input layer consists of 

five time-series inputs, following two hidden layers each containing 15 

neurons and the 14-day time-series prediction as the output. Following 

data are mentioned in the figure: number and percent of positive 

polymerase chase reaction tests (PCR and PCR%), number and percent of 

positive antigen tests (Ag and Ag%), number of hospitalized patients 

(Hosp).  

4 Discussion 

We proposed two machine learning approaches for short-

term hospitalization forecasting in Slovakia. The first 

approach is time-series ensemble method and the second an 

MLP neural network.  

The ensemble method performed well at the beginning of 

the experimental period, with the best RMSE being 61.62, 

but failed when hospitalizations decreased. This could be 

due to lack of training data— the method was trained with 

data from the whole of Slovakia only from November 

2020. In that time hospitalizations had risen, and the data 

from the period when cases were decreasing could not be 

learned. Surprisingly, the peak of the second wave, which 

followed the decrease in hospitalizations was predicted 

successfully with this approach. After that, no successful 

predictions with decreasing of hospitalizations were made. 

In addition, predicting hospitalizations with cloud-based 

user-friendly built-in services could make this solution 

accessible to non-programmers and easier to implement. 

Using the MLP method, the initial predictions were 

inaccurate. Its performance improved with time with 

accurate results being obtained from the time period in 

May. This success was also observed in regional 

predictions— with an average RMSE of 17.81. The RMSE 

for all regional summaries was 66.95, which we consider as 

best result for the MLP method for whole Slovakia. We 

assume that The improvement of the MLP results with time 

are due to the increase in training dataset size. 

We propose that regional predictions with RMSE lower 

than 20 and for all of Slovakia with RMSE lower than 100 

can be valuable in practice. 

We took 14 days as our forecasting periods; however, 

shorter prediction periods are expected to give better 

results. As prediction period increases, the discrepancy 

between predicted and real numbers rises. In addition, 

predicting in shorter time periods in the MLP method leads 

to more robust dataset, which may lead to even better 

results. This can be a promising direction for further 

investigation. 

Using only positive tests and previous hospitalizations as 

inputs may not be sufficient in the future. This experiment 

was done during the second wave of pandemic in Slovakia, 

when the vaccination status was not an important factor, 

and therefore, we did not notice any sudden change in the 

age distribution of positive tests. As vaccination begins, 

new input variables would be necessary, such as the 

percentage of vaccinated individuals in the population or in 

the elderly and the daily mean age of tested positive. This 

would be especially relevant during the third wave, when 

due to vaccination, the age distribution among positive 

tested and hospitalized may differ. We hope that with new 

input variables and more robust data, these methods can 

adapt to such changes.  

Forecasting COVID-19 hospitalizations is critical for 

monitoring pandemic outbreaks and provide healthcare 

without compromising on elective care. Redistribution of 

patients among district and regions can be considered based 

on such predictions if there is a shortage of hospital beds. 

Our machine learning forecasting approaches are promising

 

Fig. 4. Comparison of time-series ensemble and MLP method hospitalization predictions in three random time periods. 

 



when sufficient training data is available. Augmenting the 

training dataset using data from all regions, (as in our MLP 

method) increases the accuracy of predictions, which gives 

hope for forecasting hospitalizations in the coming third 

wave of COVID-19. 
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Fig. 5. Importance of variables in proposed ensemble model from March 

2021, obtained from model analysis in MS Azure. Following data are 

mentioned in the figure: number and percent of positive polymerase chase 

reaction tests (PCR and PCR %), number and percent of positive antigen 

tests (Ag and Ag %). Feature importance is computed in MS Azure using 

permutation feature importance inspired by [34].  

 

 

Fig. 6. Results of MLP method in random time periods in May in all Slovakian regions and the whole of Slovakia. Hospitalization data were filtered by a 

seven-day moving average filter. 



Appendix 

 
Fig. 7 Basic data overview: distribution of number and percent of positive polymerase chain reaction tests (PCR, PCR perc.), number and percent of 

positive antigen tests (Ag, Ag perc.) and hospitalizations in our dataset. Graphs were created in MS Azure. 

 
 

 

 

 
Fig. 8, 9, 10, 11 Basic data overview: correlation of number and percent of positive polymerase chain reaction tests (PCR, PCR%.), number and percent 

of positive antigen tests (Ag, Ag%) with hospitalizations. 

 

 



 

 
 

 

 

 

 

 

 

 



 
 

 

 

 
Fig. 12, 13 Importance of Ag perc. and Ag in Ensemble model. Graphs were created in MS Azure: 
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