
Tensor Decomposition-Based Training Method for High-Order Hidden
Markov Models

Matej Cibul’a , Radek Mařík

Department of Telecommunication Engineering,
Faculty of Electrical Engineering,

Czech Technical University in Prague,
166 27 Prague, Czech Republic
matej.cibula@fel.cvut.cz

marikr@fel.cvut.cz

Abstract: Hidden Markov models (HMMs) are one of the
most widely used unsupervised-learning algorithms for
modeling discrete sequential data. Traditionally, most of
the applications of HMMs have utilized only models of
order 1 because higher-order models are computationally
hard to train. We reformulate HMMs using tensor decom-
position to efficiently build higher-order models with the
use of stochastic gradient descent. Based on this, we pro-
pose a new modified version of a training algorithm for
HMMs, especially suitable for high-order HMMs. Fur-
ther, we show its capabilities and convergence on synthetic
data.

1 Introduction

Hidden Markov models (HMMs) are a popular member
of the group of unsupervised-learning algorithms. HMMs
have been extensively used in a variety of fields, including
bioinformatics[1], speech recognition[2], image process-
ing [3], etc. Nevertheless, most of the works on the topic
of HMMs considered only models of an order 1.

Hidden Markov Models of orders higher than 1 have
been used very scarcely even though it has been demon-
strated that higher-order HMMs provide substantial im-
provements in the areas of bioinformatics [4], speech
recognition [5]) or image processing [6]. Higher-order
HMMs can be replaced with a model of an order 1 with
with the same amount of free parameters but with con-
siderably higher amount of hidden states [7]. However,
increased amount of hidden states obstructs their inter-
pretability. The complexity of parameter estimation of
higher-order models has been the main reason for their
scarce use.

Traditionally, HMMs are trained using the Baum-Welch
algorithm [8] which itself is a particular case of the
Expectation-Maximization algorithm. The algorithm re-
quires non-trivial modifications to be applicable to higher-
order HMMs and still be able to converge consistently to
optima [9]. Another approach is to reformulate higher-
order HMM into an HMM of an order 1 [10], [11]. Fur-

Copyright ©2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

thermore, the number of HMM parameters that need to be
estimated grows exponentially with the model’s order.

Another approach to estimate parameters of an HMM
utilizes gradient methods [12]. Traditionally, determinis-
tic gradient descent has been used for training purposes
because of the added advantage of online training [13].
Contrary to other training methods, training algorithms
utilizing gradient descent can be provided data sequen-
tially, one-by-one, and the complete dataset does not need
to be available during the whole training process. With the
improvement of stochastic gradient descent (SGD) tech-
niques [14], those have been applied to HMM parameter
estimation as well [15]. The SGD approach provides better
convergence guarantees and is preferable to its determin-
istic counterpart.

The least commonly used approach involves Markov
Chain Monte Carlo (MCMC) sampling [16]. Its main ad-
vantage is in providing a complex distribution of HMM pa-
rameters instead of only computing their point estimates.
In practice, other techniques are preferred for their lower
computational time.

Lastly, the spectral algorithm is the newest one for train-
ing HMMs [17]. As opposed to the previously discussed
methods, this algorithm optimizes observation-operator
representation of HMMs instead of directly modifying
HMM parameters. The most significant advantage of this
approach is its provable convergence to global optima (un-
der mild assumptions on the model parameters). Another
factor is the fact that this is the only non-iterative training
algorithm. However, this learning method has only been
proposed for HMMs of order 1.

Higher-order models involve the use of tensors instead
of matrices. When it comes to use of tensors in practice
in general, we often want to find a tensor of fixed rank
that approximates the original one. Such approximations
have generally advantageous properties when it comes to
noise reduction in the original data. From a certain point of
view, low-rank tensor approximation is similar to a dimen-
sionality reduction using singular value decomposition for
matrices.

The algorithm that we propose combines the modern
stochastic gradient descent optimization with tensor de-
composition methods. We utilize the Canonical Polyadic

(CP) decomposition [18], hence, we refer to the algo-
rithm as the CP-Decomposition-Stochastic Gradient De-
scent (CPD-SGD) algorithm.

In the next section, we introduce a notation and provide
basic definitions and background to our work. Following,
in Section 3, we propose a new method and point out its
most essential ideas. We experimentally evaluate our al-
gorithm and discuss the results in Section 4.

1.1 Related Work

The idea of using the stochastic gradient descent for HMM
optimization was explored before, for example, in [15], or
[19]. However, it has been only applied to HMMs of an
order 1, while this work focuses on higher-order models.
Furthermore, both works used the traditional representa-
tion of an HMM instead of the observation-operator repre-
sentation utilized in this paper.

The application of tensor decomposition methods to
HMMs has been partially explored in the works [9]
and [20]. In [20], authors combine the Tensor-Train
decomposition [21] with the spectral algorithm for
HMMs [17], as opposed to our work where we combine
CP-decomposition and SGD. Additionally, the authors do
not consider higher-order models, leaving any possible ex-
tension in this direction unmentioned.

In [9], the author combine tensor decomposition with
Markov chain Monte Carlo methods. However, their
model is considerably more complicated and, again, con-
siders only the standard HMM representation. On the
other hand, it can straightforwardly provide confidence in-
tervals for estimated parameters instead of just a point es-
timate.

1.2 Our Contribution

We propose a new method of training hidden Markov mod-
els. It is based on recent advancements in the fields of ten-
sor decomposition and stochastic gradient methods for op-
timization. The most important advantage of the approach
is its applicability to the training of HMMs of higher or-
ders. The applicability has been achieved by introduc-
ing multiple tricks into the original gradient descent al-
gorithm [12] for the training of HMMs.

Firstly, we introduce a permutation decomposition for
transition-probability tensor, which provides possibly even
an exponential improvement in the memory required to
store those probabilities. We achieve this by clever reuse
of vectors representing individual states.

This work focuses solely on the CP-decomposition, al-
though there have been proposed multiple other decompo-
sitions [22], such as Tucker decomposition [23], and ten-
sor train (TT) decomposition [21].

Secondly, we modify the operator representation of the
HMM (similar to [10]) to allow for the optimization of
higher-order models. We use this representation during

the stochastic gradient descent instead of the "raw" model
that has been commonly used before.

Thirdly, we modify the computation of the observa-
tion probabilities given a fixed state by the application of
Bayes’s theorem and use of stationary distribution of the
Markov chains [24]. This modification provides perfor-
mance improvements, especially in cases where the num-
ber of possible different observations is far higher than the
number of hidden states.

2 Preliminaries

2.1 Notation

In this work, we follow the generally used notation, based
on [25] in a case of tensors, and [8], [17] for Hidden
Markov Models. Bold capital letters (A) denote matrices,
bold lowercase letters (a) denote vectors and normal low-
ercase letters (a) denote scalars. Tensors are denoted by
uppercase calligraphy letters, such as A . In ambiguous
cases, we add an arrow over vectors, for example, −→π .

2.2 Tensor Decomposition

Tensors are multidimensional arrays. They can be con-
sidered to be a generalization of vectors and matrices into
higher dimensions, where vector is a 1st-order tensor and
matrix is a 2nd-order tensor, respectively.

The Kronecker product of A ∈ Rk×l and B ∈ Rm×n is
denoted as A⊗B. It applies that A⊗B ∈ Rkm×ln and it is
defined as

A⊗B =

a1,1B a1,2B · · · a1,lB
a2,1B a2,2B · · · a2,lB

...
...

. . .
...

ak,1B ak,2B · · · ak,lB

 .

The Khatri-Rao product is the column-wise Kronecker
product. Given A ∈Rk×m and B ∈Rl×m, their Khatri-Rao
product is denoted A

⊙
B, A�B ∈ Rkl×m, and defined as

A�B = [a1⊗b1 . . . am⊗bm] .

For decomposition algorithms, the operation of tensor
matricization is commonly used [26]. Tensor matriciza-
tion, often referred to as reshaping or flattening, is a pro-
cess of reordering elements of a higher-order (> 2) tensor
into a matrix. All elements of a tensor must be reused;
hence, the amount of memory required to store a tensor
is the same as to store its matricized form. The standard
forms of matricized tensors are mode-n unfoldings.

Let X ∈ RI1×···×Ik . If an element in the tensor has
indices (i1, . . . , ik), then it will have indices (in, j) in its
mode-n unfolding, where j is defined as

j = 1+
k

∑
l=1
l 6=n

(il−1)Jl , where Jl =
l−1

∏
m=1
m6=n

Im.

We denote a mode-n unfolding of a tensor X as Xn.
The tensor rank of X , denoted rank(X), is defined as

rank(X)=min

{
r ∈ N

∣∣∣∣(∃a1
1 . . .a

r
k
)(

X =
r

∑
i=1

ai
1 ◦ · · · ◦ai

k

)}
,

where the symbol ◦ represents the vector outer product.
The above definition of the tensor rank gives rise to the

tensor rank decomposition. Given a tensor X ∈RI1×···×Ik

of a rank q, it can be decomposed as

X =
q

∑
i=1

λiai
1 ◦ · · · ◦ai

k.

Here, λi ∈ R are normalizing coefficients, ensuring that
all components are of the same scale while at the same
time making the convergence during computation quicker.

Trivially, each tensor has a finite rank. However, es-
timating the tensor rank is an NP-hard problem [27]. In
applications, we often want to find a tensor of fixed rank
that approximates the original one.

The rank-q̂ canonical polyadic (CP) decomposition of a
tensor X of an order k is a problem of finding such vectors
a j

i that

X̂ =
q̂

∑
i=1

λiai
1 ◦ · · · ◦ai

k,

and X̂ minimizes

||X −X̂ ||F .

2.3 Hidden Markov Models

The Hidden Markov Model (HMM) defines a probabil-
ity distribution over sequences from a finite alphabet.
Additionally, it associates each sequence of observations
o1 . . .ot with a sequence of hidden states of the same length
s1 . . .st . There is a finite amount of different states. We de-
note the set of all possible hidden states as [n] = {1, . . . ,n},
and the set of all possible observations, a.k.a. the finite al-
phabet of sequences, as [m] = {1, . . . ,m}.

It is always assumed that the HMM satisfies 2 condi-
tional independence properties. Firstly, one states that hid-
den state st depends only on a finite amount of previous
states, typically only 1, and nothing else. Secondly, one
requires that the observation ot at a time t is only depen-
dent on the hidden state st at that given moment t and no
other element of the sequence itself or other hidden states.

Formally, the HMM of the order r−1 can be described
by 3 matrices and/or tensors. Let T ∈Rn×···×n be a tensor
of state transition probabilities where

[T]i1,...,ir = Pr [st = ir|st−1 = ir−1, . . . ,st−r+1 = i1] .

Similarly, let O ∈ Rn×m be a matrix of observation proba-
bilities with

[O]i, j = Pr [ot = j|st = i] .

Lastly, let π ∈ Rn×···×n be of order 1 less than the tensor
T . It defines an initial hidden state distribution by

[π]i1,...,ir−1
= Pr [sr−1 = ir−1, . . . ,s1 = i1] .

In the most common case in the literature, the hidden
state at the time t is assumed to only depend on its imme-
diate predecessor. This means that the transition between
states can be modeled as a Markov chain of order 1. Con-
sequently, the previously defined parameters are reduced
to: T ∈ Rn×n, O ∈ Rn×m and −→π ∈ Rn.

Authors in [28], [29] showed that such HMM of the or-
der 1 can be represented by the means of observation oper-
ators. Those operators are a sufficient and computationally
efficient way to evaluate observation-sequence probabili-
ties. The probability of a particular sequence o1, . . . ,ot is
given by

Pr [o1, . . . ,ot] =
−→
1 mAot . . .Ao1

−→
π ,

where the observation operators Ai are defined [17] as

Ai = Tdiag
(
[O]1,i , . . . , [O]n,i

)
.

The standard strategy to estimate the HMM parameters
is to maximize the provided samples’ likelihood. As the
hidden states are not directly observable, algorithms often
resort to heuristics or other similar methods without any
convergence guarantees.

3 CPD-SGD Algorithm

3.1 Permutation Decomposition

We assume that we have a HMM of an order r− 1 de-
scribed by parameters T ,O,π . The transition-probability
tensor T has a finite tensor rank, let’s denote it as q1.
Hence, it has a CP-decomposition

T =
q1

∑
i=1

λiti
1 ◦ · · · ◦ ti

r.

Further, as we can incorporate the normalizing coefficients
λi into the individual components, we will omit them in the
following, writing only

T =
q1

∑
i=1

ti
1 ◦ · · · ◦ ti

r.

This omission is based on two facts. Firstly, all of the ti
j

vectors will be inferred during the training of the model.
Secondly, we do not need to constrain decomposition com-
ponents into a certain form, as we do not work with
them directly and the tensor approximation is invariant to
the way they are incorporated into decomposition compo-
nents. Hence, omitting of λi coefficients results in a lower
number of parameters to be estimated.

Every hidden state is now represented by r vectors of
length q1. Each one of them is for one position relative to
the current state, a.k.a. the first one defines the influence
of the given state on the state observed r− 1 steps in the
future from it. The next to last vector defines the influ-
ence of the given state on the following one, and the last
vector defines the behavior of the current state based on
history. For a fixed hidden state i and for j ∈ {1, . . . ,r},
those vectors have a form[[

t1
j
]

i

[
t2

j
]

i . . .
[
tq1

j

]
i

]T
.

For the purposes of interpretability, we would like to
represent each state by only one vector. Trivial solution
would be to just concatenate them. Another option is to re-
place all of those r vectors with just one. If we did this, our
model would be able to recognize previous states, how-
ever, it would not be able to distinguish their combinations
(order in time). For example, state 1 followed by state 2
would be represented the same way as state 2 followed by
state 1.

Based on the thoughts from the previous paragraph, we
propose a solution in the following form: we represent
each hidden states by a vector of a fixed length, and de-
pending on their relative position in time we permute those
vectors. More precisely, we shift their elements by one for
each time-step into the past, eg. a vector [1 2 3]T turns
into [2 3 1]T and then into [3 1 2]T.

Such a replacement vector may need to have higher di-
mension, worst-case it needs to be of length rq1, although
we will be interested only in a low-rank approximation of
the tensor T . Hence, we introduce a new parameter for
our algorithm, q2, which denotes the length of those vec-
tors (we will refer to them as state vectors). The q2 acts as
a hyperparameter that needs to be set at the beginning of
an experiment. Its choice is beyond this publication, how-
ever, it should be considerably higher than q1. With those
modifications, we can rewrite the decomposition as

T =
q2

∑
i=1

ti+r−1 ◦ · · · ◦ ti+1 ◦ ti,

where tk = t j if j = k mod q2.
We apply the same trick to the initial-state-probability

tensor π and the observation-probability matrix O,

O =
q2

∑
i=1

ti+r ◦ui,

where ui represent observations.

3.2 Matricized Representation

The observation-operator representation of HMM is ad-
vantageous during training, as it involves only matrix-
vector products. Unfortunately, this representation only

works for HMMs of order 1, whose transition probabili-
ties can be represented as a matrix. To alleviate this prob-
lem, we introduce matricized tensor using the representa-
tion from the previous subsection.

Plainly, instead of using transition probability tensor
T ∈ Rn×···×n, we use its matricized form T ∈ Rnr−1×n.

Using the previous notation, let a matrix H ∈ Rn×q2 be
defined as

H =
[
t1 . . . tq2

]
,

where ti are individual columns of the matrix.
This matrix represents behaviour of states at the time of

current observation. To get the matrix for a time step -1,
we multiply it by a permutation matrix P ∈ Rq2×q2 ,

P =

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 .

Furthermore, we define a matrix S ∈ Rnr−1×q2 as

S = HPr−1�·· ·�HP2�HP.

It is obvious, that we get the mode-r unfolding of the ten-
sor T by multiplying it with HT,

T = SHT.

For the direct replacement in the operator representa-
tion, a square matrix is necessary. We do this by imputing
zeros into matrix T, creating a sparse matrix. This is a con-
sequence of past hidden states being already given, hence,
reducing the degree of freedom of the system. By exploit-
ing the structure created by Khatri-Rao product, each row
in the imputed matrix needs to be padded to the left. The
i-th row is padded by m(i%r) to the left, creating a matrix
T0.

3.3 Unconstrained Optimization
To ensure that probabilities will not be negative and that
they will add up to 1, we would need to solve a constrained
optimization problem. To avoid this complication, we in-
stead apply a row-wise softmax function to T0. For a gen-
eral vector x, the softmax function is defined as

[softmax(x)]i =
exi

∑
mr
j=0 ex j

.

Thanks to this, we can optimize this problem as an uncon-
strained one.

The same trick can be applied to the matrix O. The
estimation of O, however, requires the application of the
softmax function to each row, where rows are typically
of considerably higher dimension than columns. In those
cases where there are tens of thousands or even more
different possible observations, this computation would
be prohibitively computationally expensive. Instead, we
would like to estimate only columns. A solution to this
problem is sketched in the following subsection.

3.4 Probability Replacement

To compute the probabilities [O]i, j = Pr [ot = j|st = i], we
would need to use our decomposed representation and
compute a whole row [O]i. However, this row contains
m elements, usually far more than the amount of hidden
states n. Instead, we use the Bayes’ theorem to compute
the following formula

Pr [ot = j|st = i] =
Pr [st = i|ot = j]Pr [ot = j]

Pr [st = i]
.

Here, the Pr [ot = j] is independent of hidden states and
cannot be optimized, which means we can remove it from
the expression during training as it does not provide any
valuable gradients.

The estimation of Pr [st = i|ot = j] requires the estima-
tion of m probabilities, one for each hidden state, which
is computationally more feasible than previous approach.
We will denote this modified matrix as OT.

Lastly, the expression Pr [st = i] is from a stationary dis-
tribution of the Markov chain represented by the hidden-
state transitions T0. It can be calculated by solving a linear
system of equations which is a completely differentiable
process. We denote its solution as z,

[z]i = Pr [st = i] .

Furthermore, the estimation of z needs to be done only
once during each batch which further improves perfor-
mance.

3.5 The CPD-SGD algorithm

The pseudocode of the complete algorithm is presented in
Algorithm 1. We formulate the algorithm using the auto-
matic differentiation framework. Hence, the exact update
rules for individual parameters are determined based on
the chosen optimizer.

The optimizer can be chosen based on the concrete task
or other requirements. It can be an SGD with or without
adaptive learning rate. We choose the later option in this
work. Another option is to utilize one of the momentum-
based methods, such as Adam [30]. In any case, the update
of the optimizer parameters is done within the body of the
function update_params_based_on() in the Algorithm
1.

The computation is organized into epochs that repeat
until the model has converged. We assume that the −→π is a
uniform distribution, hence we replaced it in the algorithm
with the vector of ones. The algorithm evaluates the log-
likelihood of the given sequence or sequences during each
epoch and computes their respective gradients. Hence, the
algorithm can be used in both online and batch settings.
Afterward, the parameters are updated based on the cho-
sen optimizer. The use of log-likelihood is necessary as
otherwise, tiny probabilities may cause computational er-
rors/underflows.

Algorithm 1: The CPD-SGD Algorithm
Result: H,OT
initialization
ln_prob← 0
while not_converged() do

S←HPr−1�·· ·�HP2�HP
T← softmax(SHT)
z← solve(T)
T← Tdiag(z)
T0← add_zeros_and_shift(T)
OT← eval_cols(xk . . .x1)
forall sequences xt . . .x1 in current batch do

ln_prob←
ln_prob− ln

(−→
1 T . . .T0diag([OT]•,x1

)
−→
1
)

end
update_params_based_on(ln_prob)
ln_prob← 0

end

4 Experiments

We experimentally evaluated the proposed CPD-SGD
training algorithm that was presented in Section 3. To
do this, we generated a synthetic dataset. The synthetic
dataset was generated to resemble natural language prop-
erties and to emphasize the advantages of higher-order
HMMs. To evaluate and compare trained models, we com-
pute the likelihood of the test sequences for each model.
The focus of this work is to provide a proof of concept
of the proposed algorithm, hence, further experiments and
applications to disjoint datasets are relegated to the future
work.

4.1 Synthetic Dataset

We generate the synthetic dataset as an output from an
HMM model of an order 5 with 20 hidden states. The
amount of possible distinct observations is equal to 10 000.
This model was created in such a way as to be close to but
not completely deterministic. The generated sequences are
all of length 50, as this is long enough to alleviate the influ-
ence of the initial-states distribution and short enough not
to cause an arithmetic underflow. The initial state proba-
bilities of the model were chosen as a stationary distribu-
tion of its underlying Markov chain.

4.2 Convergence

To evaluate the convergence of the CPD-SGD algorithm,
we divide the dataset into two disjoint sets: training data
and test data. While training data is used to estimate pa-
rameters of the HMM, test data is used to estimate the
model’s fit.

In the first experiment, we hypothesize an HMM model
of an order 3, represented by state vectors of length 50.

Figure 1: A continuous convergence of the CPD-SGD al-
gorithm.

The number of hidden states was chosen to be 20. Figure
1 shows the evolution of the model’s fit after each epoch
(an epoch consisted of 100 sequences). It can be seen that
the parameters of the model are being optimized.

We follow by assessing the convergence of our proposed
algorithm in comparison to the Baum-Welch algorithm [8]
for models of order 1. We use a set of sequences to esti-
mate parameters of HMMs, and afterward, we compute
each model’s fit using a different set of test sequences.
We repeat this process 500 times, each time with differ-
ently reorganized sequences into train and test sets. Fur-
thermore, we always use 10 different initializations for the
Baum-Welch algorithm, train all of them, and choose the
model with the best fit.

Figure 2: A distribution of differences between log-
likelihoods of models trained by Baum-Welch and CPD-
SGD algorithms.

The distribution of differences between fits of both of
those algorithms can be seen in Figure 2. As apparent

from the figure, our algorithm attains results comparable
to traditional approaches with low differences in absolute
and relative likelihood differences.

4.3 Model Comparisons

In the final experiment, we compare the expressive power
of the higher-order models. We train models of orders
from 1 up to 5, using the same train set. After they con-
verge, we compute their fit on the test sequences. All mod-
els were trained using the CPD-SGD algorithm, with the
number of hidden states equal to 20, and with state vectors
of length 50. They were randomly initialized.

Figure 3: Maximal attained log-likelihoods of models of
given order.

Figure 3 shows individual fits of those models. As ex-
pected, the higher-order models perform better.

5 Conclusion

In this work, we build upon one of the well-known unsu-
pervised learning methods - hidden Markov models. We
explored the possibilities to improve the training of HMMs
of higher orders. We followed up on previous works in the
area and proposed a new algorithm for HMM training, de-
noted as the CPD-SGD algorithm.

Our algorithm is based on multiple ideas that stem from
- among others - an emerging area of tensor decomposition
methods. We utilize permutation decomposition which as-
signs only one vector to each state while it reuses all of its
values for each time step. Further, we used matricized rep-
resentation of the probability tensor to extend the operator
representation of HMMs to higher-order models. By ap-
plying the softmax function, we avoided the problematic
constrained optimization. Finally, we reformulated com-
putation of observation probabilities, making them more
efficient to compute in case of models with observation
space far larger than state space.

We experimentally showed that higher-order HMMs
could be efficiently represented in memory as decomposed
tensors while being suitable for accelerated training using
stochastic gradient descent optimization.

The focus of this paper has been on constructing an al-
gorithm for training higher-order HMMs in an efficient

way. We have experimentally verified that our method
works and is able to train an HMM model on a synthetic
dataset accurately.

In future work, we plan to apply this method to real-
world problems in natural language processing, which
requires models with large state spaces and observation
spaces.

References

[1] Byung-Jun Yoon. Hidden markov models and their appli-
cations in biological sequence analysis. Current Genomics,
10:402 – 415, 2009.

[2] M. Gales and S. Young. The application of hidden markov
models in speech recognition. Found. Trends Signal Pro-
cess., 1:195–304, 2007.

[3] J. Bobulski and Lukasz Adrjanowicz. Two-dimensional
hidden markov models for pattern recognition. In ICAISC,
2013.

[4] M. Seifert, K. Abou-El-Ardat, Betty Friedrich, B. Klink,
and A. Deutsch. Autoregressive higher-order hidden
markov models: Exploiting local chromosomal dependen-
cies in the analysis of tumor expression profiles. PLoS
ONE, 9, 2014.

[5] Lee-Min Lee and Jia-Chien Lee. A study on high-order hid-
den markov models and applications to speech recognition.
In IEA/AIE, 2006.

[6] L. Benyoussef, C. Carincotte, and S. Derrode. Extension
of higher-order hmc modeling with application to image
segmentation. Digit. Signal Process., 18:849–860, 2008.

[7] W. Zucchini and I. Macdonald. Hidden markov models for
time series: An introduction using r. 2009.

[8] L. Rabiner. A tutorial on hidden markov models and se-
lected applications. Proceedings of the IEEE, 1989.

[9] Abhra Sarkar and D. Dunson. Bayesian nonparametric
higher order hidden markov models. arXiv: Methodology,
2018.

[10] C. Xiong, Di Yang, and L. Zhang. A high-order hidden
markov model and its applications for dynamic car owner-
ship analysis. Transp. Sci., 52:1365–1375, 2018.

[11] U. Hadar and H. Messer. High-order hidden markov mod-
els - estimation and implementation. 2009 IEEE/SP 15th
Workshop on Statistical Signal Processing, pages 249–252,
2009.

[12] P. Bagos, T. Liakopoulos, and S. Hamodrakas. Faster gra-
dient descent training of hidden markov models, using in-
dividual learning rate adaptation. In ICGI, 2004.

[13] P. Baldi and Y. Chauvin. Smooth on-line learning algo-
rithms for hidden markov models. Neural Computation,
6:307–318, 1994.

[14] Y. LeCun, L. Bottou, G. Orr, and K. Müller. Efficient back-
prop. In Neural Networks: Tricks of the Trade, 2012.

[15] Ahmed Saaudi, Yan Tong, and Csilla Farkas. Probabilistic
graphical model on detecting insiders: Modeling with sgd-
hmm. In ICISSP, 2019.

[16] Md Pavel Mahmud and Alexander Schliep. Fast mcmc
sampling for hidden markov models to determine copy

number variations. BMC Bioinformatics, 12:428 – 428,
2011.

[17] Daniel J. Hsu, S. Kakade, and Tong Zhang. A spectral algo-
rithm for learning hidden markov models. J. Comput. Syst.
Sci., 78:1460–1480, 2009.

[18] R. Harshman. Foundations of the parafac procedure: Mod-
els and conditions for an "explanatory" multi-model factor
analysis. 1970.

[19] Yian Ma, Y. Ma, N. Foti, and E. Fox. Stochastic gradient
mcmc methods for hidden markov models. In ICML, 2017.

[20] Maxim A. Kuznetsov and I. Oseledets. Tensor train spec-
tral method for learning of hidden markov models (hmm).
Computational Methods in Applied Mathematics, 19:93 –
99, 2019.

[21] I. V. Oseledets. Tensor-train decomposition. SIAM Journal
on Scientific Computing, 33(5):2295–2317, 2011.

[22] Majid Janzamin, Rong Ge, Jean Kossaifi, and Anima
Anandkumar. Spectral learning on matrices and tensors.
Found. Trends Mach. Learn., 12:393–536, 2019.

[23] LR Tucker. Some mathematical notes on three-mode fac-
tor analysis. Psychometrika, 31(3):279—311, September
1966.

[24] P. Brémaud. Non-homogeneous markov chains. 2020.
[25] Tamara G. Kolda and Brett W. Bader. Tensor decompo-

sitions and applications. SIAM Review, 51(3):455–500,
September 2009.

[26] Stephan Rabanser, Oleksandr Shchur, and Stephan Gün-
nemann. Introduction to tensor decompositions and their
applications in machine learning. ArXiv, abs/1711.10781,
2017.

[27] Christopher J. Hillar and Lek-Heng Lim. Most tensor prob-
lems are np-hard. J. ACM, 60(6), November 2013.

[28] Eyal Even-Dar, S. Kakade, and Y. Mansour. The value
of observation for monitoring dynamic systems. In IJCAI,
2007.

[29] H. Jaeger. Observable operator models for discrete stochas-
tic time series. Neural Computation, 12:1371–1398, 2000.

[30] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2015.

	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Notation
	Tensor Decomposition
	Hidden Markov Models

	CPD-SGD Algorithm
	Permutation Decomposition
	Matricized Representation
	Unconstrained Optimization
	Probability Replacement
	The CPD-SGD algorithm

	Experiments
	Synthetic Dataset
	Convergence
	Model Comparisons

	Conclusion

