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Abstract: The paper introduces a novel age-at-death es-
timation model based on Convolutional Neural Network
(CNN). The model uses 3D scan of human pubic symph-
ysis as an input and estimates the age-at-death of the in-
dividual as an output. The Mean Absolute Error (MAE)
of this model is about 10.6 years for individuals between
18 and 92 years of age-at-death. Moreover, the results of
the study indicate that pubic symphysis can be used to es-
timate the age of individuals across the entire age range.
The study involved a sample of 483 bone scans collected
from 374 individuals (from which 109 individuals pro-
vided both left and right pubic symphysis).

1 Introduction

Estimating the age of death of unknown human skeletal
remains represents one of the major tasks of biological an-
thropologists. Traditionally, the estimation is performed
visually by assessing degenerative changes of join surfaces
(e.g. [8], [10]), among which the pubic symphysis of the
pelvis is widely used (e.g. [4], [11]). Figure 1 illustrates
a few examples of human symphyseal surfaces of individ-
uals with the age-at-death of 25, 35, 45, 65 and 85 years,
respectively. Visual observation, however, has its limita-
tions, e.g. it is subjective, dependent on observer experi-
ence, and last but not least, its applicability suffers from
low accuracy and reliability of estimates (e.g. [7], [9]).
To achieve both accurate and reliable age estimates, it is
recommended to use three broad intervals [1], [5]. More-
over, single-indicator methods do not work equally well
throughout the adult period, for example, it has been re-
ported that the pubic symphysis is no longer suitable for
age estimation after the age of 40 years [2], [6]. Currently,
the research has shifted to imaging technologies and so-
phisticated data mining methods (e.g. [3], [15]) that could
offer a more objective and accurate perspective on age es-
timation in adults. The Algee-Hewitt – Slice – Stoyanova
team ([12], [13] proposed the most prominent approach
[14]) with the estimation error (RMSE) ranging between
13.7 and 16.6 years (based on the dataset consisting of 93
samples) [13]. In this paper, we did not follow that ap-
proach. Instead, we developed a novel age-at-death esti-
mation model based on CNN. Our model takes an image
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representing the 3D structure of the bone (see the follow-
ing sections) and predicts an individual’s age-at-death us-
ing the CNN for pattern recognition.

Figure 1: From left to right, examples of symphyseal sur-
face scans of individuals with the age-at-death of 25, 35,
45, 65 and 85 years.

2 Input data

Table 1 shows the age-at-death distribution of our collec-
tion. The mean age is 53.7 years, and the standard de-
viation is 17.1 years. Table 2 shows the structure of the
osteological collection.

Table 1: Age distribution of the collection
Age-at-death: 18–29 30–39 40–49 50–59 60–69 70+
Males 24 54 57 56 59 49
Females 10 32 33 39 21 49

Table 2: Structure of the osteological collection
Country: Portugal Switzerland Thailand Crete
Males 129 45 114 10
Females 91 21 68 5

The input dataset consists of 483 skeletal samples from
adult (18–92 years) males and females. All skeletal sam-
ples were digitised using the HP 3D Structured Light
Scanner PRO S2 or S3 scanner and exported in STL for-
mat. The STL format is a file format describing an un-
structured triangulated surface using a 3D Cartesian co-
ordinate system. In this format, the surface geometry of
a 3D object is represented as a number of small adjacent
triangles. Figure 2 shows an example of the 3D scan.



Figure 2: Example of the 3D scan of the symphysis pubica
of a 25-year-old female

3 Data preprocessing

The input data coming from the scanner needs to be pre-
processed before applying the proposed age estimation
method. The STL format is a very convenient input data
format, however, it is relatively unsuitable for direct use
due to the irregular distribution of all vertices in the 3D
space. There are several options how the input data could
be represented and regularised. For instance, one can use
voxel representation, where each voxel encodes one bit of
information – the presence of the bone. However, for a
typical scan dimension 50×15×15 mm (see Figure 2) with
the resolution of 0.1 mm, this results in over 11 million of
voxels per one 3D scan, i.e. in about 11.3 Mbit of infor-
mation. On the other hand, one can use only the top view
of the symphysis surface (see Figure 3), since this area
has the highest age prediction capabilities [4], [11]. The
surface height could be encoded in colour or in grayscale.
Using 8-bit grayscale gives even better resolution for the
surface height, compared to the previously described voxel
representation. This approach reduces the overall size to
0.6 Mbit, while keeping the same resolution for the other
two dimensions. However, this "top view" representation
ignores the side walls of the scan, and therefore, eliminates
potentially additional age-related information.

Figure 3: Top view on the symphysis surface from Fig-
ure 2. The high of the surface is encoded in colour.

Therefore, we decided to transform the input data from
the Cartesian coordinate system to a new coordinate sys-
tem in such a way that the side walls of the scan could be
examined in a similar way to the "top view" representa-
tion. First, the position, size, and orientation of all scans
needs to be standardised. Then, every point (x, y, z) in the
Cartesian coordinate system is transformed to a point (λ ,

µ , ν) in the new coordinate system using the following
equations

λ = ϕcos(θ),
µ = ϕsin(θ),
ν = z,

(1)

where
θ = atan(y/x),
ϕ = acos(z/ρ),

ρ =
√

x2 + y2 + z2.

(2)

Here, we should note that θ = atan(y/x) is the four
quadrant arctangent of the elements of x and y such that
−π ≤ atan(y/x)≤ π . The concept of this coordinate sys-
tem transformation is illustrated in Figure 4. Figure 4
shows some point P on the surface S, where the surface
S represents the surface of the symphysis. Initially, the
point P is transformed into the spherical coordinates us-
ing the equation (2). Consecutively, this point is further
transformed into the point P’ using the equation (1). If all
points obtained from the scan are transformed in such a
way, then the surface S is transformed to the new surface
S’.

(a) First step (b) Second step

Figure 4: Transformation from the Cartesian coordinate
system

The above-described transformation has several inter-
esting properties and offers multiple advantages. Figure 5
helps to understand these properties. Figure 5 (a) shows a
cube placed at the centre of the Cartesian coordinate sys-
tem. Figure 5 (b) shows the same cube but in the new co-
ordinate system. Since the transformation preserves ν = z,
all points have the same height above the x-y plane, or λ -
µ plane, respectively. The cube is virtually stretched out
from the bottom side of the cube in that way that the en-
tire cube can be described as a function of the two vari-
ables λ and µ , i.e., for each point (λ ,µ) in a portion of the
λ -µ plane (the domain of the function) we can assign a
unique number f (λ ,µ). This is very advantageous, since
the complicated 3D shape can be transformed to a 2D im-
age practically without the loss of information.

Another advantage of the proposed transformation is a
consequence of preserving ν = z. As already mentioned,
all points have the same height above the x-y plane, or λ -
µ plane, respectively. This allows us to detect and analyse
the disturbances in the symphyseal surface profile quite



(a) Cube in the Cartesian coordinate system

(b) Cube in the proposed coordinate system

Figure 5: Example of the proposed coordinate system
transformation

easily. This transformation, however, also has few draw-
backs. First, it does not preserve the global shape of the
surface as seen from a perpendicular view to that surface.
For instance, perfectly square side-walls of a cube (Fig-
ure 5 (a)) become increasingly stretched out as ϕ grows.
This can be seen in Figure 5 (b), where the bottom edge
of the “square” is much wider compared to the upper edge
of that “square”. Moreover, the bottom side of the original
cube is completely deformed and rather resembles a ring,
as seen in Figures 5 (b) in the dark blue areas of the image.
However, this disadvantage is of little significance for our
purposes, since all pubic scans have no bottom (3D scan
captures only the surface of the bone, not internal parts of
the bone), and the coordinate system is located in such a
way that the most important areas of the scan are deformed
only slightly. Figure 6 shows the distribution of a set of
points in the λ -µ plane, which were originally uniformly
placed on the surface of the cube. This helps to visualise
the deformation of the cube shape. The top side of the cube
is located around the origin of the λ -µ plane. The edges
of the front side of the cube are highlighted in green. As
can be seen, the bottom edge of the cube is more stretched
compared to the top edge. The second disadvantage of the
proposed coordinate system is more fundamental for com-
plicated shapes, as 3D scans can be. Namely, not for all
shapes, we can assign a unique number f (λ ,µ) in the λ -
µ plane. All points with the same value of θ and ϕ (for
instance, points P, Q and R in Figure 4 (a)) are projected
into the same (λ , µ) coordinates. In this case, we can se-
lect the maximum, minimum, median or the average of all
points mapped to the same (λ ,µ) point. In this situation,

some information from the original shape is lost and can-
not be fully recovered anymore. This creates unwanted
artefacts in the transformed data. However, we have ex-
perimentally observed that it occurs only occasionally for
our dataset and affects only small portions of the whole
area. In our case, these artefacts are partially suppressed
by scaling down all x-coordinates by a factor of 2.5 before
applying the above described transformation of the coor-
dinate system.

Figure 6: Visualisation of a set of points originally uni-
formly located on the cube surface in the Cartesian coor-
dinate system after the projection into the λ -µ plane.

Figure 7 shows the symphysis surface from Figure 2 in
the new coordinate system. The ϕ variable is plotted with
a resolution of 2◦ for better visualisation. The actual reso-
lution is set to 0.5◦. The surface from Figure 7 is projected
onto a regular mesh in the λ -µ plane, where the ν coordi-
nate is encoded in 8-bit (or 16-bit) value, effectively cre-
ating a grayscale image as shown in Figure 8. The range
of angle ϕ can be arbitrarily chosen, e.g., if chosen such
that ϕ ∈< 0◦,90◦ >, then only points above the x-y plane
(with a positive z value) are used. The grayscale image
can be directly used as input to the age estimation model.
Moreover, to increase the variability of the input training
dataset and the robustness of our model, we have gener-
ated 41 projections (grayscale images) for each 3D scan
with a slightly rotated and translated origin of the Carte-
sian coordinate system.

Figure 7: Symphyseal surface fom Figure 2 in the pro-
posed coordinate system with the resolution of 2◦ of ϕ



Figure 8: Generated grayscale image

4 Age estimation model

Our age estimation model consists of several identical age
predictors. Each predictor is based on convolutional neu-
ral network [16]. Figure 9 shows the main idea of the age
estimation flow. First, the 3D scan is transformed into sev-
eral grayscale images (see Figure 8 as an example). These
images are consecutively directly used as input for indi-
viduals age predictors. Second, an aggregation function is
applied in order to combine the results from all predictors,
and thus, to provide the final prediction. We have chosen
mean and median as two possible aggregation functions.
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Figure 9: Age prediction for a single individual. There is
a single 3D scan for which we build multiple projections
(41 in this case). By applying the predictor for each of
the projections, we obtain multiple age predictions that are
finally aggregated to gain the final predicted age.

4.1 Predictor structure

The application of convolutional neural networks was an
obvious choice. We have experimented with various ar-
chitectures. In the final experiments, we were mainly in-
spired by the setup used for X-Ray images processing [17].
We also experimented with topologies based on DenseNet
[18, 19], which exploits a specific topology that shortens
layer connections by connecting each layer to every other
layer in a feed-forward fashion. The final predictor struc-
ture is shown in Figure 10. The model consists of a total
of 20 layers. In the first part, the input image is reduced
and transformed into features using convolutional layers
in combination with pooling, activation (Ramp) and regu-
larisation layers. The second part represents densely con-

nected feedforward networks that transform 1024 features
into a single real value. For better generalisation, we used
a dropout layer in the second part.

NetChain
Input

image
array (size: 1×160×160)

Augm ImageAugmentationLayer array (size: 1×128×128)
Model NetChain (20 nodes) vector (size: 1)

Output scalar

Model: NetChain

Input array (size: 1×128×128)
1 ConvolutionLayer array (size: 8×122×122)
2 BatchNormalizationLayer array (size: 8×122×122)
3 Ramp array (size: 8×122×122)
4 ConvolutionLayer array (size: 16×116×116)
5 BatchNormalizationLayer array (size: 16×116×116)
6 Ramp array (size: 16×116×116)
7 PoolingLayer array (size: 16×58×58)
8 ConvolutionLayer array (size: 16×56×56)
9 BatchNormalizationLayer array (size: 16×56×56)
10 Ramp array (size: 16×56×56)
11 PoolingLayer array (size: 16×28×28)
12 ConvolutionLayer array (size: 16×26×26)
13 BatchNormalizationLayer array (size: 16×26×26)
14 Ramp array (size: 16×26×26)
15 PoolingLayer array (size: 16×8×8)
16 FlattenLayer vector (size: 1024)
17 DropoutLayer vector (size: 1024)
18 LinearLayer vector (size: 100)
19 Ramp vector (size: 100)
20 LinearLayer vector (size: 1)

Output vector (size: 1)



Figure 10: Age predictor. The network is wrapped with
an Image Augmentation layer, which implements random
transformations during training.

4.2 Implementation details

The model was implemented in Wolfram Mathemat-
ica using an in-house neural networks package built
on the MXNet framework. To improve the ro-
bustness of the network training, we incorporated an
ImageAugmentationLayer to the input layer. This layer
takes the input image 160x160 pixels and randomly crops
it to 128x128 pixels during the training phase – this al-
lows us to efficiently expand the training dataset without
having to implement a custom batch function. During the
evaluation phase, the ImageAugmentationLayer crops
the input image around the centre in a deterministic way,
so it does not affect it during evaluation. We have chosen
slightly larger kernels (7x7) in the first two layers to bet-
ter handle larger structures in blurred images. We use the
batch normalisation layers which are proposed as a tech-
nique to help coordinate the updating of multiple layers
in the model [16]. Figures 11 and 12 are used as exam-
ples illustrating the extracted patterns for selected layers of
the network for 20- and 72-years-old individuals, respec-
tively. These figures show the input image and the output
from layers #3, #6, #10 and #19. As it can be seen, the
model identifies the vertical structures and the edge of the
symphyseal surface reasonably well from the input image.
These vertical structures combined with the shape of the
symphyseal edge are also used by experts to identify the
age of the individual.



Figure 11: An example of a 20-years-old individual (predicted age = 20.82) evaluation – the surface structure can be
clearly recognised.

Figure 12: An example of a 72-years-old individual (predicted age = 71.6) evaluation. Even though we can see almost no
details in the input image, the model can identify vertical (in this orientation) structures, which seems to be a key for the
age identification.

4.3 Training

As already mentioned, we have multiple images for a sin-
gle individual (41 images per bone). For some individuals,
we have at our disposal left and right bones, so there are
82 images for a given individual. All models are designed
to process a single image on input, so the training set is
an unstructured list of pairs {image,age}. Since we need
proper testing, all images for a single individual must be in
the same fold. Cross-validation uses the information about
the ID of the individual to split the dataset properly. The
folds are then flattened, and we perform standard training
for mapping images to real values (age).

We use a standard Adam optimiser [20] with a batch
size 16 (experimentally chosen) running on the GPU for
training. Each training runs approximately 300 rounds (we

have performed many experiments from 100 to many thou-
sands), representing almost 10 million processed records.

4.4 Evaluation

To compare the models and study the behaviour, we have
performed two ways of model evaluation. Obviously, the
main goal is to predict the age of an (unknown) individual
based on the 3D scan of the bone, so we evaluated the
model for each individual (41 or 82 images) and computed
the predicted age using aggregation. Figure 13 shows the
actual age vs. the predicted age per individual. Based on
the size of the dataset, we have chosen 5-fold validation
for all of our experiments.
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Aggregation: Mean, RMSE = 12.92, 5-fold cross validation

Figure 13: Age prediction with mean aggregation func-
tion. Each dot represents a single individual.

5 Results and discussion

Stoyanova et al. presented in their study [13] five
age-estimation models with similar age estimation per-
formance and provided an open source software called
forAGE (available at http://morphlab.sc.fsu.edu/). The
best model (according to their study) is "SAH&VC"
(SAH+Outline) and provides MAE of approximately
10.79 for their entire dataset (93 samples). To compare
our model with their state-of-the-art model, we used their
software and evaluated the MEA for our dataset as well.
The results are summarised in Table 3. It should be noted
here that for our models, MAE and RMSE are computed
using 5-fold cross-validation, whereas for the model from
[13] MAE and RMSE are computed directly.

Table 3: Age prediction results. The table compares MAE
and RMSE of our models with the model designed by
Stoyanova et al. [13] used on our dataset.

Age estimation model MAE RMSE
Our model (Median) 10.63 12.94
Our model (Mean) 10.60 12.92
SAH&VC 19.52 25.04

As the presented results indicate, our models outper-
form the model developed by Stoyanova et al. [13] in
terms of both MAE and RMSE. There is a significant dis-
crepancy between the MAE presented by Stoyanova et
al. and the MAE computed on our dataset (i.e., 10.79 vs.
19.52 years). This discrepancy is discussed below in the
text.

To determine whether our model contains any system-
atic error or whether any particular age intervals introduce
some anomalies in the prediction, we processed the pre-
dicted ages per one-year age intervals. Figure 14 shows
the variation in age predictions for each age class. As can

be seen, our model generally overestimates younger in-
dividuals (under the age of 55 years) and underestimates
mature ones (above the age of 55 years). This is a result
of the tendency to predict the age towards the mean age of
the sample.
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Figure 14: Variation of age predictions for particular age
class (all individuals mixed) for our model. The image
shows the minimum, maximum, q1, q2 (median) and q3
quartiles. Black dots represent outliers defined by quartiles
and 1.5× interquartile range. The central line connects the
median values. Aggregation function: Mean

Similarly, we analysed the SAH&VC model from [13].
Figure 15 shows the variation of age predictions for partic-
ular age class. As can be seen, the SAH&VC model gen-
erally underestimates all individuals above 40-50 years.
More specifically, for individuals over 45 years old, the
average of all estimations reaches only 37.7 years (for our
dataset). We believe that this primarily results from the
unbalanced age distribution of the dataset used in [13].
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Figure 15: Variation of age predictions for particular age
class according to SAH&VC model by Stoyanova [13].



Moreover, we observed that our model can estimate the
age-at-death of an individual over the entire age interval
(in our case between 19–92 years) – see Figure 14. This
contrasts with e.g. [2] and [21], where pubic symphysis
is considered appropriate for individuals up to 40 years,
or 60 years, respectively. When the maturation process of
pubic symphysis is complete, the morphological changes
are degenerative and highly variable between individuals
[2], [22]. However, we believe that our model can capture
even such changes.

6 Conclusion

We have developed a novel age-at-death estimation model
based on convolution neural networks. Our model pro-
vides a mean absolute error of approximately 10.6 years
and is suitable for adult and mature individuals. Our re-
sults indicate that the pubic symphysis reflects the age of
an individual throughout their entire adult life. In other
words, we have observed no limitations in terms of age
prediction capabilities of pubic symphysis of adult indi-
viduals.
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