
Tackling Generation of Combat Encounters in Role-playing Digital Games

Matouš Kozma1, Vojtěch Černý1, and Jakub Gemrot1

Faculty of Mathematics and Physics, Charles University
Ke Karlovu 3, Praha 2, 121 16, Czech Republic

mattkozma@hotmail.com, {cerny,gemrot}@gamedev.cuni.cz

Abstract: Procedural content generation (PCG) has been
used in digital games since the early 1980s. Here we fo-
cus on a new problem of generating personalized combat
encounters in role playing video games (RPG). A game
should provide a player with combat encounters of ade-
quate difficulties, which ideally should be matching the
player’s performance in order for a game to provide ade-
quate challenge to the player. In this paper, we describe
our own reinforcement learning algorithm that estimates
difficulties of combat encounters during game runtime,
which can be them used to find next suitable combat en-
counter of desired difficulty in a stochastic hill-climbing
manner. After a player finishes the encounter, its result is
propagated through the matrix to update the estimations
of not only the presented combat encounter, but also simi-
lar ones. To test our solution, we conducted a preliminary
study with human players on a simplified RPG game we
have developed. The data collected suggests our algorithm
can adapt the matrix to the player performance fast from
little amounts of data, even though not precisely.
Keywords: Procedural generation, Video games, Role-
playing games, Encounter generation, Difficulty adapta-
tion

1 Introduction

Many games today implement some form of procedural
content generation (PCG) [1, 2], where some parts of a
game are generated by an algorithm. PCG is a colloquial
term referring to creation of digital content through rules
instead by hand. In games, it has been used for generating,
e.g. dungeon level layouts (Rogue by Michael Toy and
Glenn Wichman, 1980) to entire galaxies (Elite Danger-
ous by Frontier Developments, 2015). This can greatly re-
duce the work required from designers or artists. It can im-
prove the replay value of the game, as, e.g., the levels, dun-
geons, characters, or even dialogues can be generated dur-
ing playtime to vary a player’s game-play experience every
run. This paper deals with the PCG of combat encoun-
ters for role-playing games (RPGs). Combat encounter in
RPG refers to any situation in which a player, who is in
control of virtual characters usually called heroes, faces an
opposition of enemy non-player characters (NPC) usually
called monsters, which result in a combat between char-
acters. The problem of combat encounter generation can

Copyright ©2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

be described as how to select a group of monsters that a
player should face while keeping the game engaging for
the player.

One of the current widely accepted psychological mod-
els of engagement in games is flow [3, 4]. Csikszentmiha-
lyi defines flow as:"A state in which people are so involved
in an activity that nothing else seems to matter; the expe-
rience is so enjoyable that people will continue to do it
even at great cost, for the sheer sake of doing it.” [5]. It
is thought that a player can enter the flow state only if a
game supplies a challenge that is adequate to the player’s
ability [6]. Wrt. player skill, if the challenge is too high,
a player may experience anxiety, fear of failure or frustra-
tion, while if the challenge is too low, a player may expe-
rience routine, boredom or loss of interest (Fig. 1).

Figure 1: Relation of the player’s skill to the challenge
provided by the game, depicting the flow channel area.

Focusing on RPG combat encounters, the challenge of
their design is how to compose a group of monsters play-
ers should face in order for them to stay in the flow chan-
nel (Fig. 1). This is problematic as the player’s ability is
not known when the game starts. Whereas we can fathom
how difficult a given combat encounter is, e.g., by statis-
tics over monsters combat values (total health, damage per
second, etc.), we do not know how proficient a player is at
first or how fast they can improve in playing the game. We
propose to solve this problem using reinforcement learn-
ing, i.e., to create a system that given the observation of
player’s performance in the game can generate next com-
bat encounters of appropriate difficulty.

The rest of the paper is structured as follows. In Section
2, we examine work related to ours. In Section 3, we for-
mulate the combat encounter generation problem (CEGP)
and requirements on its solutions, namely the ability to
adapt to concrete game instances and the fact the solu-
tion must be able to adapt to the player fast. In Section
4, we detail our approach tackling CEGP. In Section 5, we
present an implementation of our approach for an example

RPG game we have created to test it. In Section 6, we de-
scribe and discuss the results of an experiment with human
subjects that was conducted to test our approach. Finally
in Section 7, we conclude the paper with notes on future
work.

2 Related Works

While procedural content generation in games is a well-
studied field, it seems that existing research does not focus
on generating combat encounters. The works we found
about content generation in RPGs focus either on generat-
ing levels [7, 8], or quests [9, 10].

We tried looking at other genres for inspiration, yet we
were unable to find any relevant research. It seems that
even in genres such as platformers[11] or roguelikes[12]
the main focus is on generating the level, not on generating
monsters or combat encounters in general.

2.1 Dynamic Difficulty

The encounters we generate must be appropriately diffi-
cult for the player. Therefore, techniques for runtime ad-
justment of difficulty might be relevant to us.

Xue et al.[13] describe the results of adding dynamic
difficulty to a match-three game. For our purposes, the
most important conclusion is that we should attempt to
maximize engagement throughout the entire game, not fo-
cus on creating encounters of some specific difficulty.

Missura and Gärtner[14] introduced an algorithm that
could split players into groups and then generate chal-
lenges specifically for that group. However, this approach
required a lot of data about many players playing the game,
which we do not have, so this approach could not be used.

2.2 Algorithm Evaluation

As the goal of the algorithm will be generating encounters
suitably difficult for the players, its evaluation must in-
volve real people playing the encounters generated by the
algorithm. We have chosen to also measure the player’s
feeling of flow [15] as the measure of quality for the algo-
rithm.

In psychology, flow is a state where the person is fully
concentrating on some task. It is also known as being “in
the zone”. A person in a flow state loses track of time and
she focuses completely on the activity she is doing. To
enter the flow state, the person must feel competent at the
task and the task must be appropriately difficult for her.

To measure the player’s feeling of flow, we use the Flow
Short Scale [16, 17]. This survey measures the flow on a 7-
point scale and a person’s perceived difficulty of the task.
However, these data were not conclusive and we do not re-
port them and focus on difficulty estimation of encounters
only.

3 The Problem

Here we define several terms commonly used in RPG
games, which we will use throughout the paper; defined
terms are in italics. Some terms are formulated in an open-
ended manner as different games will differ in details.

For the purpose of this paper, we will understand a game
as a double (W,S) of a game world W and a game state S.

A game world as a double (L,P) of game locations L
and actor prototypes P. A game state consists of spawned
actors only.

Game locations L is a set of all possible positions in
the game world, which actors may occupy. In some games
locations could be a grid of discrete tiles, whereas in others
it could be a more complex 3D structure. The number
of these atomic locations can be in thousands per game
level for grid-based games, or infinite in case of 3D worlds
where location is represented by floating point numbers.

An actor prototype, p ∈ P, is a prototype of a character
that can be spawned as an actor into the game. An actor
prototype is a tuple of all the attribute values that describe
the class of an actor, e.g., its health, damage per second,
size, skills, etc. These attributes are game specific, but we
assume health and damage per second to be present at least
to allow for combat between actors.

Actor, a = (pa,sa, la,ca), is a spawned actor prototype
that can be present within the game and a part of the game
state. It consists of actor prototype pa definition, its cur-
rent state sa of pa attributes (initial values set according to
pa), location la ∈ L an actor occupies in the world and a
controller ca, which is either a human or an AI. We label
the set of all possible actors as A.

A hero(r) ::= {r ∈ A | cr = human} is an actor a player
currently controls. A party(R) ::= P({r ∈ R | hero(r)}) is
a set of heroes the player may control. All such parties are
denoted as ρ .

An enemy(e) ::= {e ∈ A | ce = AI} is an actor a player
does not control and the party has to fight. enemies(E) ::=
P({e | enemy(e)}) is then a group of enemies a player may
face in the game, all such enemy groups are denoted as ε .

A combat area, O = {l ∈ L | ∀l1, l2 ∈ O : path(l1, l2) ⊆
O}, represents some continuous area in the game world
where some combat encounter may take place.

A combat encounter is a triple, c = (Ec,Rc,Oc), that
represents a situation where a party must defeat some en-
emies. It consists of enemies Ec the party Rc has to fight
inside some combat area Oc. The set of all possible combat
encounters is labelled as C. In particular, actor prototypes
are not the only part of c as also their runtime states are
included. As such, C can be thought of as game states in
the space of combat; as actors are exchanging damage, this
space is traversed until either side is eliminated (their total
health reaches zero).

We model the player y = (sy), as a single number sy ∈
[0;1] denoting the skill of the player. 0 means no skill,
which can be thought of as not issuing any actions to

heroes during any combat encounter. 1 refers to an opti-
mal play, i.e., player can achieve the best outcome possible
regardless the encounter given. We denote set of all kinds
of player abilities as Y .

We define the difficulty of an encounter c ∈C as a func-
tion D : C×Y →< 0;1 >, where its value states how many
percent of party health will be lost during encounter as
played through by the player of given skill. 0 means the
party Rc will defeat enemies Ec at Oc without any health
losses and 1 means the party Rc will certainly be elimi-
nated by the enemies Ec regardless player actions. Impor-
tantly, there can be encounters that cannot be won even
by optimal players (enemies are too strong for the party to
defeat).

The combat encounter generation problem (CEGP) is
than an optimization problem: given a set of all possible
combat encounters C for a given party R, a player y, and
a desired difficulty d, find cmin ∈ C such as ∀c ∈ C : |d−
D(cmin,y)| ≤ |d−D(c,y)|.

3.1 Problem Complexity

The CEGP consists of two sub-problems: 1) how to eval-
uate the difficulty D; 2) even if D is known, how to search
for appropriate c ∈C fast. The challenge of solving them
stems from the problem formulation itself (e.g., the size
of C) and from the video game context, which poses addi-
tional requirements on the CEGP solution.

Difficulty evaluation. The skill of a player is not known
beforehand. As the result, we cannot compute precise val-
ues of D even via simulation. Moreover, player’s skill
can change throughout the game as the player improves in
playing the game. Therefore, once observed difficulty of
a concrete c may become irrelevant in future as the player
skill changes. Finally, if the game is played in real-time,
the skill may fluctuate as player’s reflexes improve.

Problem size. Considering solving the CEGP for
the game Dragon Age: Origins (Bioware, 2009)
featuring 140 enemy actor prototypes (according to
https://dragonage.fandom.com) trying to generate an op-
timal encounter that consists of about 7 enemies in the
game, we would need to go through 1407 possible groups
of enemies. Moreover, every enemy group can be spawned
into the game to a different locations, which could af-
fect difficulty of the encounter greatly. E.g., if a group of
archers is spawned behind a strong knight that is blocking
the path towards them, it would pose an extra challenge
to the player than if the group of archers could be easily
reached. The size of C is thus enormous.

Training data. The only direct way to model skill of a
player playing an instance of the game is through observa-
tion of his combat encounters. Such observations can be

seen as training data, provided during the gameplay. How-
ever, it is not realistic to expect a player to play even ten
tutorial encounters just to calibrate the model of the player,
which is still very few still given the size of C.

Video game context. RPG games are (typically) played
in real-time and there are usually several to tens of com-
bat encountered prepared by game designers in each game
level. Therefore, the algorithm solving the CEGP must
compute fast in order not to interrupt the gameplay and it
should not consume an unnecessary amount of memory.

4 Methodology

Our current approach to solving the CEGP is to use re-
inforcement learning for estimating the difficulty function
D, while heuristically reducing the size of the combat en-
counters set C. If we can contract the set, it would make
both the estimation of D and the search for suitable c ∈C
much easier. For looking up an encounter of some required
difficulty d, we are softening the requirement of optimal-
ity and use stochastic hill-climbing to look for a combat
encounter c of difficulty that differs up-to δ from d, i.e.,
|d−D(c,y)|< δ .

4.1 Estimating Encounter Difficulties

Looking at a combat encounter definition c = (Ec,Rc,Oc),
we disregard Oc (simplification) and maintain a sparse dif-
ficulty matrix M indexed by enemies and a party. The ma-
trix then holds estimated difficulties of a combat encoun-
ters Mer given enemies Ee and the party Rr for the player
y that is currently playing the game.

The size of the matrix is huge. Adapting only single ma-
trix element after each encounter would not result in fast
adaptation to the player. Therefore, we propose to adapt
multiple values from the matrix given a single observation
using some difficulty adjustment function.

A difficulty adjustment function, which we denote by
∆(dm,Em,Rm,do,Eo,Ro,α) should return a new difficulty
value for an encounter between enemies Em and the party
Rm, which was thought to be of dm difficulty, given the ob-
served difficulty do from just finished encounter between
enemies Eo and the party Ro; α is a learning factor.

Given the observation of do for some encounter
c(Eo,Ro,Oo), we update each matrix element with Mer =
∆(Mer,Ee,Rr,do,Eo,Ro,α).

To be able to construct ∆, we define two heuristic func-
tions, which computes similarities of enemies and parties.
Enemies similarity function is defined as SE : ε×ε→ [0;1]
and party similarity function is defined as SR : ρ × ρ →
[0;1]. 0 value means total difference, while 1 means equal-
ity of elements.

We then compute ∆(dm,Em,Rm,do,Eo,Ro,α) = dm +
(do−dm)∗max{0,1−SE(Em,Eo)−SR(Rm,Ro)}∗α . The

1: procedure UPDATEMATRIX(M,do,Eo,Ro,α)
2: for each (Em,Rm) ∈M do
3: dm = M[Em,Em]
4: M[Em,Em] = ∆(dm,Em,Rm,do,Eo,Ro,α)
5: end for
6: end procedure

Figure 2: Pseudocode of the method updating difficulty
matrix M after each combat encounter result. Inputs are:
M - difficulty matrix, do - observed difficulty of some en-
counter that just finished, Eo - initial enemies of the en-
counter, Ro - party that entered the encounter, α - learning
rate.

function updates the estimation of its error scaled accord-
ing to the similarity of enemies and the party of the matrix
element to real enemies and party participating in combat
that was just observed (and multiplied by the learning rate
α).

Updating matrix is then done by updating all of its ele-
ments (Fig. 2) using ∆ function. This is the place where
similarity functions are used the most as they allow us to
update multiple elements of the matrix.

4.2 Difficulty Matrix Initialization

Ideally, initialization of M should be based on real-data
by letting players play the game to obtain observations.
However, the amount of required observations is usually
so high that it is probably unreasonable to require it even
from big video game making companies. Instead, we pro-
pose to implement a simple reactive player that can play
through combat encounters and use it to obtain first dif-
ficulty estimations for the matrix. We do this only for a
selected subset of enemies and parties.

4.3 Generating an Encounter

Having matrix M estimating D for player y, enemies and
party similarity functions SE , and SR we can implement
stochastic hill-climbing algorithm for finding a combat en-
counter to present as a challenge to the player.

The algorithm (Fig. 3) is getting the party R, the combat
area O and required encounter difficulty d as an input. It is
supposed to find a suitable set of enemies E in order to re-
turn an encounter c(E,R,O), whose difficulty differs from
a required d by an amount, which is smaller or equal to
δ . It works in a stochastic hill-climbing manner. It keeps
adding/removing random enemies to/from the E trying to
match required d. For estimation of D, it queries passed
difficulty matrix M. If particular element M[E,R] is not
present within M, it uses similarity functions SE ,SR to pick
the most similar element of M. For practical real-time con-
straints, the algorithm does not perform more then itermax
iterations before terminating.

1: procedure GENENCOUNTER(R,O,d,M,δ , itermax)
2: i = 0
3: Ebest = Ecurr = {pick random enemy for O}
4: δbest = δcurr = |M[Ecurr,R]−d|
5: while δ ≤ δbest & i < itermax do
6: if M[Ecurr,R]−d ≤ 0 then
7: remove random enemy from Ecurr
8: else
9: add random enemy for O into Ecurr

10: end if
11: δcurr = |M[Ecurr,R]−d|
12: if δcurr ≤ δbest then
13: Ebest = Ecurr
14: δbest = δcurr
15: end if
16: i++
17: end while
18: return c(Ebest ,R,O)
19: end procedure

Figure 3: Pseudocode of the method for generating an en-
counter. Inputs are: R - current party, O - combat area, for
which we generate the encounter, d - required difficulty,
M - the difficulty matrix, δ - difficulty tolerance, itermax -
maximum number of search iterations

5 Implementation

In order to test our approach, we implemented a simple
PC game of the RPG genre, which is mouse-controlled.
Its design is inspired by gameplay mechanics of well-
known, if a bit dated, RPG games such as Baldur’s gate
(BioWare, 1998) and Planescape Torment (Black Isle Stu-
dios, 1999). A player is leading a party of three preset
heroes through a dungeon, which is a procedurally gen-
erated maze consisting of rooms, which constitute com-
bat areas where encounters with enemies take place. We
tried to design the game to be fun and to have a certain
gameplay depth. Heroes represent three RPG archetypes:
knight (high health, melee attack only), ranger (low health,
strong ranged attack) and cleric (healer and area con-
troller). Each hero, apart form the attack action, has three
different skills they can use to affect the fight. A player
can level heroes between encounters, i.e., improve their
health and dealt damage per second. For enemies, there
are 4 archetypes. Some of them having multiple instances
for variety. Each archetype is designed to behave differ-
ently in the combat in order to prolong the learning curve
for the player. Additional information can be found in a
previous master’s thesis [18]. Due to the time and budget
constraints, we used some free and some paid sound and
graphical assets of the pixel-art style (Fig. 4).

The combat. Every time the party enters a new room,
i.e., opens the door, an encounter is generated inside given
the difficulty assigned by the designer (us) to the room.
Then, the party enters, the door closes behind it, and the
party has to fight spawned enemies until one of the sides

Figure 4: Cropped game screenshot with labels overlay
depicting important game elements.

is eliminated. The combat happens in real-time, though
the player is able to pause it anytime to analyze the sit-
uation and reconsider their heroes’ actions. Enemies are
driven by a simple reactive AI, that chooses their attack
according to a script associated with the enemy archetype.
Heroes also attack automatically if player does not inter-
vene, i.e., orders them to use some skill, changes their tar-
get or moves them around the room.

The difficulty range. As the party consist of 3 heroes,
we modified the range of difficulty to be [0;3]; a difficulty
was then the summed portions of health points lost during
the encounter.

Difficulty matrix. To generate the initial sparse matrix,
we generated 83572 scenarios, in each of which a random
party was fighting a random group of monsters. In these
scenarios the party was controlled by a very simple script
doing random actions. This proved to be a better approx-
imation of player behavior than a script making tactical
decisions, which was too strong and produced estimations
suitable for a skillful player rather then a beginner. The
results of these scenarios were recorded and used as the
initial matrix to be modified at runtime. We set the learn-
ing rate α = 0.75 for UpdateMatrix method (Fig. 2).

Visualization of the initial difficulty matrix is provided
in Fig. 5.

6 Experiment

To test our combat encounter generator we conducted a
pilot experiment with human subjects playing the game.

6.1 Hypothesis

As there is no prior work to compare our results to, we
designed the experiment to be exploratory only. We were
interested to see if the algorithm can adapt initial estima-
tion of combat difficulties to the player and improve the

Figure 5: Visualization of initial values of difficulty matrix
of the game. The x-axis is the party ordered according to
their estimated strength, the y-axis represents enemies or-
dered according to their estimated strength. Colors depict
different difficulty categories: green is [0;0.5), yellow is
[0.5;1.5), red is [1.5;2.5), black is [2.5;3].

initial estimation of encounter difficulties. Our only hy-
pothesis therefore was that the algorithm would be able to
adapt initial difficulty matrix to the ability of players, i.e.,
it would provide better difficulty estimates.

6.2 Design

Each participant was given the build of the game to play.
The data about encounters was collected by the game itself
and stored within online database. The game consist of
three levels.

1. Tutorial level. A short and easy level with 4 combat
encounters, which were fixed and created by us. The level
existed for two reasons. First, it was designed to teach the
player the basic mechanics of the game. Second, while
the algorithm was not generating enemies in this level, it
was still estimating the difficulty of these static encounters
and was updating the matrix. Therefore, after the tutorial
level the matrix could have matched the player skill more
closely.

2. Static levels. Two levels with encounters fixed and
created by us. Unlike the tutorial level, the difficulty ma-
trix was not being modified during this phase.

3. Generated levels. Two levels with encounters being
generated according to the matrix. The matrix got updated
after every combat encounter.

Participants were split into two even groups A and B
randomly. Group A was called static-first as their mem-
bers played the game in the sequence 1-2-3. Group B was
called generated-first as their members played the game
in the sequence 1-3-2. The difference wrt. to difficulty
estimation was that for static-first group, there was a gap
in the matrix adaptation between levels 1 and 3. Here we
were interested to see if there is going to be difference be-
tween groups as participants of the static-group should be
more experienced when they enter the third level.

6.3 Data Collected

We collected both subjective categorical data from partic-
ipants (both quantitative and qualitative) and objective nu-
merical data concerning combat encounters, collected au-
tomatically by the game. Originally, we were also inter-
ested how would the players rate the game and collected

Table 1: Participants profile.
Group Size Male Female
A 5 4 1
B 6 5 1

data on flow via the Flow Short Scale [16, 17] calibrated
questionnaire [18], however these data was not conclusive.

Regarding the encounters, for each encounter in levels
1 and 3, the game recorded the enemies spawned, esti-
mated difficulty by the initial version of the matrix and the
current version of matrix and the result of the encounter,
which is the final observed difficulty. We also generated a
visualization of the difficulty matrix state after every ma-
trix update for every participant.

6.4 Participants

The experiment was carried out during COVID-19 out-
break in May, 2020. Therefore, all experiments happened
online in an uncontrolled environment, typically partici-
pants’ homes. We had 22 participants out of which a total
of 11 participants were not able to finish the level 3 (ei-
ther because of a bug in a game, lack of time or not being
able to understand all game mechanics) and thus we de-
cided to discard their data from the analysis. In total, we
analysed data from 11 participants (Table 1); all but two
participants reported they play games more than 2 hours
per week (majority more then 10), but these two reported
that they played games regularly in the past. We consider
both groups to consist of experienced game players only.
Participants were split into groups randomly, they were of
similar age (20-25).

6.5 Results and Discussions

Even though all the participants finished level 3, they
played a different amount of combat encounters. This was
the result of the difficulty we preset for some rooms, where
some participants have their parties eliminated and were
thus forced to replay the level.

Together, we assembled 260 combat encounter observa-
tions. The first 11 observations are irrelevant as they come
from the first combat in level 1 where the matrix has been
in the initial setting. In total, we analyse 249 combat en-
counters for which we can observe the differences between
the adapted matrix (referred to as ADAPTED in graphs)
and its initial version (referred to as INIT in graphs). We
mainly analysed with estimation errors, i.e., difference be-
tween difficulty prediction of a matrix and the real diffi-
culty observed within the game .

To visualize the data, we are using R version 4.0.5
together with the package ggstatsplot v0.8.0 and its
ggstatsplot for group comparisons.

First, we were interested to see whether the algorithm
was able to provide better difficulty estimations. For that,

we measured errors of difficulty prediction as the differ-
ence between predicted difficulty and observed difficulty
(negative value means the encounter was more difficulty
then it should have been). Data for groups A and B re-
spectively are summarized by Fig. 6 and Fig. 7.

Figure 6: Difficulty prediction errors for group A; left part
depicts value for adapted matrix and the right part for the
initial state of the matrix.

Figure 7: Difficulty prediction errors for group B; left part
depicts value for adapted matrix and the right part for the
initial state of the matrix.

For both groups, mean values between ADAPTED and
INIT differ. Interestingly, mean of INIT matrix errors for
group A is higher then in group B. This is probably the
effect of "static-first" ordering in group A. Majority of
data collected for group A happens only after participants

played level 2. As the result, they are more skilled and
INIT matrix is more off then for group B.

Then we looked how errors of ADAPTED matrices be-
tween groups looked like (Fig. 8).

Figure 8: Difficulty prediction errors of ADAPTED matri-
ces between groups.

Interestingly they are not much different, which is a bit
surprising. Given the previous observation, that INIT ma-
trix has a larger error for group A, we expected the same
would be true for ADAPTED matrices between groups A
and B. However, that’s not the case. It seems that missing
observation from level 2 in group A did not influence the
ability of the algorithm to adapt to boosted players’ abil-
ities. The only difference, visually speaking, is the data
distribution, which is more packed for group B.

Finally, we checked the error differences between
ADAPTED and INIT matrices for both groups respec-
tively (Fig. 9).

Interestingly, the analysis shows that the adapted ma-
trix provided correct predictions more frequently (173/249
times in total 69.5%, 86 / 120 times for group A 71.7%,
85 / 129 times for group B 65.9%). Also means are dif-
ferent for both groups. We think this is the influence of
statics-first vs. generated-first level again as INIT matrix
had larger error for group A due to longer gameplay. Re-
sults per participants are summarized in Table 2.

We do not comment on statistical significance of find-
ings as reported by graphs (e.g. Welch test and others) as
not all samples are independent because multiple samples
(estimation errors) are grouped according to players.

7 Conclusion

In this paper, we discussed a new procedural content gen-
eration problem: the Combat Encounter Generation Prob-
lem. We proposed an open-ended formalization of RPG

Figure 9: Difficulty prediction differences between
ADAPTED and INIT matrices for both groups respec-
tively. Positive number means the INIT matrix pro-
vided better prediction whereas negative number means
ADAPTED matrix provided better prediction.

Table 2: Errors by participant. Columns: participant group
and ID, number of encounters observed, mean and std.
dev. of ADAPTED matrix errors, mean and std. dev. of
INIT matrix errors, how many times was ADAPTED ma-
trix prediction better then INIT matrix prediction.

Group,
ID

#Enc Err.
ADAPTED

Err. INIT Err.
A<I

A-1 16 0.38±0.89 0.82±0.98 8
A-2 16 0.14±0.77 0.56±0.78 10
A-3 20 0.14±0.22 0.61±0.92 13
A-4 44 0.21±0.96 1.46±1.09 35
A-5 24 0.51±0.81 1.89±1.05 20
B-1 16 0.22±0.61 0.89±0.79 12
B-2 33 0.19±0.78 0.72±0.84 20
B-3 20 0.40±0.76 1.23±0.83 17
B-4 25 0.25±0.89 0.72±0.94 16
B-5 16 0.08±0.53 0.13±0.58 11
B-6 19 0.08±0.01 -0.08±0.59 11

games, in which CEGP arises. Moreover, if the game is
not solving the CEGP during runtime, it must be solved
by designers by hand during design time. We proposed an
approach for solving CEGP consisting of two parts: a) an
estimator of combat encounters difficulties, which needs
to be able to adapt to players’ ability online, and b) a gen-
erator that can propose next encounters given the estima-
tion of their difficulties, which need to generate encoun-
ters fast. Our first implementation is making use of a) a
custom reinforcement learning algorithm, which attempts
to estimate difficulties of combat encounters despite the

limited number of observations, and b) utilize stochastic
hill-climbing for finding a combat encounter of required
difficulty. We presented and discussed preliminary results
of the pilot study with human subjects. Even though the
number of players is small, which is limiting the results,
the number of combat encounters observed is moderate
(249). The data shown that the algorithm was indeed able
to adapt the difficulty estimation of encounters to players
though the prediction was not always better wrt. initial
setting of the matrix as computed from synthetic simula-
tions using simple AI as human player surrogates. Given
the fact that the number of encounters is huge and our ap-
proach is rather simplistic, we deem our results as promis-
ing.

7.1 Future Work

Encouraged by the results of our pilot experiment, we see
many directions for future work.

First, it would be interesting to employ the algorithm
in the context of a different game, ideally existing one,
though this is usually very challenging technically. Sec-
ond, if a (large enough) data set on how human players are
playing a given game is available, it might be possible to
model human-like play in order to experiment with the al-
gorithm without the need of experiments with human sub-
jects. Finally, proposed algorithm is a skeleton that can be
configured at many places (e.g., creating different similar-
ity functions or providing different abstractions for combat
encounters), thus it would be interesting to observe how it
behaves under different configurations.

Acknowledgement This work was supported by the
Charles University grant SVV-260588.

References

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural con-
tent generation in games. Springer, 2016.

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne, “Search-based procedural content generation:
A taxonomy and survey,” IEEE Transactions on Compu-
tational Intelligence and AI in Games, vol. 3, no. 3, pp.
172–186, 2011.

[3] M. Csikszentmihalyi, S. Abuhamdeh, and J. Nakamura,
“Flow,” in Flow and the foundations of positive psychol-
ogy. Springer, 2014, pp. 227–238.

[4] J. H. Salisbury and P. Tomlinson, “Reconciling csikszent-
mihalyi’s broader flow theory: with meaning and value in
digital games,” Transactions of the Digital Games Research
Association (ToDIGRA), vol. 2, no. 2, pp. 55–77, 2016.

[5] M. Csikszentmihalyi, Flow: The Psychology of Optimal
Experience. Harper Perennial Modern Classics, 2008.

[6] J. Chen, “Flow in games (and everything else),” Communi-
cations of the ACM, vol. 50, no. 4, pp. 31–34, 2007.

[7] R. Van Der Linden, R. Lopes, and R. Bidarra, “Procedu-
ral generation of dungeons,” IEEE Transactions on Com-
putational Intelligence and AI in Games, vol. 6, no. 1, pp.
78–89, 2013.

[8] O. Nepožitek, “Procedural 2d map generation for computer
games,” Master thesis, Univerzita Karlova, Matematicko-
fyzikální fakulta, 2018.

[9] J.-M. Vanhatupa, “Guidelines for personalizing the player
experience in computer role-playing games,” in Proceed-
ings of the 6th International Conference on Foundations of
Digital Games, 2011, pp. 46–52.

[10] J. Doran and I. Parberry, “Towards procedural quest gener-
ation: A structural analysis of rpg quests,” Dept. Comput.
Sci. Eng., Univ. North Texas, Tech. Rep. LARC-2010, vol. 2,
2010.

[11] G. Smith, M. Treanor, J. Whitehead, and M. Mateas,
“Rhythm-based level generation for 2d platformers,” in
Proceedings of the 4th international Conference on Foun-
dations of Digital Games, 2009, pp. 175–182.

[12] N. Shaker, A. Liapis, J. Togelius, R. Lopes, and
R. Bidarra, “Constructive generation methods for dungeons
and levels,” in Procedural Content Generation in Games.
Springer, 2016, pp. 31–55.

[13] S. Xue, M. Wu, J. Kolen, N. Aghdaie, and K. A. Zaman,
“Dynamic difficulty adjustment for maximized engagement
in digital games,” in Proceedings of the 26th International
Conference on World Wide Web Companion, 2017, pp.
465–471.

[14] O. Missura and T. Gärtner, “Player modeling for intelligent
difficulty adjustment,” in International Conference on Dis-
covery Science. Springer, 2009, pp. 197–211.

[15] M. Csikszentmihalyi and I. S. Csikszentmihalyi, Optimal
experience: Psychological studies of flow in consciousness.
Cambridge university press, 1992.

[16] S. Engeser and F. Rheinberg, “Flow, performance and mod-
erators of challenge-skill balance,” Motivation and Emo-
tion, vol. 32, no. 3, pp. 158–172, 2008.

[17] F. Rheinberg, R. Vollmeyer, and S. Engeser, “Die erfassung
des flow-erlebens,” 2003.

[18] M. Kozma, “Procedural generation of combat encounters
in role playing video games,” Master’s thesis, Charles Uni-
versity, 2020.

	Introduction
	Related Works
	Dynamic Difficulty
	Algorithm Evaluation

	The Problem
	Problem Complexity
	Difficulty evaluation.
	Problem size.
	Training data.
	Video game context.

	Methodology
	Estimating Encounter Difficulties
	Difficulty Matrix Initialization
	Generating an Encounter

	Implementation
	Experiment
	Hypothesis
	Design
	Data Collected
	Participants
	Results and Discussions

	Conclusion
	Future Work

