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Abstract: Neural networks are frequently used as regres-
sion models. Their training is usually difficult when the
model is subject to a small training dataset with numerous
outliers.

This paper investigates the effects of various regularisa-
tion techniques that can help with this kind of problem. We
analysed the effects of the model size, loss selection, L2
weight regularisation, L2 activity regularisation, Dropout,
and Alpha Dropout.

We collected 30 different datasets, each of which has
been split by ten-fold cross-validation. As an evaluation
metric, we used cumulative distribution functions (CDFs)
of L1 and L2 losses to aggregate results from different
datasets without a considerable amount of distortion. Dis-
tributions of the metrics are shown, and thorough statisti-
cal tests were conducted.

Surprisingly, the results show that Dropout models are
not suited for our objective. The most effective approach is
the choice of model size and L2 types of regularisations.

1 Introduction

Neural networks are nature-inspired regression models in-
creasingly important in machine learning. This type of
model excels in predictive power but it has a poor robust-
ness to outliers, if the training dataset has a small number
of samples, the target function is complicated, or the net-
work is over-parametrized for the problem [1, 2, 3].

On the other hand, novel theoretical analyses show dif-
ferent perspective on neural networks. In [4, 5] the authors
investigate the effect of priors over weights for infinitely
wide single layer neural network and show that a Gaus-
sian prior results in a Gaussian process prior over its func-
tions. The Gaussian process is a smooth non-parametric
model well known for its generalisation properties, so it
leads to the conjecture that there is no need to avoid over-
fitting of such a network. That idea was further generalised
to two-layer neural networks in [6] and general deep neu-
ral networks in [7]. Experiments in [7] show that finite-
width neural networks approach the infinite counterparts
through increasing their width. The authors of [7] further
pointed out that Dropout could be an interesting potential
improvement.
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In this paper we are interested in these areas where the
network should struggle because we intend to use neu-
ral networks as approximation for surrogate modeling in
black-box optimisation. Surrogate models are local mod-
els that estimate an unknown function in order to select
better candidates for evaluation and in this way reduce the
cost of optimisation.

That motivated the research reported in this paper, in
which we have investigated 5 different regularisation tech-
niques in different configurations on 30 different datasets.

2 Methods

2.1 Regularisation

Regularisation is a broad term used for methods that add
some new prior belief [2, 3] to a specific machine learning
method. The belief should redefine the problem to achieve
a solution modified in the sense described by Occam’s ra-
zor principle [8, 9] – more complex hypotheses are less
likely than simple hypothesis. For example, the lasso/ridge
shrinkage methods in linear regression add a new term that
makes small values more suitable as the solution to a prob-
lem [2].

The networks size regularisation As with many other re-
gression models, the number of free parameters has critical
consequence [3]. Models with a small number of free pa-
rameters can handle only simple relationships, while large
models can be more flexible. On the other hand, a large
model needs more samples in order to achieve more re-
liable predictions for all parameters. If that requirement
is not met, the regression can over-fit – the model finds
some non-sensible but possible relationships in the train-
ing dataset, which not valid in general.

Weight regularisation One possible solution to the free
parameters problem is a restriction of parameter domains.
In neural networks, it is done using weight regularisation.
In fact, the domains of the parameters are unchanged, but
the probability of larger values is strongly reduced because
of an alternation of an optimisation objective. For exam-
ple, the L2 type of the weight regularisation adds new term
Lw2 to the loss of particular network. It is defined as

Lw2 = ∑
i

w2
i (1)



Where wi stands for the value of the i-th parameter. It is
usually applied only to weights, not to biases.

Activity regularisation The third type of regularisation
is the activity regularisation [10]. In short, it penalises big
values coming from neurons. The effect may seem similar
to weight regularisation, but it may have more potential in
cases where the size of a layer is large enough. The rea-
son is that the weighted activities could count up to large
numbers in spite of small values of the weights. Activ-
ity regularisation is a way of making the input information
denser which is a nice property that is commonly utilised
in autoencoder-type neural networks [3, 10].

Dropout Dropout technique essentially mimics the bag-
ging technique, which is regularly used for improving gen-
eralisations of multiple models by aggregating the results
[11, 12, 3].

When Dropout is applied to a specific layer, the training
and testing phases differ. When the model is in the training
stage, the results are randomly dropped – replaced with
zeros. Therefore the next layer is forced to adapt to this
incomplete information. In the testing phase, the random
sampling is replaced by a multiplicative constant in order
to maintain mean values of activation for the next layer1.

Consequently, it increases the robustness of the model
and does not require any other model to train. The main
difference compared with bagging is that the models in
Dropout are dependent – they share weights. Such a shar-
ing is illustrated in Figure 1.

Alpha Dropout Standard Dropout is suited for rectified
linear units because zero is the default value of this ac-
tivation [11]. Alpha Dropout is a slight modification for
smoother activation functions. It deals not only with the
mean, but also with the variance. It is based on main-
taining a walking average of neurons’ outputs and scaling
them accordingly.

2.2 Loss functions

A crucial part of any machine learning model selection is
the definition of a loss function (prediction error measure,
performance measure) [13, 2]. The loss function should
be fast, convex and should match the random noise that
can be found in the data. Frequently, the Mean Absolute
Error (MAE) and Mean Square Error (MSE) functions are
selected because the corresponding noise is additive and
generated by Laplacian and Gaussian distribution, respec-
tively. In addition, also the Huber loss function (cf. [14])
is commonly used. These three loss functions are defined

1An alternative is to use the constant in the training phase.
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Figure 1: Dropout regularisation. The red circle depicts
the neuron where Dropout regularisation causes the out-
put to be masked – in the current iteration, the output is
set to zero, and all following layers are computed as nor-
mal. This effect causes the updates of immediate incom-
ing connections of that neuron to be zero, but other up-
dates can still modify all other previous weights through
non-dropped neurons. In this case, all red edges represent
changes brought by gradients from other neurons that may
influence the dropped neuron in the following iterations.

as:

MSE(D) =
1

2|D |∑
|D |
i=1(yi− ŷi)

2 (2)

MAE(D) =
1
|D |∑

|D |
i=1 |yi− ŷi| (3)

Huber(D) =
1

2|D |∑
|D |
i=1 min

(
(yi− ŷi)

2,2|yi− ŷi|−1
)
,

(4)

where D is the dataset on which the loss is calculated, |D |
is its size, yi is the target value of the i-th sample, and ŷi is
its prediction.

It is common to assume that the dataset is outlier-free
and normally distributed; therefore the MSE is the first
choice regarding the selection of the loss function.

MAE/Huber losses are good replacement whenever the
data are known to have outliers, or the MSE has not per-
formed well for an unknown reason.

Robust loss functions A common way of dealing with
outliers is to remove them from training data or choose an
entirely different model2 [2].

Even though the outlier removal has been thoroughly
studied, the exact definition of an outlier highly depends

2Like k-NN or regression tree.



on the problem we want to solve. There exists definitions
of an outlier relying on median absolute deviation [15],
quantile and medoid [16], online Kalman filter [17] or
nearest neighbour based filtering [18].

A different approach is proposed in [19] and improved
in [20] where authors deal with robust linear regression by
removing the most prominent residuals in the loss func-
tion. That idea was further adapted for neural networks
in [21] or nonlinear regression with a known regression
function in [22]. Essentially, these methods exploit the
idea that neural networks can learn algorithms (hypothe-
sis). With an assumption that more complex algorithms
are harder to learn, the prior belief that reduces the proba-
bility of more complex hypotheses also serves as an outlier
removal tool.

Extensions Least Trimmed Squares (LTS) and Least
Trimmed Absolute Deviations (LTA) of MSE (2) and
MAE (3) that follow the approach recalled in the previous
paragraph and we used them in out analysis are defined in
the following way

LTS(D) =
1

0.9|D |∑
|D |
i=1 ρ

(
(yi− ŷi)

2) (5)

LTA(D) =
1

0.9|D |∑
|D |
i=1 ρ (|yi− ŷi|) , (6)

where ρ(xi) =

{
xi if less than 90 % of residuals
0 otherwise

3 Methodology

3.1 Datasets and their preparation

We selected 30 datasets containing a relatively small num-
ber of samples. These are real-world as well as artificially
generated publicly available datasets, for which a nonlin-
ear regression model (i.e. explaining a given variable as a
response against predictors under uncertainty) is a mean-
ingful task. The list of the 30 datasets is presented in Ta-
ble 1. Only datasets without missing values were selected.
A ten-fold validation has been employed in order to ob-
tain more reliable results. If the dataset had less than ten
samples, we used leave-one-out cross-validation instead.
Each feature was standardised according to training data
in a specific fold.

3.2 Aggregation of results

It is not possible to visualize the results of regression meth-
ods across multiple datasets and loss functions. For ex-
ample, some datasets are easier than others, and one loss
function highlights outliers more, so most of the loss is
made of one sample.

We tackle this problem by separating the specific
dataset, fold, and function in a separate bin. In this bin,
we learn the order of results creating empirical cumulative
distribution function (ECDF). Every result in a specific bin

Table 1: All datasets considered in the analysis.

Name no. features no. samples

Concrete Compressive Strength 9 1030
The Boston Housing 14 506
Auto MPG 8 398
Proben1 (3d reg.) 6 4208
Misra1a 2 14
Chwirut2 3 54
Chwirut1 3 214
Lanczos3 6 24
Gauss1 8 250
Gauss2 8 250
DanWood 2 6
Kirby2 5 151
Hahn1 7 236
Nelson 3 128
MGH17 5 33
Lanczos1 6 24
Lanczos2 6 24
Gauss3 8 250
Roszman1 4 25
ENSO 9 168
MGH09 4 11
Thurber 7 37
BoxBOD 2 6
Rat42 3 9
MGH10 3 16
Eckerle4 3 35
Rat43 4 15
Bennett5 3 154

Hyperparameter Considered values
Loss MSE, MAE, Huber, LTS, LTA

Size of the first layer 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096

Model regularisation No regularisation,
50% Dropout,
50% Alpha Dropout

Table 2: Options for the first set of experiments.

was mapped by the corresponding ECDF, creating normal-
ized order of results in a particular bin. Finally, all results
are combined back together.

To compare normalized results for a specific hyperpa-
rameter, we split combined results by the value. These
splits create empirical distributions of normalized results,
which a violin plot can reasonably visualize.

Hyperparameter Considered values
Loss MSE, MAE, Huber
Size of the first layer 4, 8, 16, 32, 64, 128, 256, 512,

1024, 2048, 4096, 8192

Model regularisation
L2-weight – 0.001, 0.01, 0.1,
1, 10
L2-activity – 0.001, 0.01, 0.1,
1, 10
Alpha dropout – 0.1, 0.2, 0.4,
0.6, 0.8

Table 3: Options for the second set of experiments.

http://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
http://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://github.com/jeffheaton/proben1
https://www.itl.nist.gov/div898/strd/nls/data/misra1a.shtml
https://www.itl.nist.gov/div898/strd/nls/data/chwirut2.shtml
https://www.itl.nist.gov/div898/strd/nls/data/chwirut1.shtml
https://www.itl.nist.gov/div898/strd/nls/data/lanczos3.shtml
https://www.itl.nist.gov/div898/strd/nls/data/gauss1.shtml
https://www.itl.nist.gov/div898/strd/nls/data/gauss2.shtml
https://www.itl.nist.gov/div898/strd/nls/data/daniel_wood.shtml
https://www.itl.nist.gov/div898/strd/nls/data/kirby2.shtml
https://www.itl.nist.gov/div898/strd/nls/data/hahn1.shtml
https://www.itl.nist.gov/div898/strd/nls/data/nelson.shtml
https://www.itl.nist.gov/div898/strd/nls/data/mgh17.shtml
https://www.itl.nist.gov/div898/strd/nls/data/lanczos1.shtml
https://www.itl.nist.gov/div898/strd/nls/data/lanczos2.shtml
https://www.itl.nist.gov/div898/strd/nls/data/gauss3.shtml
https://www.itl.nist.gov/div898/strd/nls/data/roszman1.shtml
https://www.itl.nist.gov/div898/strd/nls/data/enso.shtml
https://www.itl.nist.gov/div898/strd/nls/data/mgh09.shtml
https://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml
https://www.itl.nist.gov/div898/strd/nls/data/boxbod.shtml
https://www.itl.nist.gov/div898/strd/nls/data/ratkowsky2.shtml
https://www.itl.nist.gov/div898/strd/nls/data/mgh10.shtml
https://www.itl.nist.gov/div898/strd/nls/data/eckerle4.shtml
https://www.itl.nist.gov/div898/strd/nls/data/ratkowsky3.shtml
https://www.itl.nist.gov/div898/strd/nls/data/bennett5.shtml


3.3 Statistical tests

We have used only non-parametric blocking statistical
tests because the results have limited values, and we
wanted to utilise as much information as possible. The
Friedman test was used to decide whether a particular view
on some hyperparameter includes is drawn from the same
distribution or not. At this point, the ECDF mapping is
not needed because the test is non-parametric. All statisti-
cal tests use the usual 5% significance level.

Multiple comparison tests were done using Wilcoxon
signed-rank test [23] with Holm correction [24] instead of
mean-ranks post-hoc tests which can create inconsisten-
cies and paradoxical situations in machine learning sce-
narios [25].

3.4 Architecture

We selected three-layered architecture. The first layer has
T neurons, the second layer has always T/2 and the third
layer always has one neuron. The first two layers have
Scaled Exponential Linear Units (SELU) as an activation
function, and the third layer has a linear function.

3.5 Training

We trained our models with a NAdam optimiser with a
0.001 learning rate. We use early stopping with patience =
10 and delta = 1e−10 to speed up the training. Even though
this is another type of regularisation, we use it in such a
manner that its effect is minuscule. The maximal number
of epochs is set to 10000, and batch size is equivalent to the
size of the largest dataset. In the first set of experiments,
we produced 48 014 neural networks and their results. In
the second set, we managed to prepare 178 092 models.

4 Results

4.1 Dropout regularisation

In the first experiment, we compared between 3 set-
tings – no regularisation, dropout regularisation and, alpha
dropout regularisation. Both dropout techniques are set
to 50% probability. The results are in Figure 2, number of
models that are better than the same hyperparameter coun-
terpart can be seen in Table 2b for L1 loss and Table 2c
for L2 loss. We highlighted in bold values that Wilcoxon
signed-rank test with Holm correction found significantly
better than the column value.

It seems that the regularisation does not help. It may
be caused by the exaggerated value of the Dropout rate
or a need for such models to have wider layers. We do not
know the reason why Alpha Dropout performed so badly –
it should be better because we used SELU as an activation
function.

One possible explanation for this poor performance is
the use of early stopping. In the training phase, the dropout

causes the output to be stochastic, so the error is stochas-
tic too. The stochastic error can cause accidental results,
which can stop the training prematurely. Because we have
one mini-batch, the variance is too significant not to be
perceptible.

Though not tried in our experiments, a possible remedy
could be early stopping variation where the error is expo-
nentially smoothed.

4.2 Size of models

In the second and third experiments, we were interested
in network size and its effect on performance. Figure 3a
and Table 4 show non-regularised models and Figure 3b
and Table 5 show the Dropout variants combined together.
Non-regularized results are better than the Dropout vari-
ants, which are less stable and have delayed response on
the increase of network size.

The stability may come from the same source as the pre-
vious problem - the early stopping could make the model
undertrained. The delay may be the result of the selected
dropout rate. Because we used a dropout rate of 50%,
the real amount of usable information can be effectively
halved in each hidden layer (given that there is no space
or resources to make the information denser). Together it
is a 4x delay which is not enough to explain the findings
(the optimum size of the model is 24 vs 27). Possible other
reasons could be

• the difficulty of encoding uncertain patterns

• undertraining, due to early stopping

4.3 Loss function

In the fourth experiment, we analyzed the effect of a
loss function for models without regularisation. Trimmed
variants performed poorly probably because they remove
some residuals (10%) and, therefore, reduce dataset size
even more. In our case, Mean Squared Error (MSE) is
better fitted than Mean Average Error (MAE). From the
distribution in Figure 4 it seems that MSE has much worse
results, but the median value (shown as the white point in
the central part of the graph) of MSE is better than that of
MAE. The best loss function is the Huber loss. All results
can be seen in Table 6.

The Huber loss combines benefits of both worlds be-
cause its derivatives are dependent on the size of error
(from MSE) while limiting the maximum value (from
MAE). This effect may be responsible for the best result
among the considered loss functions.

4.4 Weight regularisation

The weight regularisation has a prominent effect on the re-
sults, as revealed in Figure 5. Too much is certainly worse
than no weight normalisation, but suitable values signifi-
cantly reduce bad results.



(a) Distributions of scaled results by empirical cumulative distribution functions for each dataset and loss separately.

No reg. Dropout Alpha Dropout
No reg. 10898 14070
Dropout 4557 12360

Alpha Dropout 1385 3095

(b) Statistical tests for L1 loss function

No reg. Dropout Alpha Dropout
No reg. 10904 14020
Dropout 4551 12352

Alpha Dropout 1435 3103

(c) Statistical tests for L2 loss function

Figure 2: The first experiment compared different kinds of dropout regularizers across all different combinations of
datasets and hyperparameters. The tables display the number of experiments where one model size (row) is better than
the other (column). If the one-sided Wilcoxon signed-rank test with Holm correction rejected a null hypothesis (column
is better than row), the value is highlighted in bold. The statistical tests clearly prefer models without dropout.

4 8 16 32 64 128 256 512 1024 2048 4096
4 580 518 604 683 767 863 975 1047 1120 1177
8 825 636 707 777 827 921 1045 1129 1213 1238
16 887 769 797 859 871 978 1096 1184 1253 1275
32 801 698 608 818 878 999 1122 1197 1255 1270
64 722 628 546 587 885 1046 1148 1222 1268 1278
128 638 578 534 527 520 1031 1164 1229 1263 1282
256 542 484 427 406 359 374 999 1151 1189 1232
512 430 360 309 283 257 241 406 1042 1075 1187
1024 358 276 221 208 183 176 254 363 961 1072
2048 285 192 152 150 137 142 216 330 444 973
4096 228 167 130 135 127 123 173 218 333 432

Table 4: The second experiment compares L1 loss for models of different sizes without regularization. The table displays
the number of experiments where one model size (row) is better than the other (column). If the one-sided Wilcoxon
signed-rank test with Holm correction rejected a null hypothesis (column is better than row), the value is highlighted in
bold.

4 8 16 32 64 128 256 512 1024 2048 4096
4 1170 948 737 717 795 870 1030 1285 1682 2087
8 1640 1089 802 759 849 926 1088 1412 1855 2197
16 1862 1721 982 892 932 1024 1210 1654 2065 2373
32 2073 2008 1828 1268 1255 1247 1490 1967 2335 2542
64 2093 2051 1918 1542 1347 1355 1620 2111 2438 2588
128 2015 1961 1878 1555 1463 1406 1740 2193 2453 2614
256 1940 1884 1786 1563 1455 1404 1792 2280 2514 2623
512 1780 1722 1600 1320 1190 1070 1018 2127 2417 2585
1024 1525 1398 1156 843 699 617 530 683 2083 2411
2048 1128 955 745 475 372 357 296 393 727 2050
4096 723 613 437 268 222 196 187 225 399 760

Table 5: The third experiment compares L1 loss for models of different sizes with Dropout or Alpha Dropout regular-
ization. The table displays the number of experiments where one model size (row) is better than the other (column). If
the one-sided Wilcoxon signed-rank test with Holm correction rejected a null hypothesis (column is better than row), the
value is highlighted in bold.



(a) Distributions of test losses for non-regularized models.

(b) Distributions of test losses for Dropout and Alpha Dropout models combined together.

Figure 3: The second and third experiment analyses the effect of model size on regularized and non-regularized models.
The regularisation delays over-training but does not improve the results.

Figure 4: The results of the fourth experiment – comparison between loss functions for non-regularized models. MSE has
a lot of good and bad results; Huber seems to be the best; trimmed losses are the worst.



Figure 5: The fifth experiment exposes the effect of L2 normalisation weight.

Figure 6: The sixth experiment exposes the effect of L2 activity normalisation weight.

Figure 7: The seventh experiment exposes the effect of Alpha Dropout rate (probability).
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Huber 1854 1614 2111 2184
MAE 1237 1341 2125 2171
MSE 1477 1750 2006 2085
LTA 980 966 1085 1750
LTS 907 920 1006 1341

Table 6: The fourth experiment compares L1 losses for models trained by optimization of different loss functions without
regularization. The table displays the number of experiments where one model size (row) is better than the other (column).
If the one-sided Wilcoxon signed-rank test with Holm correction rejected a null hypothesis (column is better than row),
the value is highlighted in bold.

0.0 0.001 0.01 0.1 1.0 10.0
0.0 4430 3705 5053 6260 8348

0.001 5686 4364 5735 6987 8967
0.01 6411 5752 7086 8278 9601
0.1 5063 4381 3030 8325 9686
1.0 3856 3129 1838 1790 9449
10.0 1768 1149 515 430 647

Table 7: The fifth experiment exposes the effect of L2 normalisation weight. The table displays the number of experiments
where one weight of the regularization (row) is better than the other (column). If the one-sided Wilcoxon signed-rank test
with Holm correction rejected a null hypothesis (column is better than row), the value is highlighted in bold.

0.0 0.001 0.01 0.1 1.0 10.0
0.0 5197 4895 4813 5787 7044

0.001 4919 4921 4901 5833 7115
0.01 5221 5195 5237 6352 7654
0.1 5303 5215 4879 7313 8509
1.0 4329 4283 3764 2803 8631
10.0 3072 3001 2462 1607 1485

Table 8: The sixth experiment exposes the effect of L2 activity normalisation weight. The table displays the number of
experiments where one weight of the regularization (row) is better than the other (column). If the one-sided Wilcoxon
signed-rank test with Holm correction rejected a null hypothesis (column is better than row), the value is highlighted in
bold.

0.1 0.2 0.4 0.6 0.8
0.1 7226 7654 7614 7275
0.2 2890 7075 6813 6335
0.4 2462 3041 6137 5684
0.6 2502 3303 3979 5449
0.8 2841 3781 4432 4667

Table 9: The seventh experiment exposes the effect of Alpha Dropout rate (probability). The table displays the number
of experiments where one rate of the regularization (row) is better than the other (column). If the one-sided Wilcoxon
signed-rank test with Holm correction rejected a null hypothesis (column is better than row), the value is highlighted in
bold.



If the regularisation is too high, the loss is effectively re-
placed only with the term that reduces weights on the net-
work’s connections. If it is too low, the network can lack
regularisation – creating potentially volatile responses.

4.5 Activity regularisation

In our case, the effect of activity regularisation is similar
but smaller than the weight penalty. The difference in
weight and activity regularisation effectiveness can be ex-
plained by the specific activation used in training. The
results are in Figure 6 and in Table 8.

4.6 Alpha Dropout rate

In Figure 7 and Table 9 the effects of Alpha Dropout rate
can be seen. It may be good to investigate smaller values
more because the 0.1 rate is the best. The preference for
not having this regularisation can be explained equally as
in the subsection 4.1.

5 Conclusion

In this paper, we analyzed several types of regularisation
techniques on databases where effective hyperparameter
optimization is not possible due to the lack of samples
or the existence of outliers in the database. We showed
that Dropout techniques in these scenarios are not a good
choice because their results are not stable enough to com-
pete with models without regularisation. The model’s size
is an essential aspect, and it seems that the optimum has a
far bigger number of free parameters than the theoretical
number computed using the average across our training
databases. Huber loss function is the best because it does
not suffer from inconsistencies of MAE or MSE losses.
Trimmed variants of loss functions [21] performed poorly
here, but they may be better if a particular dataset has more
samples than we had. The third best hyperparameter to
look for is the weight normalization – small weight dra-
matically reduces the frequency of bad results while keep-
ing the median of results low.
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