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Abstract: This paper presents a meta-modeling-based
technique to reduce the computational cost of Monte Carlo
methods. A stochastic simulation of groundwater flow
is substituted with a graph neural network meta-model.
This type of neural network can deal with a non-euclidean
structure of the input data, which in our case is a graph
representing a random field on an unstructured mesh. In
order to find the most suitable meta-model, a comparison
of the standard support vector regression with spectral and
spatial graph convolutional neural networks is provided.
Both the Monte Carlo method and the multilevel Monte
Carlo method are extended by the meta-model level. In
both cases, up to 50% savings in computational cost are
achieved while maintaining the accuracy of Monte Carlo
estimates.

1 Introduction

Groundwater flow in the vicinity of a future nuclear waste
repository is the major motivation for our research. In the
first stage, our quantity of interest (QoI) is the total flow
through the observed area. However, since not all indis-
pensable properties of the rock environment are known,
it is not feasible to determine the desired total flow. For
that reason, and given the nature of the rock, the missing
properties are modeled as random fields (RFs). The proba-
bility density function (PDF) of our QoI is under scrutiny.
To approximate the PDF, the maximum entropy method is
adopted. The method utilizes so-called generalized statis-
tical moments. In order to estimate these moments, the
Monte Carlo methods are employed. These methods con-
sist in repeating a random experiment. Depending on the
required accuracy, it might result in thousands of ground-
water flow simulations, which can significantly affect the
total computational cost.

This fact was behind the idea to substitute simulations
with an approximation model, often called a meta-model.
Furthermore, we use the multilevel Monte Carlo method
(MLMC) instead of the standard Monte Carlo method to
reduce the variance of estimates more effectively. Since
the MLMC uses simulations of different accuracy, we aim
to substitute those with the lowest accuracy, performed
in the largest number. Their approximation shouldn’t be
excessively challenging for meta-modeling. We presume

Copyright ©2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

that this approach could reduce the computational cost of
MLMC estimates. It is also necessary to maintain the ac-
curacy of the estimates to achieve a good PDF approxima-
tion. Graph convolutional neural networks and the support
vector regression [2] are used as meta-models.

First, the groundwater flow problem definition and the
maximum entropy method brief introduction are provided
in section 2. Then, Monte Carlo methods are presented in
section 3. Spektral and spatial graph convolutional neu-
ral networks used as meta-models are delineated in sec-
tion 5. Section 6 provides the link between the MLMC
and a meta-model, including the related work. Finally,
section 7 is devoted to the results and discussion.

2 Problem Definition

A 2D benchmark problem of groundwater flow through a
porous medium is used to test our proposed methods. The
same problem can be found in the paper by Blaheta et al.
[5]. The groundwater flow is described by the boundary
value problem on the unit square:

−div(K(x)∇p) = 0 (1)
−K∇p ⋅ n⃗ = 0,

K is the hydraulic conductivity, p is the pore water pres-
sure, −K∇p is Darcy’s velocity, n⃗ is the unit normal vector.
We are interested in the total flow Y through the specified
area

Y = ∫
1

0
[−K∇p ⋅ n⃗](1,y)dy. (2)

The problem is prescribed on unstructured meshes and is
solved by the finite element method using the Flow123d
software [6]. Since the proposed approach shall be
adopted for more complicated problems with complex ir-
regular geometry, unstructured meshes are preferred over
structured ones. The hydraulic conductivity is consid-
ered as a random field (RF) with the exponential covari-
ance function C(r) = σ

2exp(− r
λ
), where λ is a correla-

tion length and σ is a standard deviation. The GSTools
software library [23] is utilized to generate RF; see Hesse
et al. [16] for theoretical details.

2.1 Maximum Entropy Method

When considering the hydraulic conductivity as a random
field, the total flow Y is a real random variable. The aim is



Figure 1: An illustration of the porous media flow problem

to determine its probability density function ρ(Y), which
is nonnegative on a bounded domain Ω. The maximum
entropy method [17] (MEM) is employed for this purpose.
Its basic idea lies in approximating a PDF from general-
ized statistical moments and functions that calculate them:

∫
Ω

ρ(y)dy = 1,

∫
Ω

φr(y)ρ(y)dy = µr, r = 1, ...,R
(3)

where ρ(Y) is an unknown, {µr}R
r=1 are values of gen-

eralized moments, {φr}R
r=1 are linearly independent func-

tions (see [3, p. 1350]) used for calculating generalized
moments and satisfying φ1 = 1, φr ∈CR(Ω), r = 2, . . . ,R. In
our case, {φr}R

r=1 are the Legendre polynomials, R ∈ N is
the number of moments.

Provided that the system of equations 3 has a solution,
then it has an infinite number of them. Therefore, the
most apposite solution is the one with the maximum Shan-
non entropy (defined in [27]) according to E. Jaynese [17,
p. 623]. Determining ρ(Y) with the maximum entropy
takes the form of finding the global maximum of the func-
tional

H(ρ) = −∫
Ω

ρ(y) ln(ρ(y))dy (4)

under the constraints prescribed in equations 3.
A numerical solution and general limitations of the

MEM are beyond the scope of this paper. A more detailed
insight is provided in [3, 4].

3 Monte Carlo Methods

Since the MEM utilizes moment values {µr}R
r=1 that are

also random variables derived from some random input X
(which is the hydraulic conductivity K in this study). It is
necessary to estimate their expected values. Monte Carlo
methods are used for this.

The standard Monte Carlo method (MC) is an approach
for estimating expected values of some stochastic simula-
tion variable. The basic idea comes from the law of strong

numbers. Therefore, in order to obtain an unbiased esti-
mate of the expected value Y = E[P(x)], the MC consists
in the arithmetic mean of N independent samples

Ŷ = 1
N

N

∑
n=1

P(xn), (5)

where P is a random variable depending on X . According
to the central limit theorem:

Ŷ ∼N(µ,
σ

2

N
). (6)

Consequently, the computational cost of reducing the vari-
ance (increasing N) of Ŷ can be very high. To overcome
this drawback (for details, see [11, p. 4]), the multilevel
Monte Carlo method (MLMC) was formulated.

3.1 Multilevel Monte Carlo Method

In the case of the MLMC [11], the expected value of a
random variable P is estimated based on the sequence of
its approximations P1, ..., PL:

E[P] =E[P1]+
L

∑
l=2

E[Pl −Pl−1], (7)

where Pl−1 ≈ Pl . The estimate of the expected value of P
improves from P1 to PL. The unbiased estimate of E[P]:

P̂ = 1
N1

N1

∑
n=1

P1(x1
n)+

L

∑
l=2

{ 1
Nl

Nl

∑
n=1

(Pl(xl
n)−Pl−1(xl

n))}, (8)

where L is the total number of levels, Nl is a number of
simulation samples at level l. Input random data xl

n are
dependent for each simulation pair n at level l. But they
are independent across levels. Since Pl −Pl−1 are also in-
dependent across levels, the total estimated variance V̂ of
P̂ has the following form:

V̂ =
L

∑
l=1

V̂l

Nl
, (9)

where V̂1 is an estimate of P1 variance and V̂l for l > 1 is an
estimate of Pl −Pl−1 variance. The MLMC computational
cost:

C =
L

∑
l=1

NlCl , (10)

where Cl is a cost of a single simulation sample at level l
measured in, for instance, the number of computational
operations, execution time, CPU time, etc. Let C1 denote
a cost of P1, Cl is a cost of Pl −Pl−1 for l > 1.

Given the MLMC theoretical properties stated in [11,
theorem 1], variance Vl should decrease from l = 1 to l = L,
while computational cost Cl should increase from l = 1 to
l = L.



3.2 Number of Simulation Samples

The way of determining Nl is a crucial part of the MLMC.
There are two main approaches:

• minimizing the total variance V with respect to the
prescribed computational cost

• minimizing the total computational cost C with re-
spect to the prescribed target variance Vt .

Our attention is paid to the latter approach, which has the
form of finding the minimum of equation 10 under the con-
straint

Vt =
L

∑
l=1

V̂l

Nl
. (11)

After some calculus and concerning the use of the MEM,
Nl are determined with respect to R moment values

Nr
l =

¿
ÁÁÀV̂ r

l

Cl

∑L
i=1

√
V̂ r

i Ci

Vt
, r = 1, ...,R, (12)

where V̂ r
l is an estimated variance of φ

r
l (x)−φ

r
l−1(x) for

r-th moment at level l. Finally, Nl = max
r=1,...,R

Nr
l .

The mlmc software library [7] is employed to schedule
samples and post-process results, including our MEM im-
plementation.

4 Meta-modeling

A meta-model is a simpler and explicit mathematical func-
tion that approximates complicated functions that can be
both implicit and evaluated by a simulation model, mea-
surements data, or experiments. Alternative names can
be found in the literature, such as surrogate model, sur-
face response model, emulator, etc. Meta-modeling is the
process of designing meta-models. The common meta-
models used in the finite element analysis include support
vector regression (SVR), artificial neural network (ANN),
Kriging, also known as Gaussian process [19], radial basis
function (RBF) [35], etc.

Artificial neural networks have become very popular for
meta-model design. A regression problem is solved by an
ANN trained by supervised learning. The aim is to ob-
tain an unknown mapping of input neuron activities to an
output neuron activity. With regard to the nature of our
input data, which is a 2D correlated random field, it would
be suitable to use a convolutional neural network (CNN)
meta-model. Nevertheless, CNNs cannot be applied di-
rectly to data on unstructured meshes (see [31]).

There are few ways how to overcome this difficulty. The
basic solution is to directly apply a 1D CNN to nodal val-
ues of an unstructured mesh considered as a vector. How-
ever, it has limited success [15]. The other option is in-
terpolating data from an unstructured mesh to a structured
mesh and then using a CNN. This approach leads to an ad-
ditional error caused by interpolation. It requires a larger

number of grid points to capture features from original
unstructured data, according to [22]. Wang et al. [29]
proposed a CNN on unstructured meshes. This novel ap-
proach is limited to random fields described by the spectral
representation method or the Karhunen-Loève expansion.
Another popular approach is the representation of unstruc-
tured meshes as undirected graphs, which allows us to use
graph convolutional neural networks (GCNs) [31]. In this
study, we use GCN-based meta-models and support vector
regression meta-models.

4.1 Graph Representing a Random Field

A graph G = (V,E) is an unweighted undirected graph de-
scribing the mesh structure on which a random field is gen-
erated. V is a set of vertices representing mesh elements,
V = {v1,v2, ...,vS}, S is the number of vertices (=mesh el-
ements). The neighborhood of a vertex v is defined as
N(v) = {u ∈ V ∣(v,u) ∈ E}. Each vertex has a feature rep-
resenting a random field value at the corresponding mesh
element. E is a set of edges. An edge connects adjacent
mesh elements. An adjacency matrix A is used to represent
G on a computer.

Figure 2: An example of a graph on 546 mesh elements

5 Graph Neural Networks

A variety of real-world problems can be represented as
graphs. Imagine social networks, molecules, or in our
case, random fields on unstructured meshes.

Graph neural networks (GNNs) are deep learning-based
models that operate on the graph domain [34]. They have
a wide range of applications in classification, relation ex-
traction, molecular fingerprints prediction, and so on. A
comprehensive survey on graph neural networks can be
found in [30]. In brief, GNNs are categorized into sev-
eral groups, such as graph convolutional networks [33],
graph attention networks, graph recurrent networks, etc.
The graph convolutional networks (GCNs) are the most



important ones because they are the fundamental of other
graph neural network models (see [21]). GCNs can be di-
vided into spectral GCNs and spatial GCNs.

5.1 Spectral Graph Convolutional Neural Networks

Spectral GCNs are based on knowledge from the field of
graph signal processing. The well-known convolution has
the following form:

( f ∗g)(x) = ∫
Rk

f (t)g(x− t)dt, (13)

but it is unclear how to interpret the translation g(x−t) for
a graph signal. Thus the convolution operation is not de-
fined on structures like graphs. W. Hamilton [13] or K. Ot-
ness [24] provides a detailed explanation of the graph con-
volution. The basic idea is to take advantage of the fact
that convolution in the spatial domain corresponds to the
point multiplication in the spectral domain.

A graph signal x ∈ RS (vector of all G vertex values) is
transformed by a graph Fourier transform from the spatial
domain to the spectral domain. Loosely speaking, the stan-
dard Fourier transform is connected to the eigendecompo-
sition of the Laplace operator. In the case of graphs, the
Laplace operator is represented by the Laplacian matrix
[33, p. 4]. The normalized Laplacian matrix L can also be
used as a Laplace operator:

L = I−D−1/2AD−1/2, (14)

where A is a graph adjacency matrix, and D is a diag-
onal matrix of vertex degrees. L is a symmetric real-
valued positive semi-definite matrix that can be factorized
L =UΛUT , where U is a matrix of eigenvectors and Λ is
a diagonal matrix of eigenvalues. Then the graph Fourier
transform of x is [34, p. 60]:

F(x) =UT x (15)

and its inverse:

F−1(x̂) =Ux̂. (16)

Finally, the graph convolution of x and a filter g ∈ Rk:

x∗G g = F−1(F(x)⊙F(g)), (17)

where ∗G is the convolutional operator on a graph, and ⊙
represents the element-wise Hadamard product. The sig-
nal x can be filtered in the spectral domain by a filter gθ in
this way (for details, see [13, p. 83]):

x∗G gθ =Ugθ (Λ)UT x, (18)

where gθ (Λ) is a polynomial of the eigenvalues of the
Laplacian. The filter represents learnable weights.

ChebNet GCN with a Chebyshev convolutional layer was
first introduced by Defferrard et al. [10] in 2016. The fil-
ter g is approximated by a truncated expansion of Cheby-
shev polynomials Tk(x) up to the Kth order:

gθ =
K−1

∑
k=0

θkTk(Λ̃), (19)

where θk ∈ Rk is a vector of Chebyshev coefficients,
Λ̃ = 2Λ/λmax− I, λmax is the maximum eigenvalue from
Λ. The Chebyshev polynomials are defined recursively by
Tk≥2(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1, T1(x) = x.
Then x filtered by g:

x∗G g =U(
K−1

∑
k=0

θkTk(Λ̃))UT x. (20)

The eigendecomposition can be avoided [30, p. 10]:

x∗G g = (
K−1

∑
k=0

θkTk(L̃))x, (21)

where L̃= 2L/λmax−I. L̃ is called the rescaled graph Lapla-
cian, the eigenvalues are mapped from [0,λmax] to [−1,1],
the Chebyshev polynomials form an orthogonal basis.

Several K settings were tested. Since K > 1 did not bring
improvement for our problem, K = 1 is used in our study.
For this setting, the ChebNet is very similar to the GCN
proposed by Kipf and Welling [18]. Filters are exactly
K-localized. It means the filter modifies information at a
particular vertex based on the information from vertices in
its K neighborhood. It essentially connects spectral-based
methods with spatial-based ones.

5.2 Spatial Graph Convolutional Neural Networks

As for spatial GCNs [9], the convolution is performed in
the graph domain by propagating information along edges
between adjacent vertices. The concept is based on mes-
sage passing neural networks [12]. The spatial graph con-
volution is defined as follows [30, p. 12]:

h(k)v =Uk(h(k−1)
v , ∑

u∈N(v)
Mk(h(k−1)

v ,h(k−1)
u ,xe

vu)), (22)

where h(k)v represents features of vertex v in a hidden layer
k, xe

vu is an optional feature vector of an edge (v,u). Uk and
Mk are the update and message functions with learnable
parameters.

GraphSage is an aggregation-based learning model pro-
posed by Hamilton et al. [14]. It performs the convolution
as follows:

h(k)v = σ(W (k) ⋅ fk(h(k−1)
v ,{h(k−1)

u ∀u ∈ SN(v)})), (23)

where h0
v is a representation vector of vertex v features, σ

represents a nonlinear activation function, W (k) is a weight



matrix in layer k, fk represents an aggregation function,
SN(v) ⊆N(v). Thus GraphSage enables the use of huge
graphs by selecting a subset from each vertex neighbour-
hood instead of using all neighbours. There are different
operations used as fk, such as average, sum, max, min, etc.
In this study, we use GraphSage with a single layer, f is
the summation.

A comparison between spectral GCNs and spatial
GCNs is summarized by Wu et al. [30, p. 13]. They
state that spatial GCNs are usually preferred over spectral
GCNs. However, in our problem 2, we aim to approximate
the solution of the elliptic partial differential equation. To
do that numerically, it is possible to use spectral methods
[8]. This entitles us to assume that spectral GCNs will be
more appropriate.

6 Monte Carlo Methods with Meta-model

There are several approaches how to use meta-models to
reduce the computational cost of Monte Carlo estimates.
The relatively frequent approach (e.g., [1, 20, 28]) is to
construct a meta-model of a simulation, then the MC is
conducted with the meta-model instead of the simulation.
Other approaches consist in replacing the whole Monte
Carlo estimate by a meta-model. For instance, Safta et al.
[26] use polynomial chaos expansion meta-model, which
requires a significantly lower number of samples than the
MC. Rosenbaum and Staum [25] construct a stochastic
simulation meta-model by way of the MLMC.

We propose a different approach based on adding a new
coarse meta-model-based level to the original Monte Carlo
method (MC or MLMC). The MLMC estimate from equa-
tion 8 has now the following form:

P̂meta =
1

N1

N1

∑
n=1

P̃1(x1
n)+

1
N2

N2

∑
n=1

(P1(x2
n)− P̃1(x2

n))+

L

∑
l=3

{ 1
Nl

Nl

∑
n=1

(Pl(xl
n)−Pl−1(xl

n))},

(24)

where P̃1 denotes a meta-model approximation of P1.
Since the MLMC assumes Pl−1 ≈ Pl , it is completely valid
to employ a meta-model as the coarsest level (which we
denote as the meta-level) and the difference between P1
and P̃1 as the subsequent first level. Let MLMCmeta denote
the multilevel Monte Carlo method with the meta-level.

In order to meet basic theoretical properties of the
MLMC (mentioned in section 3.1) the meta-level compu-
tational cost C1 should be lower than C2, and meta-level
samples variance V1 should be greater than V2.

6.1 Computational cost

The total MLMC cost (see equation 10) depends on Cl ,
in our case measured in execution time. As a meta-model
brings additional computational costs, parts of the learning
process, including their costs, are introduced.

First, the number of training samples Ntr is determined,
and numerical simulations are executed. Then, for each
training sample, a stored random field is pre-processed to
become a meta-model input, let Cpr denote the cost of this
operation. The pre-processing can slightly differ for dif-
ferent meta-models. The SVR input is a vector of random
field elements, while the GCN input is their graph. After-
ward, a meta-model is trained, and the cost of this opera-
tion is Cml . Once the meta-model is prepared, it is possible
to make predictions at the cost of Cpred . In the case of the
meta-level, there is no stored random field because there is
no simulation executed. Thus a random field is generated
and pre-processed at the cost of Cr f .

Let C2 denote the computational cost of a sample at the
first MLMCmeta level:

C2 =C∗
1 +(Ctr

2 +Cpr
2 (N2−Ntr))/N2, (25)

where C∗
1 is the cost of a simulation sample. Ctr

2 is the cost
of a meta-model training procedure:

Ctr
2 =CprNtr +Cml +CpredNtr, (26)

Cpr
2 represents the cost of a first level meta-model predic-

tion sample:
Cpr

2 =Cpr +Cpred . (27)

Let C1 denote the cost of a meta-level sample that utilizes
meta-model trained at the first level:

C1 =Cr f +Cpred . (28)

Sample costs Cl for l > 2 are not affected by the meta-
modeling. Meta-models training is performed on the clus-
ter; 16 CPUs (Intel Xeon Silver 4114 CPU (2.2GHz)) and
16 GB RAM (DDR4 2400 ECC Reg dual rank) are as-
signed for that task. Also, MLMC simulations are exe-
cuted in parallel. Therefore, C measured in execution time
is not equal to the real elapsed time. However, the savings
in C can significantly affect the total elapsed time, espe-
cially for a small Vt , which is necessary to obtain a neat
PDF by the MEM.

7 Results

The proposed meta-modeling techniques are investigated
in this section. The most suitable one is used by Monte
Carlo methods. The models are compared for different
mesh sizes and random field parameters.

The cross-validation-like procedure is implemented to
compare models. Initially, N = 50000 simulation sam-
ples are generated. The number of training samples Ntr
is empirically determined based on the properties of the
MLMC. Since we are interested in Vt ≤ 1e−5 (for the sake
of the MEM capability to approximate a PDF neatly), the
number of samples at the coarsest level is at least 2000
for our problem. Thus, the procedure is as follows: 2000



training samples (Ntr = 2000) out of N are chosen for meta-
model training. The rest is considered to be test data. Val-
idation data accounts for 20% of Ntr. This procedure is
repeated 25 times with independent training sets. Given
that we use a random field with the exponential correla-
tion function, the logarithm of the RF values is used as
meta-models input to facilitate their training. In all of the
following cases, the final Nl is determined based on the
geometric sequence of the initial number of samples de-
creasing across levels from N0

1 = 2000 to N0
L = 100. The

number of moments R = 25 is utilized.

7.1 Meta-models Setting

We have tried dozens of GCN topologies. The most
promising ones consist of one ChebNet/GraphSage layer
with 8/60 output channels and the ReLU activation func-
tion, following by a global summation pool and the output
layer with one neuron with the identity activation function.
Table 1 contains main hyperparameters that enable to ob-
tain an accurate and computationally efficient meta-model.
Another important hyperparameter is the number of output

Table 1: GCN hyperparameters common to all cases

optimizer Adam
hidden activation ReLU
output activation identity

learning rate 0.001
regularization None

loss MSE
max epochs 2000

patience 150

channels. The optimal number differs across types of GCN
layers. It forms a vector of hidden representations corre-
sponding to each vertex. It is possible to think of each
channel as responding to some different set of features, so
different channels could become specialized to recognize
different objects as described by Zhang et al. [32].

Regarding the SVR, the Gaussian radial basis function
(RBF) kernel and the regularization parameter W = 0.06
are used. An explanation of the role of SVR parameters is
provided in [2].

7.2 Meta-models on Different Meshes

Three meta-model techniques are compared: the SVR,
the ChebNet GCN, and the GraphSage GCN. Recall that
low accurate simulations are supposed to be substituted
with meta-models. Hence the emphasis is placed on meta-
models trained on small meshes. In particular, meshes of
6, 48, and 546 elements are compared. Random field pa-
rameters are by default λ = 0.1 and σ = 1. For a given mesh
size, the models are trained and tested on the same data.

Table 2 and Table 3 show the models final accuracy
on training data and test data, respectively. The arith-
metic mean and the standard error of 25 calculations of
the mean squared error (MSE): 1

D∑
D
i=1(yi−yi

meta)2 are pro-
vided, where yi is a correct value and yi

meta is a predicted
value, D is a number of samples. The relative squared er-
ror (RSE) is used to compare the models across cases (see
Table 4).

Table 2: Meta-models train MSE

train MSE number of mesh elements

6 48 546

arithmetic mean
SVR 0.01711 0.007185 0.004657
ChebNet GCN 0.03476 0.009441 0.004633
GraphSage GCN 0.02368 0.01045 0.006848
standard error
SVR 4.1e−4 6.5e−5 3.6e−5
ChebNet GCN 7.0e−3 8.1e−5 2.2e−4
GraphSage GCN 4.3e−4 9.9e−5 1.8e−4

Table 3: Meta-models test MSE

test MSE number of mesh elements

6 48 546

arithmetic mean
SVR 0.03694 0.008968 0.006696
ChebNet GCN 0.04331 0.008392 0.004595
GraphSage GCN 0.02284 0.009200 0.006839
standard error
SVR 6.0e−4 5.4e−5 6.1e−5
ChebNet GCN 2.6e−3 7.9e−5 1.9e−4
GraphSage GCN 1.9e−4 1.2e−4 1.9e−4

Table 4: Meta-models test RSE

test RSE number of mesh elements

6 48 546

SVR 0.1263 0.1551 0.1335
ChebNet GCN 0.1481 0.1451 0.1064
GraphSage GCN 0.1162 0.1591 0.1364

Data in the tables show that all models provide similar
results in terms of the train MSE and the test MSE, and
also, the RSE values are of the same order of magnitude.
Importantly, presented data show no significant outliers
that would be highly undesirable for our purposes. Al-
though the results are very similar, it can be seen that the



optimal meta-model varies depending on the mesh size.
While the GraphSage GCN or the SVR is more advanta-
geous for very small meshes, the use of the ChebNet GCN
is most suitable in the case of larger meshes.

Nevertheless, additional experiments show that the
meta-model approximation is not sufficiently accurate for
meshes of thousands of elements. We face the so-called
curse of dimensionality due to the limited number of train-
ing samples. An increasing number of samples can over-
come this difficulty, but many simulations need to be
performed in such a case, and learning cost increases.
Thus, to keep Ntr = 2000, we limited ourselves to meta-
models based on simulations on meshes with a maximum
of ca. 1000 elements.

In practice, we see that the ChebNet GCN is not only
better for larger meshes (from ca. 500 up to ca. 1000 el-
ements) but also provides a more stable learning process
in terms of a smooth decrease of a validation loss than
the GraphSage GCN. Therefore the ChebNet GCN is pre-
ferred over the GraphSage GCN for our task.

7.3 Role of Random Field Parameters

Random field parameters affect the meta-model learning
ability. Changing the standard deviation σ only scales
features of graph vertices, which our learning procedure
can handle. The correlation length λ plays a more sig-
nificant role. As λ decreases, the correlation between the
features of vertices decreases as well. For small correla-
tion lengths, e.g., λ = 0.001, all features are almost uncor-
related, which has a similar effect as increasing the num-
ber of vertices with the original correlation length λ = 0.1.
Thus, increasing the number of training samples is neces-
sary to obtain the same results for λ = 0.001.

This reveals one of the SVR drawbacks, which is the re-
quirement of a lot of training samples [2, p. 76]. While the
number of training samples 5000 is enough for the Cheb-
Net GCN on meshes of 546 elements and λ = 0.001. In
the case of the SVR, even 15000 training samples is not
enough to get similar results for λ = 0.001 as for λ = 0.1.
For this reason, the ChebNet GCN is preferred for further
analysis. It is also worth noting that naturally, fewer train-
ing samples are enough for λ > 0.1.

7.4 MC extended by the meta-level

Let use the trained meta-models with the Monte Carlo
method described in section 6. To illustrate our approach,
we use three different MC with simulations on meshes
of 6, 48, and 546 elements, each extended to two-level
MLMCmeta. Table 5 shows the ratio between the total cost
Cmeta of our MLMCmeta and the total cost C of the orig-
inal MC, Vt = 1e−5. It is important to note that the ratio
Cmeta/C is a bit smaller for Vt << 1e−5, where the meta-
model learning cost is negligible due to the larger N2. It
emerges that the computational cost savings of at least
50% are achieved for R = 2.

Table 5: Computational cost of MLMCmeta to MC

Cmeta/C number of mesh elements

6 48 546

SVR 0.2077 0.4947 0.4666
ChebNet GCN 0.3648 0.4371 0.4395
GraphSage GCN 0.2812 0.4485 0.4494

In the rest of this section, MLMCmeta employs the Cheb-
Net GCN on 546 mesh elements. Since the MEM uti-
lizes moment values µ , it is important to verify if their
estimates by the MLMCmeta are the same as estimates by
the original MC. We construct a reference MC (MCref) of
50000 samples on meshes of 217208 elements, moments
estimates are denoted as µ̂

i
re f . Figure 3 shows the MSE:

1
25∑

25
i=1(µ̂

i
re f − µ̂

i)2 for estimated moment values by the
MC, and the MSE: 1

25∑
25
i=1(µ̂

i
re f − µ̂

i
meta)2 for moments

estimated by the MLMCmeta.

0 5 10 15 20 25
i-th moment

0.000

0.002

0.004

0.006

0.008

M
SE

MC
MLMCmeta

Figure 3: Comparison of the MSE between reference mo-
ments and moments estimated by MC and MLMCmeta,
Vt = 1e−5

Since the error of moments estimates is similar for both
the MC and the MLMCmeta, it is a good prerequisite for
a fine PDF approximation. Figure 4 shows an example
of a PDF approximated by the MEM based on moments
from the MC and the MLMCmeta. Given the 25 repeti-
tions, the average KL divergence KL(ρre f ∣∣ρMC) = 0.034
and KL(ρre f ∣∣ρMLMCmeta) = 0.031, for R = 25, Vt = 1e−5.
Thus, it is possible to get comparable results by both ap-
proaches.

7.5 MLMC extended by the meta-level

Since we cannot effectively train the meta-models on
meshes with more than ca. 1000 elements, it is advisable
to use initially the MLMC that generally reduces the com-
putational cost compared to the MC. Applying formula 24,
a meta-model is trained on the coarsest level, where a
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Figure 4: Comparison of PDFs approximated by mo-
ments from the MC (blue) and the MLMCmeta (red dotted),
DMC = KL(ρre f ∣∣ρMC) is the Kullback-Leibler (KL) diver-
gence between PDF ρMC from MC data and the reference
PDF ρre f , Dmeta = KL(ρre f ∣∣ρMLMCmeta), where ρMLMCmeta

is the density from MLMCmeta data, Vt = 1e−6, R = 25

mesh should have a small number of elements. Thus,
meta-model learning is feasible. To illustrate the MLMC
extended by the meta-level, let assume 3 level MLMC
with simulations on meshes of 546, 6772 and 87794 el-
ements, and the ChebNet GCN meta-model. RF parame-
ters: λ = 0.1, σ = 1.

Figure 5 shows the variance decrease from the coars-
est level to the finest level. Levels are here defined by a
simulation step h. The smaller the h, the finer the simula-
tion. It can be observed that in our current MLMC imple-
mentation, the decrease is steeper for lower moments. In
general, the more the variance across levels decreases, the
more effective the use of the MLMC. Thus, in our case, a
higher R results in a less effective MLMC compared to a
lower R. The number of moments affects the final Nl and
consequently the total computational cost C.

Table 6 provides the ratio between the MLMCmeta to-
tal cost Cmeta and the MLMC total cost C. To mea-
sure a quality of a PDF approximation, KL divergence
KL(ρ

25
re f ∣∣ρ

R
MLMCmeta

) is added to the table, where ρ
25
re f de-

notes a PDF based on 25 moments estimated by the MCref,
ρ

R
MLMCmeta

is a PDF approximated from moments esti-
mated by the MLMCmeta. It can be seen that the compu-
tational cost savings are greatest for the smallest number
of moments. However, R = 2 is insufficient to obtain a de-
cent PDF by the MEM. In our case, we need at least R = 5.
On the other hand, with Vt >= 1e−5 and R > 30, the mo-
ments estimation error causes the PDF to contain obvious
ripples. Using 5 ≤ R ≤ 30, we still achieve savings in the
computational cost of at least 10%. For you to get an idea,
for R = 25, Vt = 1e−6, the absolute computational costs in
seconds are as follows: Cmeta ≈ 73266 and C ≈ 84603.

The effect of R is also manifested in the case of the MC
extended by the meta-level. In both cases, it can be noted
that cost savings are almost constant for R ≥ 15.
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Figure 5: Moment variances across MLMC levels. The
level is identified by its simulation mesh step h, added
number represents the MLMCmeta Cl

Table 6: Computational cost of MLMCmeta to MLMC

R Cmeta/C KL(ρ
25
re f ∣∣ρ

R
MLMCmeta

)

2 0.41 0.522
5 0,64 0.00227

15 0,83 0.00338
25 0,87 0.00503
50 0,87 0.0112
75 0.85 0.0176

8 Conclusions

In this paper, we dealt with the meta-model design for
the groundwater flow problem. The motivation was to in-
corporate a meta-model into the multilevel Monte Carlo
method and achieve additional savings in the MLMC com-
putational cost. After comparing the meta-models based
on the ChebNet GCN, the GraphSage GCN, and the sup-
port vector regression, the ChebNet GCN was selected
as the most suitable for our task. The proposed meta-
modeling technique is effective for simulations on unstruc-
tured meshes with a maximum of ca. 1000 elements.
Computational cost savings of up to 50% were achieved
for both the MC and the MLMC extended by the meta-
level. Due to the observed uneven decrease in variances
of MLMC estimates across levels, the amount of compu-
tational cost savings depends on the number R of gener-
alized statistical moments. In order to obtain a good PDF
approximation by the MEM, we required R ≥ 5. In these
cases, we were still able to achieve at least 10% savings in
computational costs.

Although the obtained results are auspicious, to pro-
vide more general conclusions, it is necessary to try our
approach with a more complex simulation, which will be
more challenging for the meta-model design.
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[6] Jan Březina, Jan Stebel, Pavel Exner, and Jan Hybš.
Flow123d. http://flow123d.github.com, reposi-
tory: http://github.com/flow123d/flow123d, 2011–
2021.
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