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Figure 1: A schema depicting the improvement of clustering based on features from autoencoder trained on segmented
objects using our approach vs. the one trained on the original images.

Abstract: We present an approach for generic object de-
tection and segmentation in monocular videos. In this
task, we want to segment objects from a background with
no prior knowledge about the possible classes of objects
which we may encounter. This makes this task much
harder than the classical object detection and segmenta-
tion, which can be posed as a supervised learning prob-
lem. Our approach uses an ensemble of 3 different models
which are trained by different objectives and have different
failure modes and therefore complement each other. We
demonstrate the usefulness of our approach on a custom
dataset containing 18 classes of organic objects. Using
our method, we were able to recover the classes of objects
in a fully unsupervised way.

1 Introduction

Separating generic objects from a background in monocu-
lar videos is a challenging task. We believe that this prob-
lem is essential to Computer Vision and, as such, gained
an unproportionally small amount of attention from the re-
search community. The ability to separate objects from the
background would vastly simplify other tasks as it can be
viewed as a kind of dimensionality reduction on relevant
features.

In image classification, object separation prevents a
classifier from learning spurious correlations, which could
arise when a certain class is often captured on a particular
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background. Object separation from a background auto-
matically restricts a classifier to consider only features di-
rectly tied to the class label, as opposed to features only
correlated with it.

As the generic object separation is a rather nonstandard
task and still vaguely defined – it is not clear what should
be considered an independent object – we focus on a sim-
plified setting in which a camera captures a single salient
object. Our solution is an ensemble of three different mod-
els trained for different objectives.

Furthermore, we study the impact of the background re-
moval on the clustering properties of the resulting repre-
sentations. The representations are obtained by training
a neural network in an unsupervised way. We are able
to recover the categories of objects in a fully unsupervised
way, using our custom dataset containing videos of organic
things.

Our main contributions are:

• We present an ensemble model that can separate ob-
jects from the background in monocular videos con-
taining one salient object. The ensembled models
compensate for each other failure modes.

• We demonstrate the benefits of object separation by
comparing the classification accuracy of objects with
and without background using clustering.

Section 2 contains related work. Section 3 describes
our approach for detecting and segmenting generic objects
within monocular videos. Section 4 describes how the
detected objects enable unsupervised discovery of object



classes. In section 5 we describe our experiments and the
dataset we test our approach on, and finally we provide a
conclusion in section 6.

2 Related Work

Generic object separation is a largely an unexplored area,
and therefore similar works are scarce. Our approach
is most related to DINO method [1] which uses self-
supervised learning with Vision Transformers. The au-
thors introduced DINO as a form of self-distillation with
no labels. They emphasize that DINO automatically learns
an interpretable representation and separates the main ob-
ject from the background clutter.

Lu et al. introduced an approach called CO-attention
Siamese Network (COSNet) [2] for unsupervised video
object segmentation. It is based on two ideas. The first
is the importance of inherent correlation among video
frames, and the second is the global co-attention mecha-
nism responsible for learning motion in short-term tem-
poral segments. The COSNet is trained on pairs of video
frames, which increases the learning capacity.

The task of class discovery is marginally related to cur-
rent self-supervised approaches using large amounts of un-
labeled data such as [3, 4] and approaches that try to ex-
ploit coherency in the data [5].

Lastly, our approach for class discovery can be seen as a
version of clustering with constraints. It has been heavily
studied in the past, for example, by [6, 7].

3 Generic Object Detection and
Segmentation

This section describes our approach to generic object de-
tection and segmentation. By a generic object we mean
an object of an unknown class. We use this term to dis-
tinguish it from classical object detection and segmenta-
tion, which can deal only with a concrete set of speci-
fied classes. Classical object detection and segmentation
is much easier because it can be approached as a super-
vised learning problem on a dataset with annotated bound-
ing boxes and segmentation masks. With generic objects,
it is not that straightforward because it is not known in ad-
vance what kind of objects we will encounter at the test
time.

Moreover, at first it may not be obvious how to define
what should be considered as a separate object. One use-
ful definition would be that an object is anything that can
move independently from the rest of the environment. In
this view, we can understand generic object segmentation
as a way to factorise the visual stream into independent
components. We need to mention that this definition does
not cover all cases in which we would like to detect some-
thing as a separate object. Examples include buildings, let-
ters on a sheet of paper, and other “entities” which can not

move independently. Nonetheless, we consider this as our
working definition because it allows us to make progress
in generic object detection and segmentation.

3.1 Ensemble of Models Trained for Different
Objectives

Our approach to the problem of generic object detection
and segmentation is based on an ensemble of 3 models
which are trained by different objectives. Even though
each of these models has its own failure modes, together
they constitute a robust ensemble. Concretely, we use
one model trained for depth map prediction, one model
trained for optical flow estimation, and one model trained
for tracking of objects. Using the model for depth predic-
tion, we can separate foreground objects based on depth,
using the model trained for optical flow estimation, we
can separate moving objects, and finally, using the tracker,
we can verify the temporal coherency of our predictions.
The tracker is initialised with a bounding box obtained
from the predictions of the two other models in the frames
where these predictions are most consistent. The follow-
ing paragraphs provide a high-level description of these
three models. For a more complete description of these
models, see the respective publications.

Depth Prediction For the depth prediction, we use the
model introduced by Ranftl et al. [8], available from the
author’s repository1. This transformer-based model pre-
dicts a scalar value for each pixel, which represents the dis-
tance of the surface captured by that pixel from the camera
center.

Optical Flow Estimation For optical estimation, we use
the model introduced by Teed et al. [9]. It is also
a transformer-based model which requires 2 consecutive
frames of video to produce the optical flow field. The
optical flow field assigns two scalar values to each pixel.
These values represent the pixel displacement on the x and
y axes, relative to the previous frame. To obtain one scalar
value for each pixel, we take the magnitude of the dis-
placement. We used the implementation of the model with
trained weights provided in the authors repository2.

Object tracking For tracking objects, we use a model
called SiamMask [10], a neural network trained as a
Siamese architecture which simultaneously performs both
visual object tracking and object segmentation in a video.
We used the implementation available online3.

1https://github.com/intel-isl/DPT
2https://github.com/princeton-vl/RAFT
3https://github.com/foolwood/SiamMask



3.2 Segmenting out Known Classes

In our dataset, each video captures a hand holding one ob-
ject. Using our approach for generic object segmentation
which is based on predicted depth maps and optical flow,
our model segments out the hand together with the object.
We fix this issue by segmenting out hands separately by a
model trained specifically for hand segmentation.

To obtain training data for hand segmentation, we
downloaded the following 4 datasets: GTEA, HandOver-
Face, GTEA_GAZE_PLUS, and EgoHands456. The ar-
chitecture of the model is UNet with timm_regnetty_160
[11] as encoder and softmax2D as activation. The encoder
weights were pretrained on ImageNet.

Using freely available datasets for hand segmentation
mentioned above, the trained model was not working well
on our dataset, probably because of a large distribution
shift (most of the images in these public datasets contained
hands in front of the face or were captured in the interior).

To mitigate this problem, we used a simple trick to en-
large the training data with images of hands which are sim-
ilar to the images in our target dataset. Concretely, we cap-
tured our hands from a similar viewpoint as in our dataset,
and then used the same model for depth prediction to pro-
duce depth maps for every 10th frame within the video.
Finally, we thresholded the predicted death maps to obtain
reliable segmentation masks of hands. In this way, we ob-
tained hundreds of labeled images of hands with minimal
effort. After adding this dataset to the other datasets, we
obtained an accurate model for hand segmentation.

We use this model to remove hands from the mask pre-
dicted by our ensemble. More precisely, we remove the
hands from the outputs of the model predicting the depth
map and the model predicting the optical flow before we
initialise the bounding box for the tracker. In this way we
obtain masks only for the object, ignoring the hands.

3.3 Bounding Box Initialization

As mentioned above, we initialize the tracker with a
bounding box obtained from the predictions of depth and
optical flow maps within each frame. These predictions
are two rectangular matrices of the same shape. We rescale
the range of values to the interval between 0 and 1 and de-
note the final matrices by f1(x) and f2(x), respectively.

We first choose k frames where the predictions from
these two models are most consistent. To measure this
consistency, we devise the following heuristic. We first de-
tect edges using a Canny edge detector [12] in both predic-
tions and then measure the overlap of the resulting edges.
To account for small deviations of edges in the two pre-
dictions, we blur them with a gaussian kernel of the width
set to 7px to achieve their overlap if they are close to each

4http://cbs.ic.gatech.edu/fpv/
5https://www.cl.cam.ac.uk/research/rainbow/emotions/hand.html
6http://vision.soic.indiana.edu/projects/egohands/

other. Then we compute the consistency score c of frame
x using the following formula:

c(x) = ∑
i∈Pixels(x)

eε1i+ε2i , (1)

where ε1 and ε2 are the two blurred edge maps from the
two predictions and i indexes individual pixels. Next, we
obtain the aggregated predictions for each pixel i by:

y(x)i = e f1(x)i+ f2(x)i +
1

|Pixels(x)| ∑
j∈Pixels(x)

e f1(x) j+ f2(x) j .

(2)
We exponentiate the sum of the predictions from the two
models because we want these predictions to interact su-
perlinearly. We also subtract the mean of this value taken
over all pixels within the image to make the aggregated
predictions centered at zero. Therefore, the pixels where
no object was predicted will contain negative values.

Once we have the aggregated predictions for the se-
lected frames, we initialize the bounding boxes for the
tracker. For this, we again devise a score which captures
how well a given bounding box (bbox) covers pixels with
high values (signifying that an object is present) and at the
same time excludes pixels with low values. It has the fol-
lowing form:

bboxScore(bbox,y(x))= ∑
i∈Pixels(x)

isInBbox(i,bbox)·y(x)i,

(3)
where the function isInBbox returns −1 if the pixel is

not contained in the bounding box and 1 otherwise.
Finally, we optimize the coordinates of the bounding

box using CMA-ES [13] which is a derivative-free opti-
mization algorithm used for the optimization of continu-
ous parameters. The optimization tries to find coordinates
which maximize this score. At the end of this procedure,
we obtain k frames with bounding boxes in each video.
The quality of predictions and the resulting bounding box
is shown in Figure 2.

Figure 2: Predictions from the model for optical flow esti-
mation (middle) and depth estimation (right). The initial-
ized bounding box is depicted in the RGB image.
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Figure 3: This figure depicts the whole pipeline of our approach. The diagram describes the process of our approach from
the first step, where we preprocess the input video for the last step, where we obtain sets of similar objects.

3.4 Verification with the Tracker

Using the chosen frames and their bounding boxes, we ini-
tialize the tracker and let it track the object in between
the selected frames. The tracker provides another layer of
consistency check. Once we have the predictions from the
three models (denoted by f1(x), f2(x) and f3(x)), we can
treat the consistency of these predictions as a certainty of
the whole ensemble. To measure this certainty, we again
compute the consistency score as we did in the selection
of reliable frames in the Equation 1. Using an empirically
estimated threshold, we filter out frames with low consis-
tency and for each pixel i in the filtered frames, we ag-
gregate the predictions of the ensemble with the following
formula:

output(x)i =
min

(
e∑

3
j=1 f j(x)i −1,e2−1

)
e2−1

, (4)

The subtraction of 1 ensures that we get 0 when all three
models predict 0. Thresholding and dividing by e2 − 1
insures that we obtain a value close to 1 when at least
two models predict values close to 1. Finally, we obtain a
bounding box for each frame using the same method as in
the bounding box initialization (optimization using CMA-
ES), i.e., minimizing the objective in Equation 1.

The whole process can be viewed as certainty propaga-
tion. We first select a few frames where the first two mod-
els agree on their predictions and from these the tracker
propagates the certainty to other frames.

Evaluating The Quality of the Aggregated Predictions
Our final task is a discovery of classes of objects within
monocular videos. We view the generic object detec-
tion and segmentation as an intermediate step towards this

goal. Therefore, we evaluate the usefulness of our ap-
proach on this target task. That is, we test how well are
we able to recover classes of objects from images where
the objects were segmented out by our approach. We com-
pare it to the setup where we use the same algorithm for
class discovery but where we use the original images with
a background. We also mention that we do not require
pixel-perfect segmentation masks as our goal is only to fo-
cus on the relevant parts of the image, so that the measured
similarity between images will mostly reflect the similar-
ity of objects and not of backgrounds. The next section
describes our pipeline for the task of class discovery

4 Class Discovery

The algorithm for class discovery was proposed in [14].
Its input is a set of videos, each containing one object and
each represented as a sequence of images. The goal is
to find clusters of videos based on the similarity between
them. Generally, our algorithm works in 3 steps:

1. Measure the similarity between every pair of videos
with the method described in Section 4.1.

2. Construct a similarity graph by connecting each
video to its five most similar videos.

3. Apply the Louvain community detection algo-
rithm [15] to detect the highly interconnected parts
of the graph and consider these as the discovered
classes.

The advantage of the Louvain algorithm is that it needs no
apriori knowledge of the number of clusters/communities.

The accuracy of our approach is measured in two ways.
First, by counting how many times a video was assigned



to an incorrect cluster. Second, whether the algorithm
discovered all clusters. It is clear that the final accuracy
mostly reflects the measured similarity between individual
videos.

4.1 Computing Similarity between a Pair of Videos

Each video is represented by a sequence of images, but to
compute the similarity, we ignore the ordering and treat the
sequence as a set. The similarity between the two videos
is computed in the following four steps:

1. Train an autoencoder using images from all videos
to obtain a low-dimensional representation zi of each
image xi.

2. In each video, select n representative frames which
are not correlated, described in 4.2.

3. For each pair of videos, compute all pairwise similar-
ities d(zi,z j) with cosine distance.

4. Finally, select the l most similar pairs of images and
average their similarities to obtain the final similarity
between two videos.

The intuition behind step 4 is that videos of similar ob-
jects may contain only a few frames where these objects
are captured from the same angle or in the same situation.

4.2 Filtering out Correlated Frames

Step 2 of similarity computation takes n representative
frames. If we would simply use all frames from each
video, the distribution of the dataset may end up skewed
because some parts of a video may be more static than
others. These static parts would produce many correlated
frames. Therefore, the correlated frames need to be filtered
out from a given video. We first test whether the subjec-
tive visual similarity of images can be captured by cosine
similarity between their low-dimensional representations
obtained in step 1 of the similarity computation. As can
be seen in Figure 4, it captures the visual similarity well
enough.

To extract n uncorrelated frames from each video,
we run k-means clustering, where k = n, on the low-
dimensional representations and take the most similar
frame to every centroid of the resulting clusters. This sim-
ple heuristic produces uncorrelated images.

To conclude this section, if the low-dimensional rep-
resentation of individual images obtained by the autoen-
coder reflects the similarity between the captured objects
and not some other irrelevant factors, we may expect to
obtain meaningful clusters. Moreover, note the benefit of
creating the similarity graph of videos instead of individ-
ual images. All images in one video are automatically
linked together. If a few images in 2 videos are similar, this
similarity is propagated to other frames within the video,

Figure 4: Top: A graph of cosine similarity between the
first and other frames in the video. Bottom: Selected
frames from the video with their corresponding frame
numbers. The two highlighted frames correspond to two
arrows in the graph.

Figure 5: Samples from the Organic Objects dataset. Im-
ages are cropped and have blurred background.

which would otherwise not be linked based only on the
similarity. The video contains a constraint that says that
the object cannot change its class in time.

5 Experiments

To test the algorithm for object discovery, we assembled
a custom dataset of organic objects. The dataset con-
tains 18 classes of organic objects, some of which are de-
picted in Figure 5. We have chosen organic objects be-
cause they naturally produce large variability between in-
stances. For every class, we capture ten different samples
from different viewpoints. The final dataset can be down-
loaded at the following address – github.com/Jan21/

github.com/Jan21/Organic-objects-dataset


Organic-objects-dataset.
Using our ensemble described in Section 3, we segment

the object in every frame of each video. Using the re-
sulting bounding boxes and segmentation masks, we crop
each image and blur the background to suppress the dis-
tinctive features present in the background.

To obtain the low-dimensional representations used to
filter out correlated frames and construct the similarity
graph, we resize all images to a fixed resolution of 64×64
pixels and train a convolutional autoencoder. The autoen-
coder has five convolutional layers (16, 32, 64, 128, 256
filters with stride 2) and one fully-connected layer7 with
dimensions 1024→ 96. 8

Figure 6: Visualization of detected communities in the Or-
ganic Objects dataset with the Louvain method. Nodes are
colored according to the component (community) they are
assigned to. The method discovered 18 components which
belong to 18 different classes.

5.1 Results

After running community detection on the similarity
graph, we inspected how many image bundles were as-
signed to the wrong component. Out of 173 videos, only 5
in the training set were assigned to the wrong component.
The result of community detection on the constructed sim-
ilarity graph is shown in Figure 6. Numerical results and
comparison with clustering of non-segmented images are
presented in Table 1. From the accuracy and number of
discovered classes, it is clear that background removal cre-
ated a significant accuracy difference of 56.1% and a dif-
ference in the number of correctly discovered classes.

6 Conclusion

In this contribution, we present a method for generic object
detection and segmentation, which uses an ensemble of

7Image is downscaled to 2×2 times 256 filters→ 1024 input vector
to the fully-connected layer.

8We also tried to extract representations by using VGG16 which was
pre-trained on ImageNet. These representations better discriminated very
similar objects (e.g., two types of red flowers).

three different models trained by three different objectives.
To demonstrate the effectiveness of the approach, we have
created a custom dataset of organic objects. The dataset
was used in our pipeline to remove background, create
low-dimensional representations, and perform class dis-
covery and classification. We have shown that background
removal significantly increases the accuracy of the classi-
fication and the number of correctly discovered classes.

In future work, we plan to optimize our approach for
speed, generalize it to work with videos containing multi-
ple objects, and make the class discovery an online process
that can discover new classes on-the-fly.
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