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1 Faculty of Mathematics and Physics, Charles University, Prague, borisov@cs.cas.cz
2 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague, marek@dedic.eu

3 Cisco Cognitive Intelligence, Cisco Systems, Inc., Prague
4 Institute of Computer Science, Academy of Sciences, Prague, martin@cs.cas.cz

Abstract: Graphs are one of the most ubiquitous kinds
of data. However, data analysis methods have been de-
veloped primarily for numerical data, and to make use
of them, graphs need to be represented as elements of
some Euclidean space. An increasingly popular way of
representing them in this way are graph neural networks
(GNNs). Because data analysis applications typically re-
quire identical results for isomorphic graphs, the repre-
sentations learned by GNNs also need to be invariant
with respect to graph isomorphism. That motivated re-
cent research into the possibilities of recognizing non-
isomorphic pairs of graphs by GNNs, primarily based on
the Weisfeiler-Lehman (WL) isomorphism test. This pa-
per reports the results of a first experimental comparison of
four variants of two important GNNs based on the WL test
from the point of view of graph representation for down-
stream classification by means of a support vector machins
(SVM). Those methods are compared not only with each
other, but also with a recent generalization of the WL sub-
tree kernel. For all GNN variants, two different representa-
tions are included in the comparison. The comparison re-
vealed that the four considered representations of the same
kind of GNN never significantly differ. On the other hand,
there was always a statistically significant difference be-
tween representations originating from different kinds of
GNNs, as well as between any representation originating
from any of the considered GNNs and the representation
originating from the generalized WL kernel.

Keywords: graph representation learning, graph neural
networks, message-passing networks, Weisfeiler-Lehman
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1 Introduction

In the present time, graph-structured data are one of the
most ubiquitous kinds of data. However, from the point
of view of data analysis and knowledge discovery in
data, they received attention only during the last decades.
Therefore, data analysis methods for common tasks such
as classification, regression and clustering have been de-
veloped primarily for numerical data, and if they are used
for graph-structured data, graphs needs to be represented
as vectors in some Euclidean space. This requirement is
not specific for graphs, but can also be encountered with

other kinds of non-numerical data, the best-known exam-
ple probably being textual data. The seminal papers about
graph representation [20] and [9], which introduced, re-
spectively, the neighbourhood sampling strategies Deep-
Walk and node2vec, were strongly influenced by the Skip-
gram model for text, implemented by the word2vec algo-
rithm [16, 17].

An increasingly popular way of representing graphs by
vectors is using graph neural networks [10]. Typically,
downstream applications are desired to provide identical
results for isomorphic graphs. Consequently, the repre-
sentations learned by GNNs need to be invariant with re-
spect to isomorphism. That motivated recent research into
the possibilities of recognizing non-isomorphic pairs of
graphs by GNNs [1, 3, 6, 11, 15, 18, 29], primarily based
on the classical WL isomorphism test, capable of reveal-
ing such pairs in many situations [27].

The WL-test iteratively constructs neighbourhood sub-
trees rooted in graph vertices. Such a construction can also
be used for graph kernels [22]. In particular [24] intro-
duced the WL graph kernels, of which most relevant to our
work is the WL subtree kernel. That kernel was recently
generalized to the relaxed WL kernel [23]. Whereas the
kernel itself evaluates the graph with a scalar value, the
rooted subtrees used in a kernel definition can be easily
represented with vectors of non-negative numbers. There-
fore, the WL kernels can be viewed as a kernel counterpart
of representation learning with WL-test-based GNNs.

This work-in-progress paper reports a first experimental
comparison of two important WL-test-based GNNs with
the general relaxed WL kernel from the point of view
of graph representation for downstream classification by
means of an SVM. Of each GNN, four variants were avail-
able, and for all employed GNN variants, two different
representations were included into the comparison. The
comparison was performed on 20 graphsets created from
benchmark datasets and its results were tested for statisti-
cal significance.

The next section gives an overview of message-passing
neural networks, which are the most common kind of
GNNs, and at the same time the kind to which the known
WL-test-based GNNs belong. It also recalls the principles
of the relaxed WL kernel. The key part of the paper is Sec-
tion 3, in which the performed experimental comparison is
described and its first results are presented. Finally, Sec-
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tion 4 concludes the paper and indicates possible furhter
research.

2 Methodology

2.1 Preliminaries

In this comparison, we consider undirected graphs with
labelled and colored vertices. More precisely, graphs G =
(V,E,λ ) such that

• E ⊆ {X ⊆V : #X = 2}, where V is the set of vertices,
E is the set of edges, and #X denotes the cardinality
of X ;

• λ : V → Rdλ denotes a general labelling;

• ∃c : V → {0,1}dc , called colouring, where dc ≤ dλ ,
∀v ∈V : (c(v))1 + · · ·+(c(v))dc = 1, and c fulfils c =
(λ1, . . . ,λdc), i.e. the coloring is part of the general
labelling, which may in addition contain also other
components.

Using this notation and the symbol N(v) for the neigh-
bours of vertex v in the graph G, the WL isomorphism
test [27] can be described. The test consists in an iterative
algorithm applied to pairs G,G′ of graphs with equal num-
bers of vertices and such that if G and G′ are isomorphic,
then the isomporphism preserves their colorings. In each
iteration, the colorings are updated, taking into account the
neighbours of all vertices, in such a way that an isomor-
phism preserves also the updated colorings. Hence, if af-
ter a finite number of iterations, some value of the updated
coloring occurs in both graphs with different frequency,
then the isomorphism of G and G′ can be rejected. How-
ever, it can never be definitely confirmed. The pseudocode
of the WL test is in Algorithm 1.

Denote AG and A′G the adjacency matrices of G and G′,
respectively, and 1#V the vector (1, . . . ,1) of length #V .
Then the situation that the WL isomorphism test cannot
reject isomorphism of G and G′ can be characterized by
the following three equivalent conditions [5]:
(i) the WL test does not reject the isomorphism of G and

G′ within #V iterations;
(ii) for each tree T , the number of homomorphisms from

T to G equals the number of homomorphisms from T
to G′;

(iii) there exists a matrix X ∈ 0,1#V×#V solving the fol-
lowing system of linear equations:

AGX = XA′G,

X1#V = 1#V ,

1>#V X = 1>#V .

(4)

Observe that if G and G′ are really isomorphic, then the
equations (4) are solved by the permutation matrix X ful-
filling A′G = X>AGX , which transforms AG into A′G.

Algorithm 1 Weisfeiler-Lehman isomorphism test
Require: Graphs G,G′ with sets of vertices V,V ′, sets of

edges E,E ′, and colourings c,c′ such that V ∩V ′ =
/0,#V = #V ′, maximal number of iterations h≤ #V

1: Define the colouring c0 : V ∪V ′→ {0,1}dc ∪{0,1}d′c

by

c0(v) =

{
c(v) if v ∈V
c′(v) if v ∈V ′

(1)

2: Set Σ0 = c0(V ∪V ′)
3: Order Σ0 as σ1

0 , . . . ,σ
#Σ0
0

4: if exists j = 1, . . . ,#Σ0 such that #{v ∈ V : c0(v) =
σ

j
0} 6= #{v ∈V ′ : c0(v) = σ

j
0} then

5: Return the fact that G and G′ are not isomorphic
6: else
7: Set i = 1
8: Define the colouring c1 : V ∪V ′→ Σ0×N#Σ0

0 by

c1(v) = (c0(v),(s1, . . . ,s#Σ0)), where

s j = #{u ∈ N(v) : c0(u) = σ
j

0} for j = 1, . . . ,#Σ0
(2)

9: Set Σ1 = c1(V ∪V ′)
10: Order Σ1 as σ1

1 , . . . ,σ
#Σ1
1

11: end if
12: while i < h and #{v ∈ V : ci(v) = σ

j
i } = #{v ∈ V ′ :

ci(v) = σ
j

i } for j = 1, . . . ,#Σi do
13: Increment i = i+1
14: Define the colouring ci : V ∪V ′ → Σi−1×N#Σi−1

0
by

ci(v) = (ci−1(v),(s1, . . . ,s#Σi−1)), where

s j = #{u ∈ N(v) : c0(u) = σ
j

0} for j = 1, . . . ,#Σi
(3)

15: Set Σi = ci(V ∪V ′)
16: Order Σi as σ1

i , . . . ,σ
#Σi
i

17: end while
18: if exists j = 1, . . . ,#Σi such that #{v ∈ V : ci(v) =

σ
j

0} 6= #{v ∈V ′ : ci(v) = σ
j

0} then
19: Return the information that G and G′ are not iso-

morphic
20: else
21: Return the information that the WL test did not

reject the isomorphism of G and G′ within h iterations
22: end if



Finally, a feedforward artificial neural network NN will
for the purpose of this paper be a stationary connectionist
feedforward structure

NN = (I,O,H,C,F ,(Φe)e∈C,(Ψν)ν∈H∪O) where (5)

• I,O and H are mutually disjoint sets of input, output
and hidden neurons;

• C ⊆ I×H ∪H×H ∪H×O is a set of connections;

• ∀ν ∈ I : out(ν) = {ξ ∈ H ∪ O : (ν ,ξ ) ∈ C} 6= /0,
out(ν) is the output set of the neuron ν ;

• ∀ν ∈ O : inp(ν) = {ξ ∈ I ∪ H : (ξ ,ν) ∈ C} 6= /0,
inp(ν) is the input set of the neuron ν ;

• ∀ν ∈ H : inp(ν) 6= /0,out(ν) 6= /0;

• ∃Dom⊆ R#I : F ⊆ {F : Dom→ R#O}, F is the set
of mappings computable by the NN;

• ∀ν ∈H∪O ∃Domν ⊆R#inp(ν) : Ψν ⊆ {ψ : Domν →
R}, the elements of Ψν are called somatic operators
available for the neuron ν ;

• ∀e ∈C ∃Dome ⊆ R : Φe ⊆ {ϕ : Dome→ R}, the el-
ements of Φe are called synaptic operators available
for the connection e;

• all mappings computable by the NN fulfil the follow-
ing condition of resursive composability:
∀F ∈F ∀ν ∈H∪O ∀ξ ∈ inp(ν) ∃ψν ∈Ψν ∃ϕ(ξ ,ν) ∈
Φ(ξ ,ν)∀X ∈Dom ∃AX : I∪H∪O→R – the activation
state of NN corresponding to the input X , fulfilling

AX |I = X ,AX |O = F(X), (6)
∀ν ∈ H ∪O : AX (ν) = ψν((ϕ(ξ ,ν)(AX (ξ )))ξ∈inp(ν)).

(7)

The above definition covers in particular multilayer per-
ceptrons and radial basis functions, for which a plethora of
theoretical results is available, such as the classical univer-
sal approximation results concerning density of F in gen-
eral function spaces [4, 12–14, 19], and results concerning
the applicability of the laws of large numbers and of the
central limit theorem [28]. As usually, the set F will be
assumed parametrizable with a finite-dimensional set W of
parameters. Hence,

∃q ∈ N ∃W ⊆ Rq∃ω : W →{F : Dom→ R#O}
such that F = ω(W ). (8)

Needless to say, the parametrizability of F also induces
the parametrizability of the sets of somatic operators
Ψv,v ∈ H ∪O and synaptic operators Φe,e ∈C.

2.2 Message-passing Neural Networks

Message-passing neural networks (MPNN) are probably
the kind of neural networks most often used for graph
data. They are characterized by the following two prop-
erties [10]:

1. Their input and hidden neurons are structured into
a sequence of layers H0 = I,H1, . . . ,HL, like in the
case of multilayer perceptrons (MLPs) and radial ba-
sis functions:

k 6= `⇒ Hk ∩H` = /0,

C∩ (H×H)⊆
⋃

1≤`≤L

H`−1×H`. (9)

2. The structure of their connections as well as their so-
matic and synaptic operators attempts to reflect the
structure and properties of the graphs to which the
network is applied. The approach that is most typ-
ical, and at the same time perfectly suitable for the
kind of graphs considered in this paper, consists in:

• network connections attempt to reflect the struc-
ture of graph edges, in particular input and out-
put sets of neurons attempt to reflect the neigh-
bourhoods of graph vertices;

• in each layer ` = 0, . . . ,L, a group of neurons
νv,1, . . . ,νv,d` ∈ H` can be assigned to a vertex

v ∈ V , with d0 = dλ , and the vector ψ
(`)
v =

(ψνv,1 , . . . ,ψνv,d`
) of their somatic operators for

a layer ` < L fulfils

ψ
(`+1)
v = f (`)up (ψ

(`)
v , f (`)ag (ψ

(`)
u1 , . . . ,ψ

(`)
u#N(v))),

(10)

where f (`)up : Rd` ×Rdag → Rd`+1 is called up-

date function, {u1, . . . ,u#N(v)} = N(v), f (`)ag :
Rd`×#N(v) → Rdag is called aggregation func-
tion, and dag ∈ N with a usual choice dag = d`
or dag = d`+1;

• synaptic operators are not used.

3. The resulting mapping F composed according to (6)
is required to be either invariant or equivariant with
respect to permutations of the d0 columns of its input
matrix. Needless to say, equivariance – preserving in
the output the permutation of the input columns, is
possible only if |O|= d0.

An important concept relevant to MPNN as well as to
other kinds of GNNs is consistency with graph colouring.
An MPNN is consistent with the colouring c of a graph G
if it fulfils

ψ
(0)
u = ψ

(0)
v ⇔ c(u) = c(v). (11)



Because (ψ
(`)
v )v∈V is for each ` = 1, . . . ,L a mapping

into the Euclidean space Rd`×#V , or equivalently, into the
Euclidean space Rd`#V , it can be used for graph representa-
tion. Usually, however, only (ψ

(L)
v )v∈V is used to this end.

In our experiments reported in Section 3, both possibilities
were used.

Network 1-GNN was proposed in [18] as part of a study
of the relationships between GNNs and the WL test. That
study actually considered more general GNNs, called k-
GNNs, with a general k ∈ N, and investigated their rela-
tionships to k-WL tests, which are generalizations of the
WL test from vertices to k-tuples of vertices. The 1-GNN
is not only the simplest network of this kind, but at the
same time also a specific kind of MPNN, for which the
functions f (`)up and f (`)ag in (10) are defined as

f (`)up (ψ
(`)
v , f (`)ag (ψ

(`)
u1 , . . . ,ψ

(`)
u#N(v))) =

= σ(W (`)
1 ψ

(`)
v +b(`)+ f (`)ag (ψ

(`)
u1 , . . . ,ψ

(`)
u#N(v))),

f (`)ag (ψ
(`)
u1 , . . . ,ψ

(`)
u#N(v)) =

#N(v)

∑
j=1

W (`)
2 ψ

(`)
u j , (12)

where W (`)
1 ,W (`)

2 ∈ Rd`+1 ×Rd` ,b(`) ∈ Rd`+1 , and σ is a
component-wise non-linear activation function, e.g. a sig-
moid or ReLU.

From the point of view of a relationship between this
kind of networks and the WL test, it is important that
for a 1-GNN consistent with the graph colouring, and for
the colouring ci constructed in the i-th iteration of Algo-
rithm 1, i≤min(h,L), it was proven in [18] that:
(i) ∀u,v ∈V : ci(u) = ci(v)⇒ ψ

(i)
u = ψ

(i)
v ;

(ii) there exists a sequence of weight matrices and bias
vectors (W (0)

1 ,W (0)
2 ,b(0)), . . . ,(W (i−1)

1 ,W (i−1)
2 ,b(i−1))

such that if the functions f (0)up , f (0)ag , . . . , f (i−1)
up , f (i−1)

ag
are defined using this sequence, then for any i′ =
1, . . . , i,u,v ∈V : ψ

(i′)
u = ψ

(i′)
v ⇒ c(i′)(u) = c(i′)(v).

Graph Isomorphism Network (GIN) was proposed in [29]
and defines the functions f (`)up and f (`)ag in (10) as

f (`)up (ψ
(`)
v , f (`)ag (ψ

(`)
u1 , . . . ,ψ

(`)
u#N(v))) =

= f (`)mlp((1+ ε`))ψ
(`)
v + f (`)ag (ψ

(`)
u1 , . . . ,ψ

(`)
u#N(v))),

f (`)ag (ψ
(`)
u1 , . . . ,ψ

(`)
u#N(v)) =

#N(v)

∑
j=1

ψ
(`)
u j , (13)

where ε` > 0 and f (`)mlp : Rd`→Rd`+1 is an MLP producing
the representation of the graph in the (`+1)st layer.

A relationship between GIN and the WL test is based
on applying the universal approximation resultsfor MLPs
[4, 12–14] to f (`)mlp , in combination with a result proven
in [29]as Corollary 6:

Let X ⊆ Rd` be countable and bounded, pmax ∈ N. Then
there exists a function f : X → Rd`+1 such that for in-
finitely many choices of ε , including all irrational num-
bers, the function h : X ×

⋃pmax
p=1 X p→X defined

∀c ∈X ∀p = 1, . . . , pmax ∀X = (x1, . . . ,xp) ∈X p :

h(c,X) = (1+ ε) f (c)+
p

∑
j=1

f (x j) (14)

is unique with respect to multisets, which means that

∀c ∈X ∀p = 1, . . . , pmax∀X ,X ′ ∈X p :
[∀x ∈X : #{ j = 1, . . . , p : x j = x}=

= #{ j = 1, . . . , p : x′j = x}]⇒ h(c,X) = h(c,X ′). (15)

2.3 Relaxed Weisfeiler-Lehman Kernel

The relaxed WL kernel [23] is a recent relaxation of the
WL subtree kernel, which was proposed in [24] and is
based on the WL isomorphism test described in Algo-
rithm 1. Taking into account the number of iterations of
the WL test, which is in the context of the WL subtree
kernel called depth, the value of this kernel for a pair of
graphs G = (V,E,λ ),G′ = (V ′,E ′,λ ′) is defined as

k(h)WLsubtree(G,G′) =
h

∑
i=0

∑
v∈V

∑
v′∈V ′

δ (ci(v),ci(v′)), (16)

where δ denotes the Kronecker delta, also known as Dirac
kernel. Consequently, the WL subtree kernel reflects only
exact match of the colouring produced for both graphs in
every iteration of the WL test, although in many real-world
problems, more important than exact match is a similarity
of those colourings.

To overcome this drawback, the exact match is in [23]
for i = 0, . . . ,h weakened to the equivalence with respect
to the clusters Cρ

1 , . . . ,C
ρ

kρ
produced by a partitioning ρ of

Σi. Hence,

∀i, j = 1, . . . ,kρ : i 6= j⇒Cρ

i ∩Cρ

j = /0,

Cρ

1 ∪·· ·∪Cρ

kρ
= Σi, ρ : Σi→{1, . . . ,kρ},

∀k = 1, . . . ,kρ , ∀σ ∈Cρ

k : ρ(σ) = k. (17)

Moreover, for each Σi, not only one such partitioning ρ

is used, but a finite set Θi = {ρ i
1, . . . ,ρ

i
#Θi
} of them. This

turns (16) finally into the definition of a relaxed WL ker-
nel:

k(h)R-WL(G,G′) =
h

∑
i=0

∑
ρ∈Θi

∑
v∈V

∑
v′∈V ′

δ (ρ(ci(v)),ρ(ci(v′))).

(18)

Its name originates from the fact that k(h)R-WL is more gen-
eral than k(h)WLsubtree, to which it turns if Θi = {ρi} with
ρi(σ) = {σ} for i = 1, . . . ,h,σ ∈ Σi.



The construction of the partitionings ρ ∈Θi, i= 1, . . . ,h,
in (18) is based on replacing each σ ∈ Σi for i = 1, . . . ,h
with a set of isomorphic unfolding trees. An unfolding
tree T i(G,v) of depth i in a graph G rooted in a vertex
v ∈ V will be defined in accordance with [5], as a rooted
tree T = (V (T ),E(T )) with root r such that:

• ∃ f – homomorphism from T to G;

• f (r) = v;

• for each non-leaf t ∈V (T ), f induces a bijection be-
tween the set of children of t in T and N(v) in G.

For unfolding trees, a natural distance is a tree-edit dis-
tance. The definition of the tree-edit distance employed in
the context of the relaxed WL kernel can be found in [23].

From the point of view of graph representation, it is im-
portant that (16) and (18) are actually scalar products of
vectors, which suggests to use those vectors as Euclidean-
space representations of the graphs G and G′ in down-
stream data analysis applications. In particular for the
WL subtree kernel, define a vector φ WL(G) ∈ RnWL with
nWL = ∑

h
i=0 #Σi as

φ
WL(G) = (φ WL

0,1 , . . . ,φ WL
0,#Σ0

,φ WL
1,1 , . . . ,φ WL

h,#Σh
), (19)

where for i = 0, . . . ,h, j = 1, . . . ,#Σi,

φ
WL
i, j = #{v ∈V : ci(v) = σ

i
j}. (20)

Then (16) can be indeed rewritten as the scalar product

k(h)WLsubtree(G,G′) = φ
WL(G)>φ

WL(G′). (21)

Similarly for the relaxed WL kernel, define a vector
φ R-WL(G) ∈ RnR-WL with nR-WL = ∑

h
i=0 ∑

#Θi
j=1 k

ρ i
j

as

φ
R-WL(G) = (φ R-WL

0,1 , . . . ,φ R-WL
0,#Σ0

,φ R-WL
1,1,1 , . . . ,φ R-WL

1,1,k
ρ1

1

,

φ
R-WL
1,2,1 , . . . ,φ R-WL

1,#Θ1,kρ1
#Θ1

,φ R-WL
2,1,1 , . . . ,φ R-WL

h,#Θh,kρh
#Θh

), (22)

where for i = 0, . . . ,h, j = 1, . . . ,#Gi, k = 1, . . . ,k
ρ i

j
,

φ
R-WL
i, j,k = #{v ∈V : ρ

i
j(ci(v)) = k}. (23)

Then (18) can be rewritten as the scalar product

k(h)R-WL(G,G′) = φ
R-WL(G)>φ

R-WL(G′). (24)

It is useful to realize that the label sets Σi for i = 0, . . . ,h
on which the definitions of φ WL and φ R-WL rely, were de-
fined only for a pair of graphs (G,G′), as Σi = ci(V ∪V ′),
cf. Line 15 od Algorithm 1. For dealing with a whole
set G of graphs such that each G ∈ G has its own sets of
vertices V G and edges EG as well as its own labelling λ G

and colouring cG, then it is convenient to generalize their
definition to

Σi =
⋃

G∈G
cG

i (v
G), i = 0, . . . ,h. (25)

It is this definition that we used in our experiments.

3 Experimental Comparison

For the experimental comparison, we implemented the 1-
GNN and GIN networks using layers and neural networks
learning methods available in the PyTorch Geometric li-
brary [21]. We also made use of the GenWL implemen-
tation [8] of the relaxed WL kernel by the authors of the
paper [23]. Both network implementations were used in
their decay variants, and the GenWL implementation was
used in the R-WL∗ variant, in accordance with the experi-
ments reported in [23].

3.1 Employed Graphsets

To be able to asses the statistical significance of the com-
parison results, we performed the comparison on 20 mu-
tually disjoint graphsets GS1–GS20, adopting the usual
assumption that for the employed data, disjointness is a
sufficient condition for statistical independence. Those
graphsets were obtained from real-world benchmark sets
of graph data. Due to our objective of investigating the
suitability of the compared graph representation methods
for downstream classification, we used datasets from bi-
nary graph classification tasks to this end.

We have chosen four benchmark sets of graph data,
which are available both in the PyTorch Geometric library
[21], and in the GenWL implementation of the relaxed WL
kernel [8].

1. BZR is a set of 405 ligands for the benzodiazepine re-
ceptor, classified with respect to their activity in ben-
zodiazepine binding [25].

2. COX-2 is a set of 467 cyclooxygenase-2 inhibitors,
classified with respect to their activity against human
recombination enzyme [25].

3. DHFR is a set of 756 inhibitors of dihydrofolate re-
ductase, classified with respect to their activity in the
inhibition of the enzymatic reduction that converts di-
hydrofolate to tetrahydrofolate [25].

4. NC1 is a set of 4110 compounds evaluated in bioas-
says of the National Cancer Institute on non-small
cells of lung tumour, classified with respect to growth
inhibition of this kind of human tumour [26].

The precise origin of the graphsets GS1–GS20 in those
four benchmark sets is listed in Table 1.

3.2 Experimental Setup

Before starting the experiments, we need two make two
decisions concerning the compared GNNs: First, what net-
work topology to use, and how to obtain a graph represen-
tation from a trained network. Second, a decision concern-
ing the comparison as a whole, including the relaxed WL
kernel – how to evaluate the suitability of each representa-
tion for downstream classification. We now address each
of those design decisions in some detail.



Table 1: Origin of the employed graphsets.

Graphset Original benchmark data
GS1 BZR, graphs with nr. 1-200
GS2 BZR, graphs with nr. 201-405
GS3 COX2, graphs with nr. 1-250
GS4 COX2, graphs with nr. 251-467
GS5 DHFR, graphs with nr. 1-250
GS6 DHFR, graphs with nr. 251-500
GS7 DHFR, graphs with nr. 501-756
GS8 NCI1, graphs with nr. mod 13 = 0
GS9 NCI1, graphs with nr. mod 13 = 1
GS10 NCI1, graphs with nr. mod 13 = 2
GS11 NCI1, graphs with nr. mod 13 = 3
GS12 NCI1, graphs with nr. mod 13 = 4
GS13 NCI1, graphs with nr. mod 13 = 5
GS14 NCI1, graphs with nr. mod 13 = 6
GS15 NCI1, graphs with nr. mod 13 = 7
GS16 NCI1, graphs with nr. mod 13 = 8
GS17 NCI1, graphs with nr. mod 13 = 9
GS18 NCI1, graphs with nr. mod 13 = 10
GS19 NCI1, graphs with nr. mod 13 = 11
GS20 NCI1, graphs with nr. mod 13 = 12

Topology of the Compared GNNs . Due to the fact that the
GNNs were trained on classification data, and also due to
the default settings of the employed GenWL implementa-
tion of the relaxed WL kernel, both of them contained the
following layers:
(i) an input layer, which receives the colourings of ver-

tices, i.e. the components (λ1, . . . ,λdc) of the label
λ , no matter whether the label has possibly still other
components, i.e. whether dc = dλ or dc < dλ ;

(ii) 5 MPNN layers of the same size, specific for 1-GNN
and for GIN;

(iii) an average-pooling layer averaging over vertices of
the graph;

(iv) a crossentropy-classification layer.
As to the MPNN layers, we investigated 2 variants of

them, differing in size:

(iia) The size of all 5 layers equals the average number of
vertices among the graphs in the graphset.

(iib) The size of all 5 layers equals the maximal number
of vertices among the graphs in the graphset.

GNN values used for graph representation were obtained
as the activities, i.e. the results of somatic operators, in
neurons of the MPNN layers. In both compared GNNs, the
activities are obtained separately for each vertex of each
graph. Therefore, activities for each graph are first aver-
aged over all of its vertices, in accordance with using an

average pooling layer during their training. According to
the neurons that were actually used to this end, two kinds
of graph representation were considered:
(i) representation restricted to activities of neurons of the

last MPNN layer, which is a restriction commonly en-
countered in representation learning by artificial neu-
ral networks;

(ii) representation with activities of neurons of all MPNN
layers, which is more similar to the representation
(24) based on the relaxed WL kernel.

Apart from the GNN topology, the hyperparameter val-
ues of all compared methods were set to their defaults in
the employed implementation, and if no default was avail-
able, to values obtained through slight tuning.

Evaluation of graph representations with respect to their
suitability for downstream classification was by means of
accuracy on test data obtained in classification using as
input each of the representations. To this end, a linear
support vector machine (SVM) classifier was employed,
in accordance with the default setting in the GenWL im-
plementation of the relaxed WL kernel [8]. To increase
the reliability of the accuracy assessment, a 10-fold cross-
validation was used.

3.3 First Results

The results for both kinds of GNN-based representations
for the 4 considered networks, i.e. 1-GNN and GIN with
both variants (iia) and (iib) of the MPNN layers, as well
as the results for the R-WL∗-based representation are pre-
sented in Table 2. For each of those representations, the
mean and standard deviation of the accuracies on the vali-
dation folds are reported, from 10-fold cross-validation on
each of the 20 graphsets.

According to Table 2, the highest accuracy has been
most frequently, namely 8 times among the 20 employed
graphsets, achieved with the representation by activities of
the last layer of the the variant (iia) of MPNN layers of
a 1-GNN, as well as with the representation by activities
of all layers of the the variant (iib) of MPNN layers of a
1-GNN. However, the differences between accuracies in
Table 2 are not only due to essential differences between
the considered representations, but also due to random in-
fluences. To separate the former from the latter requires to
assess statistical significance of those differences.

3.4 Assessment of Statistical Significance

To assess the statistical significance of the obtained results,
we first tested the basic null hypotheses that the mean
classification accuracy for all 9 representations coincides.
To this end, we applied the Friedman test with 10 repli-
cates to the results for all 200 validation folds from the
cross-validation of SVM-classification on the 20 graph-
sets. This basic null hypothesis was strongly rejected, with
the achieved significance p = 4 ∗ 10−92. For the post-hoc



Table 2: Mean and standard deviation of the validation-fold accuracy from a 10-fold cross-validation of classification by
an SVM, using as input the representations of graphs obtained from the 1-GNN and GIN networks, as well as from the
R-WL∗ variant of the relaxed WL kernel. MPNN layers (iia) refer to 5 message passing layers of length equal to the
average number of vertices among the graphs in the graphset on which the network is being trained, MPNN layers (iib)
refer to 5 message passing layers of length equal to the maximal number of vertices among the graphs in that graphset.
For each graphset, the representation yielding the highest accuracy is in bold.

Representation Activities of the last MPNN layer Activities of all MPNN layers Relaxed
MPNN layers (iia) MPNN layers (iib) MPNN layers (iia) MPNN layers (iib) WL

Graphset 1-GNN GIN 1-GNN GIN 1-GNN GIN 1-GNN GIN kernel
Accuracy [%]: mean ± standard deviation

GS1 96 ± 4 94 ± 4 98 ± 4 94 ± 4 96 ± 5 94 ± 3 98 ± 3 94 ± 5 90 ± 9
GS2 86 ± 8 82 ± 8 88 ± 7 83 ± 9 85 ± 7 86 ± 6 89 ± 5 84 ± 9 81 ± 9
GS3 82 ± 7 81 ± 3 84 ± 4 82 ± 4 84 ± 5 81 ± 4 86 ± 6 85 ± 6 82 ± 4
GS4 88 ± 6 81 ± 8 89 ± 6 82 ± 7 89 ± 5 83 ± 3 90 ± 8 82 ± 6 76 ± 7
GS5 81 ± 9 79 ± 8 84 ± 6 74 ± 8 80 ± 5 76 ± 7 84 ± 5 76 ± 8 66 ± 5
GS6 96 ± 5 85 ± 7 92 ± 5 84 ± 6 96 ± 4 84 ± 11 94 ± 3 84 ± 5 83 ± 8
GS7 98 ± 3 93 ± 5 92 ± 3 91 ± 5 98 ± 3 92 ± 4 92 ± 5 92 ± 5 89 ± 5
GS8 83 ± 6 79 ± 6 79 ± 7 80 ± 7 83 ± 4 78 ± 6 79 ± 9 79 ± 6 65 ± 8
GS9 80 ± 6 75 ± 8 93 ± 6 75 ± 7 79 ± 10 76 ± 5 94 ± 5 73 ± 7 75 ± 7
GS10 83 ± 8 81 ± 5 66 ± 8 76 ± 7 83 ± 6 78 ± 6 69 ± 6 77 ± 7 74 ± 7
GS11 73 ± 11 79 ± 7 75 ± 4 71 ± 8 75 ± 6 78 ± 8 77 ± 7 71 ± 6 71 ± 8
GS12 93 ± 4 80 ± 6 90 ± 5 80 ± 5 91 ± 4 84 ± 8 90 ± 7 79 ± 7 64 ± 6
GS13 85 ± 4 75 ± 10 85 ± 4 78 ± 8 86 ± 7 71 ± 9 85 ± 8 74 ± 10 71 ± 8
GS14 85 ± 7 73 ± 9 81 ± 5 72 ± 9 85 ± 6 76 ± 9 82 ± 3 71 ± 9 69 ± 7
GS15 91 ± 6 66 ± 11 79 ± 7 71 ± 6 91 ± 4 67 ± 7 78 ± 7 67 ± 12 64 ± 6
GS16 81 ± 8 86 ± 5 75 ± 6 80 ± 7 81 ± 7 85 ± 4 77 ± 7 79 ± 7 69 ± 6
GS17 87 ± 6 78 ± 7 91 ± 6 74 ± 8 88 ± 6 78 ± 8 91 ± 5 72 ± 5 68 ± 10
GS18 92 ± 4 78 ± 8 94 ± 4 75 ± 10 93 ± 3 75 ± 7 95 ± 3 75 ± 8 63 ± 8
GS19 88 ± 7 72 ± 7 82 ± 6 72 ± 7 87 ± 5 75 ± 6 81 ± 8 73 ± 9 69 ± 6
GS20 85 ± 4 73 ± 7 90 ± 5 71 ± 9 82 ± 6 75 ± 8 89 ± 9 70 ± 6 66 ± 7

analysis, we employed the Wilcoxon signed rank test with
two-sided alternative for all 36 pairs of the investigated
representations, because of the inconsistence of the more
commonly used mean ranks post-hoc test, to which re-
cently Benavoli et al. pointed out [2]. For correction to
multiple hypotheses testing, we used the Holm method [7].

The results of the pairwise comparisons of the 9 inves-
tigated representations and of their significance testing are
presented in Table 3. A number na,b in a row of the table
corresponding to a representation a and a column corre-
sponding to a representation b states in how many among
the graphsets GS1–GS20, the representation a lead to a
higher mean classification accuracy than the representa-
tion b. If na,b > nb,a and the difference between the rep-
resentations a and b is according to the Wilcoxon signed
rank test significant at the familywise level 5%, after the
Holm correction, then na,b is in bold.

The boldfaced significant differences in Table 3 reveal
that representations originating from the same kind of
GNNs never lead to significantly different accuracy, nei-

ther those originating from a 1-GNN, nor those originating
from a GIN. On the other hand, if one of the representa-
tions originates from a 1-GNN and the other from a GIN,
then the difference between the accuracies is significant,
and similarly if one of them is GNN-based and the other
originates from the relaxed WL kernel. Combined with
the results in Table 2, this means that any of the four rep-
resentations originating from the 1-GNN yields most fre-
quently the highest accuracy, whereas the differences be-
tween those four representations are not significant. The
fact that the accuracies of the four representations origi-
nating from the same kind of GNNs were neither for 1-
GNN nor for GIN significantly different, suggests to test
the stronger hypothesis that the mean classification accu-
racy of all those four representations coincides. For 1-
GNN, the Friedman test indeed did not reject that hypoth-
esis, with quite high achieved significance p = 0.19. For
GIN, it rejected the hypothesis on the usual significance
level 5%, but even on the significance level 4% it did not
reject it any more (achieved significance p = 0.043).



Table 3: Comparison of the investigated representations. A number na,b in a row of the table corresponding to a rep-
resentation a and a column corresponding to a representation b states in how many among the graphsets GS1–GS20,
the representation a lead to a higher mean classification accuracy than the representation b. That number is in bold if
na,b > nb,a and the difference between the representations a and b is according to the Wilcoxon singed rank test significant
at the familywise level 5%, after the Holm correction. MPNN layers (iia) refer to 5 MPNN layers of length equal to the
average number of vertices among the graphs in the graphset on which the network is being trained, MPNN layers (iib)
refer to 5 MPNN layers of length equal to the maximal number of vertices among the graphs in that graphset.

Activities of the last MPNN layer Activities of all MPNN layers Relaxed
Representation MPNN layers (iia) MPNN layers (iib) MPNN layers (iia) MPNN layers (iib) WL

1-GNN GIN 1-GNN GIN 1-GNN GIN 1-GNN GIN kernel
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4 Conclusion and Further Research

This work-in-progress paper experimentally compared 8
variants of graph representations based on two recently
proposed graph neural networks inspired by the WL iso-
morphism test, as well as a representation based on a re-
cent generalization of the WL subtree kernel. They were
compared not with respect to their distance in the embe-
ding space, but with respect to downstream classification
by means of an SVM. The results of that comparison in-
dicate that the highest classification accuracy is achieved
with representations originating from 1-GNN networks.
At the same time, the comparison revealed that any two
representations originating from different kinds of GNNs

always lead to significantly different accuracies, and also
the accuracies of a GNN-based representation and of the
representation originating from the relaxed WL kernel dif-
fer significantly. On the other hand, the four accuracies of
representations originating from the same kind of GNNs
are never significantly different. Moreover, the data even
don’t contradict a stronger hypothesis that the mean clas-
sification accuracy of all those representations coincides.

The result that the representation based on the relaxed
WL kernel was inferior to the GNN-based representations
is explainable by the fact that the kernel was designed for
dense and structurally more diverse graphs, whereas the
reported investigation was performed on simple molecular
graphs.



However, the paper presents really only first results that,
in our opinion, indicate usefulness of a possible further
research in this direction, which we consider interesting
due to the crucial role nowadays played by representation
learning. Needless to say, such a research would have to be
more comprehensive with respect to the employed graph
data, as well as with respect to the involved representation
methods.

As to the employed data, we used 20 comparatively
small disjoint graphsets from only four different bench-
mark datasets, to be able to assess the statistical signifi-
cance of the differences between the compared represen-
tations. To use instead a similar number of separate bench-
marks, would lead to much larger graphsets and would al-
low to cover a broader spectrum of applications, and to
drop the assumption that for the employed data, disjoint-
ness is a sufficient condition for statistical independence.
The benchmarks for future investigation should include
also dense and structurally diverse graphs, i.e. the kind
of graphs for which the relaxed WL kernel is intended. In
addition, it would be interesting to know how the GNN-
based representations change if instead of the colouring
components (λ1, . . . ,λdc) of a labelling λ , the complete
labeling is used.

As to the involved representation methods, it would be
interesting to compare the relaxed WL kernel with meth-
ods based on other GNNs inspired by the WL test. Indeed,
other variants of the WL subtree kernel have been suffi-
ciently compared with the relaxed WL kernel in [23] and
shown to be inferior to it, and several of them have also al-
ready been compared with GNN-based methods inspired
by the WL test [1,11,15]. On the other hand, comparisons
among different methods are sporadic [3, 11, 15], and a
comparison of some of them with the relaxed WL kernel
is, to the best of our knowledge, for the first time reported
in this paper.
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