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Abstract

This paper addresses the issue of nowadays vocal assistants cognitive lacks, which are able to execute
from vocal commands only simple plans without higher capabilities of decision-making. In this work we
propose an open-world assumption transposition of the cognitive architecture CASPAR, whose heuris-
tic takes into account of meta-reasoning in the closed-world assumption, namely SW-CASPAR. Such a
cognitive architecture is also provided with a module for semi-automatic ontology learning from sen-
tences in natural language, reflecting the domain with an instance of a novel foundational ontology
called Linguistic Oriented Davidsonian Ontology (LODO), with the aim of increasing the deepness of
reasoning without compromising linguistic-related features. LODO is inspired by the First-Order Logic
Davidsonian notation and serialized in OWL 2. A case-study applied to automation on health scenarios
is also provided.
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1. Introduction

In the last years, the market of the Internet of Things (IoT) has become quite disruptive by
changing the lifestyle of thousands of people. Thanks to a considerable number of sensors
and actuators interconnected with each other, a great number of environments, both home
and industrial, have been enriched with every kind of automation, whose diversity is bounded
only by the imagination of the designer. In most of such environments, especially homes, vocal
assistants, together with the rest of the compatible devices, assume a more and more important
role. The two major enterprises in the market of vocal assistants, namely Amazon and Google, by
leveraging their massive dataset for training models in the task of vocal commands recognition,
aim more at increasing their product’s pervasiveness than respect to improving native reasoning
capabilities of the latters. In both cases, each vocal command can be related either to a single
pair or to a group of request/operation triggered by specific words. Additional features can be
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included by developers with the so-called “Skills” or by exploiting external cloud services like
IFTTT [16], but with no enhanced reasoning capabilities.

With “enhanced reasoning capabilities” we intend not only the ability to infer the proper
association command—plan from utterances, but also to combine facts with rules in order to
infer new knowledge and help the user in decision-making tasks. In order to help users in their
cognitive processes by using a form of logic reasoning, we must provide the assistant with a
combination of facts and rules or, more simply, we must give assistants the capabilities of freely
and implicitly extracting what they require from texts in natural language.

In a prior work [1, 2], some of the authors of this paper designed a cognitive architecture called
CASPAR that instantiates cognitive agents provided with both reactive and cognitive reasoning.
Such agents are able to reason in a process subordinated by a further level of reasoning, namely
meta-reasoning, in a conceptual space, whose content is made of facts and axioms in first-order
logic with the closed-world assumption. An important variation of such architecture, which
would make it suitable for different scenarios and represents the main motivation of this paper,
consists in reasoning over shared ontologies in the open-world assumption, in other words by
leveraging the Semantic Web.

Ontologies are formal, explicit specification of a shared conceptualization [3]. The Semantic
Web, with all its layers and frequent updates, can be considered the very backbone of nowadays
ontologies.

The closed-world assumption applies when a system has complete information, like many
database applications. On the contrary, the open-world assumption applies when a system
has incomplete information. For example, consider a patient’s clinical history system. If the
patient’s clinical history does not include a particular allergy, it would be incorrect to state
that the patient does not suffer from that allergy; it is unknown if the patient suffers from that
allergy, unless more information is given to disprove the assumption.

On the basis of the above, we designed a variation of CASPAR, namely SW-CASPAR!, capable
of parsing IoT commands from natural language, subordinating them by a meta-reasoning on
the Semantic Web. An important effort in the development of such architecture has been given
by the Owlready [4] library, which gives also the chance of reasoning in the local closed world?,
as reported in [5].

SW-CASPAR relies on the support of a module called Ontology Builder, which dynamically
creates domain-legacy ontologies serialized in OWL 2, in order to allow for meta-reasoning.
Nonetheless, it can can be used also as an alternative stand-alone tool for creating ontologies, in
substitution of other state-of-the-art tools, for several reasons that will be clarified in later on.
A Python prototype implementation of SW-CASPAR is also available as a Github repository.’

This paper is structured as follows: Section 2 illustrates the issues of ontology learning from
natural language; Section 3 describes the state of the art of related literature; Section 4 shows in
detail all the architecture’s components and underlying modules, whereas Section 5 illustrates
the strategy applied for the task of the Ontology Learning; Section 6 depicts a case-study of an
agent working on a health scenario, making usage of both reasoning and meta-reasoning in the

"Which stand for: Semantic Web-CASPAR.
?Owlready reasoning capability in the local closed world is limited to a set of individuals and classes.
*http://www.github.com/fabiuslongo/sw-caspar
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Semantic Web; finally, in Section 7 we draw our conclusions and mention some future work
perspectives.

2. The issue of Natural Language Ontology

The task of learning an ontology reflecting a domain, by means of a description in natural
language of the domain itself, implies several bias that must be considered. In general, ontology
learning can be accomplished in three ways: manual learning, by leveraging the effort of experts
of the domain; cooperative learning, where most or all the task are supervised by experts;
semi-automatic learning, where the ontology construction process is performed automatically
with limited intervention by users or experts. It is worth mentioning that full automatic learning
by a system is still a significant challenge and it is not likely to be feasible [6]. When sentences
are not specifically well-formed, the task of ontology learning from natural language can be
quite hard, because of all possible semantic ambiguities of idioms and the arbitrary descriptive
nature of the world, which can induce morphologically distinct sequences of words to express
the same concept.

In [7], it is reported that “Natural Language Ontology is a branch of both methaphysics and
linguistic semantic. It aims to uncover the ontological categories, notions and structures which
are implicit in the use of natural language, that is, the ontology that a speaker accepts when
using a language”. But such an acceptance implies several issues to be addressed by an ontology
learning system designer. For instance, for a speaker it would be quite natural and simple to
express that a certain object does not exist. In a closed-world assumption we can limit to not
assert such a concept, or at least to retract the representation of it from a knowledge base. But
how to operate in an open-world assumption, in order to let such information participate in a
reasoning process in a human-like fashion? How to keep consistency when an information and
its complement are possibly both present in an ontology, as it could happen in texts given by
a speaker? In linguistic science, intentional objects as nonexistent are considered particularly
problematic [8]; for instance, having an ontology A representing a domain of existing entities,
and another ontology B representing a description in natural language of the same domain,
we cannot definitively say that A and B are equivalent, due to a possible introduction in B of
entities which not exist but are functional to the arbitrarily descriptive use of words present in
the source text of B.

Let us consider the following two sentences: “Robert walked down the street” and “Robert had
a walk down the street”. How can one infer that they express the same concept in a decision
process? In the second sentence we are in presence of the so-called deverbal nominalization
of the verb walk versus a noun expressing the action of walking. So we are forced to create
somehow a bridge between the two sentences, in order to achieve the same result when both
are participating in a reasoning process. Similarly, let us consider also the simple verbal phrase
“the friends are happy” and the snippet “happy friends”. In this case, we are in presence of a
deadjectival nominalization, because the adjective happy becomes the object of a copular* verb

*A copular verb is a special kind of verb used to join an adjective or noun complement to a subject. Common
examples are: be (is, am, are, was, were), appear, seem, look, sound, smell, taste, feel, become, and get. A copular
verb expresses either that the subject and its complement denote the same thing or that the subject has the property



(be), thus the subject (friends) has the property denoted by the adjective; hence, how to express,
by means of an ontology, that the two pieces of information yield the same concept?

The above questions and many other issues related to the natural language ontology are
described in [7], which can be a good starting point for filling the gap between a domain and
an arbitrary description of it given by a speaker.

In [1, 2], the authors gave an overview of CASPAR, from which SW-CASPAR inherits most of
its features, so in the next section we limit ourselves to highlight the state-of-the-art concerning
ontology learning, whereas motivations and results concerning the road we chose to follow for
the design of this architecture’s ontology learning system are postponed until Section 5.

3. Related works

The architecture explained in this paper inherits all the cognitive IoT features from its predecessor,
so the reader is referred to [1, 2] for more details. Hence, this section is focused more on the
scope of ontology learning from natural language, which is the main additional contribution of
this work.

The disruptive growing of textual data on the web, coupled with an increasing trend to
promote the semantic web, has made the automatic ontology construction from texts a very
promising research area. However, manual construction of ontologies is time consuming as
well as an extremely laborious and costly process. For this reason, several approaches have
been designed to automatize the ontology learning from text, each with different levels of
human interaction. Such approaches can be divided into two categories: linguistic-based and
machine learning approaches. Among the linguistic-based approaches, the authors of [9] use
semantic templates and lexico-syntactic patterns such as “NP is type NP" to extract hypernym
and meronym relations. But it is well known that these approaches have reasonable precision,
though they have a very low recall [6]. In order to achieve terms extraction, [10] leverages
POS tagging to assign parts-of-speech to each word and a rule-based sentence parser. However,
many words are ambiguous and so this approach will lead to a low accuracy, without a valid
disambiguation strategy. Our approach, although similar, makes usage also of a performative
disambiguation module, described in details in [2], and extracts also conditional-word based
axioms. The authors of [11] make use of a dependency parser to map syntactic dependencies
into semantic relations. Such approaches are useful for terms and concepts extraction and also
for relations discovery, even though they need to cooperate with other algorithms and/or rules
for better performance.

As for machine learning approaches, the system ASIUM [12] adopts agglomerative clustering
for taxonomy relations discovery. The axioms only express subsumption relationship (IS-A)
between unary predicates and concepts. The system OntoLearn [13] extracts only taxonomic
relations, taking into account hypernyms from WordNet. The system HASTI [14] builds au-
tomatically ontologies from scratch, using logic-based, linguistic-based and statistical-based
approaches. It is one of the few systems that try to learn axioms using inductive logic program-
ming, even though they are very general. Furthermore, such a system has the limitation that

denoted by its complement.



each intermediate node, in the conceptual hierarchy, has at most two children. Worth of men-
tioning, there is also Text-to-Onto [15], which builds taxonomic and non-taxonomic relations
that make use of data mining and natural language processing. Other approaches [16, 17, 18] are
also interesting, although either they have limitations on the composition of learned concepts
or they generate too many hypotheses, making the involved calculation unmanageable.

Besides a large analysis of state-of-the-art, the authors of [19] discuss on reasons and tech-
niques about the usage of deep neural networks in the Ontology Learning. In these cases, neural
networks are often hard to train, although in many cases they give better results by using large,
domain-related datasets.

4. The Architecture

As pointed out in the introduction, the architecture’s name derives directly from its predecessor
CASPAR, namely SW-CASPAR, which stands for Semantic Web-Cognitive Architecture System
Planned and Reactive, a name that summarizes its inherited features plus the transposition on
the Semantic Web. All interacting components are depicted in Fig. 1, highlighted with distinct
colours.

The main component of this architecture, namely the Reactive Reasoner, acts as “core router”
by delegating operations to other components, and providing all needed functions to make the
whole system fully operative.

S EE—
SR
. Physical
ASR Direct Commands > Sensors <>
Parser
S EE—

i

Devices (——>~
Dependency H

) ——;
Parser

O

Devices Groups <——>'

.

i

Beliefs KB ————

Uniquezer PHIDIAS Engine H
Smart Environment H Smart
:I Interface + Environment |
Sensor
MST Builder Instances —__—

Ontology

Translation Service Reactive Reasoner Cognitive Reasoner

|

Y

‘
J

!

Ontology Builder

. j STT
FOL Builder ’L Front-End ]

,
A

Figure 1: The Software Architecture of SW-CASPAR.

This architecture’s knowledge base (KB) is divided into two distinct parts operating sepa-
rately, which we will distinguish as Beliefs KB and Ontology: the former contains information
about physical entities which affect and are affected on the agent, whereas the latter contains
conceptual information not directly perceived by agent’s sensors, but on which the agent would



make inferences.

The Beliefs KB provides exhaustive cognition about what the agent could expect as input
data coming from the outside world; as the name suggests, such a KB is fed by specific beliefs
that can - in turn - activate related plans in the agent’s behaviour.

The Ontology is defined by triples in OWL 2, and is fed by the Ontology Builder within the
Reactive Reasoner.

The two KBs represent, somehow, two different kinds of human being memory: the so-called
procedural memory or implicit memory[20], made of thoughts directly linked to concrete and
physical entities, and the conceptual memory, based on cognitive processes of comparative
evaluation.

As well as in human beings, in this architecture the two KBs can interact with each other in
a very reactive decision-making process (meta-reasoning).

4.1. The Translation Service

The Translation Service component (left box in Figure 1) is a pipeline of five modules with the
task of taking a sound stream in natural language and translating it in a neo-davidsonian FOL
expression inheriting the shape from the event-based formal representation of Davidson [21].
The reader is referred to [1, 2] for a detailed description of such a component.

4.2. The Reactive Reasoner

This component (central box in Fig. 1) has the task of letting other modules communicate
with each other; it also includes additional modules such as the Speech-To-Text (STT) Front-
End, which transforms information coming from other modules in beliefs, IoT Parsers (Direct
Command Parser and Routine Parser), Sensor Instances, and Ontology Builder. The Reactive
Reasoner contains also the Beliefs KB, which supports both Reactive and Cognitive reasoning,.

The core of this component processing is managed by the Belief-Desire-Intention Framework
Phidias [22], which gives Python programs the ability to perform logic-based reasoning (in
Prolog style) and lets developers write reactive procedures, i.e., pieces of programs that can
promptly respond to environment events. For further details about such a component, readers
are referred again to [1, 2].

4.3. The Smart Environment Interface

This component (upper right box in Fig. 1) provides a bidirectional interaction between the
architecture and the outer world. In [23], we have shown the effectiveness of this approach by
leveraging the Phidias predecessor Profeta [24], even with a shallower analysis of the semantic
dependecies, as well as an operation encoding via WordNet [25] in order to make the operating
agent multi-language and multi-synonymous. For more details, the reader is still referred to
(1, 2].
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Figure 2: A simple instance of LODO ontology related to the sentence (2).

4.4. The Cognitive Reasoner

This component (bottom right box in Figure 1) allows an agent to implicitly invoke the Pellet
reasoner at runtime, in order to achieve a meta-reasoning subordinating agent’s IoT commands.
This component comprises the ontology as well, which is fed by the Ontology Builder within
the Reactive Reasoner.

5. The Ontology Learning

Differently from most approaches to ontology learning, in this paper we give up the idea that
whatever such approach will be, it will suffer from the biases related to the ontology of natural
language. In light of that, firstly we create a First-Order Logic representation directly linked to



the linguistic features of the sentences in exam, which is provided by the Translation Service
component; secondly, whether required, we provide the ontology-specific SWRL [26] rules,
whom extend the OWL 2 expressiveness by adding Horn-like axioms. Such rules, as we can see
next in the paper, will contribute to fill the gap between the ontology itself and the expected
reasoning in human-like fashion. The core module of the Translation Service, as depicted in
Fig. 1, is the Macro Semantic Table (MST) Builder. Since the MST Builder is made of production
rules taking into account relations (dependencies) between words, as long as such relations are
treated properly by some rules, the accuracy of the conversion from natural language to logical
form can be clearly considered equal to the accuracy of the dependency parser. As for the latter,
which in this work’s case-study is spaCy [27], in the author’s website® it is reported to have a
state-of-the-art accuracy of 90% for all trained models available for the english idiom.

As reported in detail in [1, 2], the Translation Service translates a text in natural language
into a First-Order Logic (FOL) expression, inheriting the shape from the event-based formal
representation of Davidson [21]. Thus, having such a FOL representation, the module STT
Front-End, taking into account the Part-of-Speech which are parts of each label’s predicates, will
assert specific beliefs triggering the production rules system of the Ontology Builder. The latter
has the task of physically creating the OWL 2 domain-legacy ontology containing the triples
representing all verbal phrases and their satellite semantic parts (nouns, adjectives, prepositions,
and adverbs). For its direct derivation from Davidson notation, in this work we define such a
family of ontologies as LODO (Linguistic Oriented Davidsonian Ontology). The latter can be
considered a foundational ontology, i.e., a specific type of ontology designed to model high-level
and domain independent categories about the real world.

The general schema of LODO is quite straightforward. We define regular verbal phrase a set
of triples in OWL 2 made by the following classes and their instances:

- Verb. Each instance of this class represents what comes as verbal phrase in the Davidsonian
notation, from the Translation Service. Each individual has the following object properties:
hasld, having the values of a unique timestamp; hasSubject, representing the verb subject
in the domain of Entity; hasObject, representing the verb object in the domain of either
Entity or Verb (in the case of embedded verbal actions). Another property, namely isPassive,
possibly indicates whether a verbal action is passive or not.

- Id. Each instance of this class represents a unique timestamp related to a verbal actions.
It takes the value of the object property hasld from some instance of Verb. As in temporal
logic, such value can be useful to deal with inconsistency cases: the higher is the Id, the
more valid is the related instance of Verb, even when such an instance has the property
hasAdverb equal to the value of Not®; notice that a proper SWRL axiom could be also used
to invalidate such obsolete individuals, in order to let them not participate in a reasoning
process. Furthermore, by taking into account the Part-of-Speech, it can also introduced
an object property hasTime of such instance, to express the tenses of the verbal actions
(Present, Past Tense, Past Participle, Gerund) that respect the timestamp.

- Entity. Each instance of this class represents an entity referenced by the object property
either hasSubject or hasObject. Compound nouns are concatenated in order to form a

Shttps://spacy.io/models/en#en_core_web_lg
Negations are treated as whatever adverb.



single individual.

- Adjective. Each instance of this class takes the values of the object property hasAdj of
some instance of Entity.

- Preposition. Each instance of this class represents a preposition and it is referenced by
the object property hasPrep of some instance of either Verb or Entity. Moreover, each of
such instance has the object property hasObject referencing some instance of Entity.

- Adverb. Each instance of this class represents an adverb and has the values of the object
property hasAdv of some instance of Verb.

Together with such taxonomic and non-taxonomic relations, LODO comprises also a group
of axioms (or part of them) implicitly created by SW-CASPAR, with the aim of increasing the
chances of reasoning/graph matching. Such axioms are summarized as follows:

- Assignment Rules. Such rules are implicitly asserted in the presence of a FOL expression
representing a copular verb (possibly identified also by its synset) and its satellite predi-
cates. Formally, in the presence of the following Davidsonin FOL expression coming from
the Translation Service in Fig. 1:

Subject:POS(x1) A Cop:POS(ey, x1, x2) A Object:POS(x2)

where each predicate has its own Part-of-Speech (POS) tag. Such a expression will trigger
the assertion of the following SWRL rule”:

Subject(?x) -> Object(?x) (1)

That’s because a copular verb (such as Be, for instance) is an intransitive verb but identi-
fying its subject with its object; hence, in this case, the class membership of the verb’s
object will be inherited by the subject.

- Legacy Rules. Such rules are implicitly asserted together with the Assignment Rules, to let
a copular verb’s subject inherit both adjectives and prepositions properties of the verb’s
object. Formally, considering (1), the corresponding legacy rule will be the following:®

Subject(?x2), Object(?x1), hasAdj(?x1, ?x3), Adjective(?x3) -> hasAdj(?x2, ?x3)

- Deadjectival Rules (optional). In the presence of an instance of Adjective, such rule asserts
a new deadjectivated instance of the latter as new membership of the adjective related
noun. Formally:

Entity(?x1), hasAdj(?x1, ?x2), Adjective(?x2) -> Entity(?x2)

- Deverbal Rules (in progress of development). In the presence of an instance of Verb, such
rules assert a new deverbalized instance of the latter having the same entities as the
former.

"By omitting the POS, which can be also included in classes labelling.
#Similarly for preposition, by changing hasAdj with hasPrep.



- Implicative Copular Rules. Such rules take into account implicative axioms, possibly
coming from the Translation Service in FOL Davidsonian notation and containing a single
copular verb in the implication’s head. They are useful to infer new memberships of the
initial sentence subject, which must be present also in the body. The production rule of
the Ontology Builder for such rules assertion takes into account the following pattern:

Subject(xpody) A... = Subject(xsupj) A Object(xop;) A Coplecops Xsubjs Xobs)

As shown above, the label Subject must be in both left- and right-hand side of the FOL
expression; otherwise, in order to replace possible pronouns that invalidate the pattern,
an anaphora resolution pre-processing could be required before the Translation Service
pipeline in Fig.1. Cop is the label of a copular verb which will be absorbed, permitting
the formal assertion of the following pattern:

Subject(?xop; ), ... -> Object(?x,p;)

Any other implicative FOL expression with non-copular verb in the head will be discarded,
due to the non-monotonic features of SWRL.

- Value Giver Statements (optional). Such a statement contributes to give a value to a data
property hasValue related to a specified individual, which is parsed by the Ontology
Builder by matching the following pattern of beliefs:

GND(FLAT, X, Y), ADJ(FLAT, X, "Equal"), PREP(FLAT, X, "To", S), VALUE(FLAT, S, V)

The first argument (FLAT) of each belief is for distinguishing non-implicative expressions
from implicative ones, and even either right- or left-hand side for the latters. The belief
GND is related to a ground term with label Y coming from a FOL expression, which
corresponds to a couple of class-individual in the ontology. The beliefs ADJ and PREP
specify a lexical content among their arguments, while VALUE specifies the value that
must be given to the individual corresponding with label Y. The property hasValue might
be involved in comparison operations in the composition of a SWRL axiom.

- Values Comparison Conditional (optional). Such conditionals are parsed from sentences
similarly to the Value Giver Statement, but they will take place within the body of Implica-
tive Copular Rules.

For instance, let us consider the following sentence:
Robert slowly drinks good wine in the living room. (2)

The Translation Service will give the following FOL expression as result:

Robert:NNP(x1) A wine:NN(x2) A drink:VBZ(e1, x1, x2) A slowly:RB(e1) A good:)J(x2) A
in:IN(e1, x3) A living:NN(x3) A room:NN(x3)

Then, on the basis of POS and arguments cardinality, the STT Interface will produce the
following set of beliefs:



PREP(FLAT, e1, In, x3), ACTION(ROOT, FLAT, Drink, e1, x1, x2), GND(FLAT, x3, Living),
GND(FLAT, x1, Robert), GND(FLAT, x2, Wine), GND(FLAT, x3, Room), ADV(FLAT, e1, Slowly),
ADJ(FLAT, x2, Good)

Since implicative copular rules can be applied only one time for sentence, the label ROOT as
first argument of the belief ACTION has the aim of distinguishing the main verbal action from
possible others in the same sentence. The final step is done by the Ontology Builder (within the
Reactive Reasoner in Fig. 1), whose production rules will match in a specified order such beliefs,
in order to interface with the Owlready libraries and create the OWL 2 ontology.

Fig. 2 depicts such an ontology: the classes in the upper level (Verb, Entity, Preposition, and
Adverb) are meant to be subclasses of Things; the remaining ones in the circles are subclasses
of the former; the diamond shaped boxes are individuals whose label contains also a reference
of verbal action’s Id (the value 123 is not indicative); the latter is also an individual itself, being
instance of the class Id.

Due to the presence of the adjective good related to the individual wine, optionally one might
activate the SW-CASPAR deadjectival generation rule; then, invoking an OWL 2 reasoner
such as Hermit [28] or Pellet [29], the individual wine will achieve the new deadjectivated
membership good.

6. Case-Study

In this section we present a simple case of ontology building and reasoning/meta-reasoning,
showing how IoT agents based on SW-CASPAR are able to parse natural language commands
and reason about their execution in the open-world assumption. Inspired by [5], where the
author shows a use-case consisting in reasoning on drugs contraindications in presence of food
intolerances, in this case-study we mainly focus on clinical information about a patient’s health
disorders and known issues of drugs.

We suppose to provide a hospital with a (semi-)automatized drug distribution system based on
natural language recognition, or even to build a robot performing such a task. In this scenario,
we suppose to define one or more agents assisting physicians in the decision-making task
related with the administration of drugs, on the basis of known drug’s issues and clinical picture
of patients. In order to address such a task, we extended the Smart Environment Interface of
SW-CASPAR with the following set of two production rules given by Phidias,” which considers
a known issue of the drug Rinazina concerning a contraindication for hypertensive patients:

+INTENT("Rinazina", T) / eval_sem(T, "Hypertensive")) » [say("Nope. Patient is hypertensive")] (3)
+INTENT("Rinazina", T) » [exec_cmd("Rinazina", T), say("execution successful")] (4)

Each production rule which begins with +!° is expressed in a Prolog-like sintax, where the
left hand-side comprises a belief we want the rule to match with (INTENT), conditioned by

°For the sake of the case-study we consider a simplified form of rules. The reader id referred to the Github
repository for more details.
“Thanks to an ad-hoc operators override in Python.



other beliefs (in this case the Active Belief eval_sem); the right-hand side comprises, in square
brackets, the plan to execute when the rule is triggered.

We now generate the domain-legacy ontology exploiting LODO with all the required information
about the patient Robinson Crusoe and his health disorders starting from the following sentences:

Robinson Crusoe is a patient
Robinson Crusoe has diastolic blood pressure equal to 150
When a patient has diastolic blood pressure greater than 140, the patient is hypertensive

The first sentence is parsed as both regular verbal phrase and assignment rule, whose related
classes and individuals are shown in Fig. 3. Classes and instances have similar names (except
for the timestamp) by the virtue of punning patterns, which increase the chances of reasoning,
whereas a unique timestamp is adopted for all the elements of the same verbal phrase.

Together with classes and individuals, the corresponding legacy rules are also asserted (first
and third rule of Fig. 4) allowing Robinson Crusoe to inherit all the features of the individual
patient in an analogous way as the speaker’s knowledge flow in the scope of the same discourse.
The developer might also provide customized IRL,'' either manually or automatically, by means
of a pre-compiled association table.

Annotation properties . Datatypes [ Individuals

Classes | Object properﬁes | Data properties

Asserted =

V-0 owlThing
¥ 00 Adjective

B Diastolic

L Hypertensive
----- Adverb
Entity

Blood_Pressure
Patient
L Robinson_Crusoe

..... Preposition
¥ @ Verb

Annotation properties . Datatypes [ Individuals

Classes | Chject properties Data properties

Individuals: Have 966929

& X

@ 259748

@ 966929

@ Be.250748

@ Blood_Pressure.966929

@ Diastolic.966929
Have.966929

@ Patient.250748

@ Robinson_Crusoe.259748

@ Robinson_Crusoe.966929

Figure 3: The LODO taxonomic relations and instances of the case-study

As shown in Fig. 4, the second sentence is parsed as regular verbal phrase containing also a

value giver statement (depicted in Fig. 5).

The third sentence is parsed by the Translation Service as FOL expression containing an

implication such as:

Have:VBZ(e1, x1, x2) A Blood:NN(x2) A Patient:NN(x1) A Pressure:NN(x2) A Than:IN(xo, x5)
A Diastolic:JJ(x2) A Great:JJR(x2) A 140:CD(x5) = Patient:NN(x3) A Hypertensive:JJ(x4) A
Be:VBZ(es, x3, X4)

"Mnternationalized Resource Identifier



Rules: = =] (]

Rules
Robinson_Crusoe(?x) -~ Patient{?x}

hasAdj(?x7, ?x12), Diastolic(?x12), hasValue({?x7, ?x11), greaterThan(?x11, 140}, has Subject(?e3, ?x9),
hasObject{?e3, ?x7), Have(¥e3), Blood_Pressure{?x7), Patient{?x9) -~ Hypertensive{?x9)

Robinson_Crusoe(?x2), Patient(?x1), hasAdj({?x1, ?x3), Adjective{?x3) -~ hasAdj{?x2, ?x3)

Figure 4: The LODO rules of the case-study

Property assertions: Have 966929

Object property assertions
W hasld 966929
B hasObject Blood_Pressure. 966929
B hasSubject Robinson_Crusoe. 966929
Data property assertions

Megative object property assertions

Megative data property assertions

Property assertions: Blood_Pressure 966929

Ohject property assertions

W hasAdj Diastolic.966929

Data property assertions

W& hasValue 150
Megative object property assertions

Megative data property assertions

Figure 5: The LODO non-taxonomic relations of the case-study

Then the Ontology Builder asserts an implicative copular rule containing a value comparison
conditional (the second entry in Fig.4), without creating individuals linked together by the same
timestamp.

At the end of the ontology building process, the agent is ready to parse a command containing
the following text:



Description: Robinson_Crusoe 966929

Types
Robinson_Crusoe
Hypertensive

Patient
Same Individual As

Different Individuals

Figure 6: Inferred LODO membership after reasoning.

Give Rinazina to Robinson Crusoe

As the agent invokes the Pellet reasoner and checks for the membership of Robinson Crusoe
to the class Hypertesive (as well as in Fig. 6 with Protégé), after a successful meta-reasoning
of the Active Belief eval_sem, the production rule 3 will match with the Beliefs KB content
and the command will be discarded with an objection message from the agent. Otherwise, the
production rule 4 will match and the command will be executed without any objection message.
Of course, the meta-reasoning can involve also more complex queries expressed in SPARQL
language and even in local closed world.

7. Conclusions and Future Work

In this paper, we presented the design of a cognitive architecture called SW-CASPAR, able to
parse IoT commands from natural language and then to execute related plans. Such commands
can be subordinated by a further level of (meta-)reasoning in the open-world assumption. Meta-
reasoning is achieved by invoking the reasoner over an ontology representing the agent’s world
serialized in OWL 2, whose semantic is strictly related to the linguistic features of the idiom.
The ontology is built by a semi-automatic process, taking into account the issues of natural
language ontology, in order to fill the gap between expressiveness and reasoning. All the built
ontologies reflect the specifications of the LODO family, which can be considered a foundational
ontology aiming both at keeping the expressiveness of Davidsonian notation and at maximizing
the chances of successful reasoning.

As future work, we intend to address in more depth other issues and ambiguities of natural
language ontologies, in order to include additional rules in LODO, thus leading to a reasoning
more human-fashioned.
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