
On the Design of PSyKE: A Platform for Symbolic

Knowledge Extraction

Federico Sabbatini
1
, Giovanni Ciatto

1
, Roberta Calegari

2
and Andrea Omicini

1

1

Dipartimento di Informatica – Scienza e Ingegneria (DISI), Alma Mater Studiorum—Università di Bologna, Italy

2

Alma Mater Research Institute for Human-Centered Artificial Intelligence, Alma Mater Studiorum—Università di

Bologna, Italy

Abstract

A common practice in modern explainable AI is to post-hoc explain black-box machine learning (ML) pre-

dictors – such as neural networks – by extracting symbolic knowledge out of them, in the form of either

rule lists or decision trees. By acting as a surrogate model, the extracted knowledge aims at revealing

the inner working of the black box, thus enabling its inspection, representation, and explanation.

Various knowledge-extraction algorithms have been presented in the literature so far. Unfortunately,

running implementations of most of them are currently either proof of concepts or unavailable. In

any case, a unified, coherent software framework supporting them all – as well as their interchange,

comparison, and exploitation in arbitrary ML workflows – is currently missing.

Accordingly, in this paper we present PSyKE, a platform providing general-purpose support to sym-

bolic knowledge extraction from different sorts of black-box predictors via many extraction algorithms.

Notably, PSyKE targets symbolic knowledge in logic form, allowing the extraction of first-order logic

clauses. The extracted knowledge is thus both machine- and human-interpretable, and can be used as a

starting point for further symbolic processing—e.g. automated reasoning.
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1. Introduction

Artificial neural networks (ANN), support vector machines (SVM), and other data-driven predic-

tors are nowadays among the most-used tools to face a wide range of different tasks involving

machines learning (ML) from data [1]. In all those cases, the learning activity consists of tuning

the parameters of predefined algorithms in order to maximise their predictive capability w.r.t.

the data at hand.

The major drawback of state-of-the-art ML algorithms is that they are inherently opaque,

meaning that they do not provide any intelligible representation of what they learn from data.

This is why most of those algorithms are considered as black boxes (BB) which only represent
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knowledge in a sub-symbolic way. Nevertheless, despite their sub-symbolic operation may

prevent human users from understanding how they work, BB – and, in particular, ANN – are

being increasingly applied to support forecasting and decision making in many different fields –

including, but not limited to, marketing, customer/user profiling, social networks, predictive

maintenance, etc. – because of their unprecedented predictive performance.

There exist, however, critical applications where black-box predictions or recommendations

are unacceptable: for instance, healthcare, finance and law domains, or any other area of

knowledge where decision making may affect critical aspects of human lives—e.g. health,

wealth, freedom, etc. In all those cases, it is of paramount importance to rely on explainable

predictions, recommendations, or suggestions, in order to let humans retain accountability and

liability over the decision or choices they make.

Many strategies can be exploited to pursue the purpose of explainability [2]. Some authors

suggest for instance to only rely on interpretable algorithms [3] – such as generalised linear

models, decision trees, etc. – to obtain data-driven solutions that are explainable by construction.

However, this may hinder predictive performance in the general case, as it essentially cuts off

most effective algorithms—e.g., ANN. Another strategy consists of deriving post-hoc explanations

[4], aimed at reverse-engineering the inner operation of a BB so as to make it explicit. In this

way, data scientists can keep using prediction-effective algorithms such as ANN, while still

attaining high predictive performance. The focus of this paper is on the latter strategy.

Symbolic knowledge extraction (SKE) is among the most promising means to derive post-hoc

explanations for sub-symbolic predictors. Roughly speaking, the main idea behind SKE is to

enable the construction of a symbolic surrogate model mimicking the behaviour of a given

predictor. There, symbols may consist of intelligible knowledge, such as rule lists or trees. Such

rules can then be exploited to either derive predictions or to better understand the behaviour of

the original predictor.

SKE has been applied, for instance, to credit-risk evaluation [5, 6, 7], healthcare – i.e., to make

early breast cancer prognosis predictions [8] and to help the diagnosis and discrimination among

hepatobiliary disorders [9] or other diseases and dysfunctions [10] –, credit card screening [11],

intrusion detection systems [12], and keyword extraction [13].

Despite the wide adoption of SKE, however, a unified and general-purpose software tech-

nology supporting it is currently lacking. In other words, the burden of implementing SKE

algorithms is currently on data scientists alone, who are likely to realise custom solutions on a

per-need basis. Other than producing inertia w.r.t. the adoption of SKE in modern data, such a

lack of viable technologies is somewhat anachronistic in the data-driven AI era, where a plethora

of libraries and frameworks are flourishing, targeting all major programming paradigms and

platforms, and making state-of-the-art machine learning algorithms easily accessible to the

general public—cf. SciKit-Learn
1

for Python, or Smile
2

for the Java Virtual Machine (JVM).

Accordingly, in this paper we present the design of PSyKE, a general-purpose Platform for

Symbolic Knowledge Extraction aimed at filling the gap between the current state of the art

of SKE and the available technology. More precisely, PSyKE is conceived as an open library

where different sorts of knowledge extraction algorithms can be realised, exploited, or compared.

1
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PSyKE supports rule extraction from both classifiers and regressors, and makes the extraction

procedure as transparent as possible w.r.t. the underlying BB, depending on the particular

extraction procedure at hand. Notably, it also supports the extraction of first-order logic (FOL)

clauses, with the twofold advantage of providing human- and machine-interpretable rules as

output. These can then be used as either an explanation for the original BB, or as a starting

point for further symbolic computations. More precisely, the current implementation of PSyKE

outputs logic programs [14, 15], expressed in Prolog syntax [16].

Furthermore, to demonstrate the versatility of PSyKE, we present a number of experiments

involving rule extraction on a classification task performed on the Iris data set. In particular, we

exemplify our framework against various BB predictors, and carry out a comparison between

different extraction procedures applied to the same task. The comparison takes into account

the fidelity of the extracted rules (w.r.t. the original BB) and their accuracy w.r.t. the data.

Accordingly, the remainder of this paper is organised as follows. Section 2 describes the state

of the art for SKE as well as some background notion to fully understand the work. Section 3

presents the design of PSyKE, while in Section 4 some use cases showing how PSyKE can be

exploited are reported. Conclusions are drawn in Section 5.

2. State of the Art

In this section we firstly overview the state of the art for symbolic knowledge extraction

(Section 2.1). Then, we delve into the details of a selection of extraction algorithms—namely,

the ones PSyKE implementation currently supports (Section 2.1.1–Section 2.1.3). The algorithm

selection is performed by keeping variety (rather than exhaustivity) in mind, so as to demonstrate

the operation and versatility of PSyKE. In particular, our aim is to exemplify the many application

scenarios that a data scientist may meet—e.g., extraction from either classifiers or regressors,

trained on either categorical or continuous data.

Finally, we briefly outline the currently-available software object-oriented frameworks for

ML (Section 2.2). The overview is meant to make the paper self-contained, given that one of

these frameworks provides PSyKE with pure ML functionalities—in particular, the design of

PSyKE assumes basic classification or regression support to be available as a software library.

2.1. Knowledge Extraction

According to [17], a computational system is considered interpretable if human beings can

easily understand its operation and outcomes. The majority of modern ML predictors, however,

sacrifice interpretability to enhance the predictive performance, thus becoming increasingly

complex. They do so by merely focusing on learning highly-predictive – yet sub-symbolic –

input-output relations from data, while neglecting any attempt to make such relations symbolic,

i.e., intelligible for human. For this reason, ML algorithms are often called black boxes [18].

To mitigate interpretability issues without sacrificing predictive performance, a number of

authors from the XAI community have proposed means to produce ex-post explanations for

sub-symbolic predictors—most notably, ANN and SVM. Explanations, in this case, consist of

surrogate predictors trained to mimic the ones to be explained, as closely as possible.



In practice, among the manifold proposals, some authors describe methods to extract if-then-

else rules [19, 20, 21], whereas others propose methods extracting decision trees [22]. While

the shape of the extracted knowledge may vary from an extraction procedure to another, all the

proposed methods share the trait of extracting symbolic (i.e. human-intelligible) knowledge out

of sub-symbolic ML predictors. Given a trained predictor and a knowledge-extraction procedure

applicable to it, the extracted rules/trees act as explanations for that predictor – or as a basis to

build some –, provided that they retain high fidelity w.r.t. the underlying predictor [17]. The

extracted knowledge may then enable further manipulations, such as merging the know-how of

two or more BB models [23].

According to [24], knowledge extraction methods can be categorised along three orthogonal

dimensions, namely: (i) the sort of learning tasks they support, (ii) the shape of the symbolic

knowledge they produce, (iii) their translucency—i.e., the sort of BB algorithms they can extract

symbols from.

About item (i), one can distinguish among algorithms targeting classification tasks, regression

tasks, or both. In other words, some extraction algorithms can only deal with BB classifiers – e.g.

Rule-extraction-as-learning [19] (REAL, henceforth), Trepan [22] and others [25, 26] –, while

others can only deal with BB regressors – such as Iter [20], GridEx [21], RefAnn [27], Ann-

DT [28] and RN2 [29] –, and only a few can handle both—such as G-Rex [30] and Cart [31].

Notably, virtually all extraction methods proposed so far are tailored on supervised machine

learning. To the best of our knowledge, no rule extraction procedure has been proposed

targetting unsupervised or reinforcement learning tasks.

As far as item (ii) is concerned, decision rules [32, 33, 34] and trees [35, 36] are the most

widespread human-understandable shapes for extracted knowledge, thus most methods produce

one of these two structures. In both cases, decision rules or nodes are expressed in terms of

the same input/output data types the original BB has been trained upon. So, for instance, an

extraction procedure processing a BB classifier for 𝑁 -dimensional numerical data, over 𝐾
classes, will likely output rules/trees involving one or more predicates over 𝑁 input variables

𝑥1, . . . , 𝑥𝑛 and 𝐾 possible outcomes. In any case, however, extraction algorithms are further

categorised w.r.t. the particular sort of predicates their output rules/trees may contain. Ac-

cordingly, conjunctions/disjunctions of inequality (e.g. 𝑥𝑖 ≷ 𝑐), or interval inclusion/exclusion

expressions (e.g. 𝑥𝑖 ∈ [𝑙, 𝑢]) are commonly exploited for numerical data, while equality (e.g.

𝑥𝑖 = 𝑐) or set-inclusion 𝑥𝑖 ∈ {𝑐1, 𝑐2, . . .} expressions may be exploited for categorical data.

Finally, M-of-N rules are yet another possible choice in the case of boolean data.

The translucency dimension [37] from item (iii) refers to the need/capability of the extraction

procedure to “look into” the internal structure of the underlying BB—i.e., to what extent it has to

be taken into account during the extraction procedure. There are two major ways for categoris-

ing knowledge extractors w.r.t. translucency. During the extraction process, decompositional

extractors may take into account the internal structure of the BB they operate upon, while

pedagogical ones do not. For this reason, pedagogical approaches are usually more general –

despite potentially less precise –, thus they can be applied to every BB predictor regardless of

its kind, structure, and complexity.

The quality of knowledge-extraction procedures is evaluated through different indicators

depending on the task to solve, for instance, fidelity and predictive performance measurements

[38]. In particular, the former indicates how well the extracted knowledge mimics the underlying



Table 1

Summary of the knowledge-extraction algorithms supported by PSyKE.

Extraction Task Translucency Required Knowledge Exhaustive

Algorithm Features Shape

REAL Classification Pedagogical One-hot encoded Rule list -

Trepan Classification Pedagogical One-hot encoded Decision tree ✓
Iter Regression Pedagogical Continuous Rule list -

GridEx Regression Pedagogical Continuous Rule list ✓
Cart Classification Pedagogical Continuous or Decision tree ✓

and regression one-hot encoded

black-box predictions, whereas the latter measures the explanator predictive power w.r.t. the

data. In all cases, measurements should be taken via the same scoring function used for assessing

the BB performance—which in turn depends on the task it performs. In the particular case of

black-box classifiers, examples of performance measurements are accuracy, precision, recall,

and F1-score; for BB regressors, the mean absolute/squared error (MAE/MSE) and the R
2

scores

could be exploited.

In the following, we provide a more detailed description of some extraction procedures cur-

rently supported in the PSyKE framework, grouped by the task they address—i.e. classification,

regression, or both of them. All the algorithms are pedagogical, thus they only rely on the BB

inputs and outputs, and do not inspect the inner structure of the underlying BB. This is why

they can be applied to any kind of arbitrarily-complex BB. In any case, structured data are

required. The same algorithms are summarised in Table 1.

2.1.1. Extraction from Classifiers

Rule-extraction-as-learning REAL [19] is a pedagogical algorithm to extract conjunctive

rules from trained BB classifiers by using a learning process driven by sampling and queries.

Output rules can be either if-then or M-of-N rules. An example of if-then output rule is the

following: Output class is 𝐶 if {X ,Y ,Z} are True and {U ,V } are False, where U, V, X, Y, Z

are one-hot encoded input features. Such features are True if they are 1, False otherwise.

Output rules are disjunctive normal form expressions; each term is the conjunction of a data

set feature subset, adequately generalised by dropping each non-discriminant antecedent. REAL

cannot handle real-valued features, but only binary ones.

Trepan Trepan [22] is a pedagogical algorithm able to extract symbolic and comprehensible

model representations from trained classifier BB by inducing a decision tree approximating

the BB represented concept. It usually maintains high fidelity levels w.r.t. the underlying BB

while being comprehensible and accurate. It is general in its applicability and well scalable with

complex models or problems. However, as REAL, it cannot be applied to real-valued features.

In Figure 1 an example of output tree is reported. Internal nodes are represented by squares,

while leaves are circles. Variables reported inside the internal nodes are the split criteria for the

subtree creation. 𝐶𝑖 are the class labels corresponding to each leaf.



Output class is 𝐶1 if

{︃
(X is True) or

(X is False and Y is True)

Output class is 𝐶2 otherwise.

Figure 1: Example of Trepan output tree (left) and corresponding rules (right).

2.1.2. Extraction from Regressors

Iter Iter [20] is a pedagogical algorithm for building predictive rules from trained BB regres-

sors of any kind. Its main idea is to iteratively expand a number of hypercubes until they cover

the whole input space. Each of them is finally converted into an if-then rule of the following

format: Output constant is 𝐶 if 𝑋1 ∈ [𝑙1, u1 ] and ... and Xk ∈ [lk , uk ], where 𝑙𝑖 and 𝑢𝑖 are the

lower-bound and the upper-bound for variable 𝑋𝑖. There, the preconditions of the rule describe

a 𝑘-dimensional hypercube. Indeed, Iter supports continuous input features, differently from

the other algorithms presented so far.

GridEx GridEx [21] is another pedagogical extraction algorithm for regressors; it is an ex-

tension of Iter aimed at overcoming its major drawback: non-exhaustivity. GridEx adopts a

top-down approach to iteratively partition the input feature space in a user-defined number

of hypercubes or in an automatic way accordingly to a user-defined strategy based on feature

importance. As Iter, GridEx produces if-then rules and only accepts data sets with real-valued

input features, but it is always exhaustive by design. Since the procedure associates each

hypercube to a rule, a merging phase is performed after every iteration as an optimisation to

reduce the number of rules.

2.1.3. General-Purpose Extractors

Cart Cart [31] is an algorithm for building decision trees that can be used to face both

classification and regression tasks. Cart is not properly a knowledge-extraction procedure,

but from its output tree it is straightforward to obtain a rule tree, since each node of the Cart

tree corresponds to a constraint on a certain feature and thus each path from the root to a leaf

is a single complete classification or regression rule. The algorithm can be summarised via

the following instructions: (i) initialise the tree root node; (ii) find optimal splits and add new

internal nodes and leaves accordingly; (iii) stop the algorithm based on one or more criteria—e.g.,

leaf number or tree depth. Pruning algorithms can be applied to reduce the number of leaves.

2.2. Object-Oriented Programming Frameworks for ML

In order to make ML solutions easily available, a number of frameworks – especially exploiting

object-oriented programming (OOP) – have been developed. Such frameworks usually provide

users with powerful abstractions for modelling BB models as well as for performing data set

pre-processing, feature engineering and predictive performance measurements. Among the

most supported ML models, there are ANN, SVM, and decision trees for both classification and



smile.classification java.util.function smile.regression

Classifier
T

DecisionTree SVM
T

MLP KNN
T

ToDoubleFunction
T

Regression
T

RegressionTree MLP KernelMachine
T

Figure 2: Overview on the API of the Smile library supporting classification and regression tasks.

regression tasks. The most complete frameworks also provide utilities packages to ease the

data set reading from (and writing into) files and to perform feature selection, beyond many

other tools for natural language processing, linear algebra, and data visualisation. Examples of

state-of-the-art OOP frameworks for ML are SciKit-Learn [39] for Python and Smile for the JVM.

We adopted the latter for the design and development of PSyKE because of its JVM support.

Smile (Statistical Machine Intelligence and Learning Engine) is defined as “a fast and com-

prehensive machine learning engine”
3

for Java, Scala, and Kotlin. It is worthwhile to notice

that the package provides data types for easily managing data set, feature vectors, and tuples

(intended as data set columns and rows, respectively) other than all the aforementioned tools.

Figure 2 depicts a (partial) UML class diagram representing the major interfaces and classes

composing Smile’s supervised learning API. Package names are explicitly indicated to avoid

confusion between homonymous classes. Notably, each kind of ML predictor has a dedicated

class and each class implements either the Classifier or the Regression interface. Both

interfaces descend from the ToDoubleFunction interface, which is, therefore, the most ade-

quate type to represent any supervised ML predictor. This design lets developers easily build

more complex concepts over the packages offered by Smile—as in the PSyKE prototype. Of

course, the same design could be replicated on different platforms (e.g. Python) and libraries (e.g.

SciKit-Learn)—as long as they provide similar API to train and use ML classifiers or regressors.

3. PSyKE

PSyKE is a software library providing general-purpose support to the extraction of logic rules

out of BB predictors by letting users choose the most adequate extraction method for the task

and data at hand. PSyKE exposes a unified API covering virtually all extraction algorithms

targeting supervised learning tasks. Currently, the implementation of PSyKE involves several

interoperable, interchangeable, and comparable extraction procedures – namely, the ones

mentioned in Section 2.1 –, granting access to state-of-the-art knowledge-extraction algorithms

to both researchers and data scientists. PSyKE is conceived as an open-ended project, which

can be exploited to design and implement new extraction procedures behind a unique API.

Essentially, PSyKE is designed around the notion of extractor, whose API is depicted in

Figure 3. Within the scope of PSyKE, an extractor is any algorithm accepting a ML predictor –

either a classifier or a regressor – as input, and producing a theory of logic rules as output.

3
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Figure 3: PSyKE design.

To perform their job, PSyKE extractors require additional information about the data set

the input predictor has been trained upon. In the general case, such information consists of

the data set itself and its schema—i.e., a formal description of the names and the data types

of all features characterising the data set itself. More precisely, data sets are required to let

extraction procedures inspect BB behaviour – and therefore build the corresponding output

rules –, whereas schemas are required to let (i) the extraction procedure take informed decisions

on the basis of the feature types, (ii) the extracted knowledge be clearer by referring to the

feature names. For all these reasons, extractors expect a data set and its schema metadata to be

provided in input as well.

Many extraction procedures can operate on discrete/binary data only. This is commonly

made necessary by the shape of the extracted rules—which consists of simple predicative

statements about some feature value. However, it is also very common in data science to meet

data sets involving continuous attributes as well. Accordingly, extracting rules out of predictors

trained on continuous data may be troublesome in the general case. To circumvent this issue,

PSyKE also provides some facilities aimed at discretising (or binarising) data sets including

continuous (or categorical) data. When these are in place, extractors should be provided with

the discretised/binarised schema as well, to be able to produce the clearest rules possible.

Accordingly, in the rest of this section we detail (i) the general design of the PSyKE library

and API, (ii) the one-hot encoding facilities, (iii) the general shape of the extracted logic theory.

3.1. General API

As depicted in Figure 4, a pivotal role in the design of PSyKE is played by the Extractor
interface – reported in Figure 4 –, defining the general contract of any knowledge-extraction

procedure. More precisely, it leverages on the notions of DataFrame and Theory, borrowed

from Smile and 2P-Kt [40, 41], respectively. All the PSyKE extractors expose (i) a method for

extracting an explainable theory from a BB model and (ii) a method to make predictions by



Smile2P-Kt

Psyke

Regression
T

Classifier
T

DataFrameClauseTheory

Extractor
T, P : ToDoubleFunction<T>

predictor: P
discretization: Discretization

extract(DataFrame): Theory

Discretization

*

1

may use may use input ofoutput of

Figure 4: PSyKE’s Extractor interface

using the extracted rules. The common API makes it possible to switch between different PSyKE

extractors with no need of major changes in the code.

3.2. Discretisation

A large number of the knowledge-extraction procedures – in the same way as many ML

algorithms – require either a discrete or binary input space—i.e. all input features must be

either categorical or one-hot encoded, respectively. For instance, REAL and Trepan require

exclusively one-hot encoded data, whereas Iter and GridEx require continuous data. Cart can

accept both continuous and one-hot encoded features, but not categorical ones. Unfortunately,

most real-world applications are described by real-valued variables and measurements, thus

making the application of such algorithms impractical. The general way to overcome this

limitation is to rely on some discretisation/binarisation method among the many available in

the literature—e.g., [42, 43, 44, 45, 46, 47, 48].

Briefly speaking, discretisation is the process of transforming a datum from some continuous

space 𝐼 ⊆ R into a discrete space {𝐼1, . . . , 𝐼𝑛} such that ∀𝑖, 𝑗 = 1, . . . , 𝑛: 𝐼𝑖 ⊂ 𝐼 ∧ 𝐼 ≡
⋃︀

𝑖 𝐼𝑖 ∧
𝑖 ̸= 𝑗 ⇔ 𝐼𝑖∩𝐼𝑗 = ∅ ∧ 𝑖 < 𝑗 ⇔ ∀𝑥 ∈ 𝐼𝑖,∀𝑦 ∈ 𝐼𝑗 : 𝑥 < 𝑦. Similarly, binarisation (a.k.a. one-hot

encoding) is the process of transforming a datum from some discrete space 𝑋 = {𝑥1, . . . , 𝑥𝑛}
into a binary space 𝐵 = {𝑏1, . . . , 𝑏𝑛} where for each 𝑖 = 1, . . . , 𝑛: 𝑏𝑖 is 1 if the datum is equal

to 𝑥𝑖, 0 otherwise. Of course, these methods imply a considerable increase in the dimensionality

of a data set—e.g., one-hot encoding makes categorical attributes with 4 distinct values be

converted into 4 different boolean features. This is far from being an issue: in some cases, it is

possible to achieve even better classification performances by using discretised attributes rather

than continuous, as demonstrated in [49].

PSyKE provides different procedures to manipulate input features: (i) a discretisation for

continuous features, mapping real intervals into categorical features, and (ii) a one-hot encoding

for categorical features, mapping exact values to boolean features. Notably, PSyKE traces the

input feature transformations by creating a data structure that associates the initial name of

the attribute and the newly created features with the corresponding constraints. An example

of PSyKE binarisation and corresponding output data structure is reported in Figure 5. This

example considers the petal length attribute of the Iris data set and adopts the default supervised

discretisation method available in our framework. The initial continuous feature values are



Figure 5: PSyKE discretisation and binarisation procedure.

labelled in Figure 5 with a), and graphically represented in the b1) plot. PSyKE discretisation

algorithm consists in calculating the mean attribute value and the corresponding standard

deviation for each data set class. An interval is then initialised for each class, with lower and

upper bounds equal to the mean value—cf. plot b2). Each interval is iteratively expanded until

convergence—i.e., when the whole feature space is covered without overlapping intervals. To

achieve this, during every iteration all the intervals are symmetrically expanded of a value equal

to the corresponding standard deviation – in each direction, as in plot b3) –, in order to create

intervals with adaptive size. An expansion is inhibited when (i) the lower (upper) bound of

an interval exceeds the minimum (maximum) value of the feature space, or (ii) two adjacent

intervals are overlapping. In the first case, the feature minimum (maximum) value is taken as

the final interval lower (upper) bound. In the second case, the overlapping intervals are only

expanded up to the mean value between their respective boundaries. When all intervals have

been calculated – cf. plot b4) – the continuous attribute values are converted accordingly into

categorical values. The discretised output values are labelled in the example with c). In this

step PSyKE also produces a data structure for keeping the discretisation details, to be able to

produce more compact rules during the extraction procedures. The last step – labelled with d) –

is the one-hot encoding of the discrete values into arrays of binary data—i.e., the unique format

accepted by several extraction procedures, such as REAL and Trepan.

3.3. Output rules

PSyKE extractors output knowledge in the form of logic theories – i.e. lists of Horn clauses –,

notably in Prolog syntax. We choose the Prolog syntax to make them simultaneously inter-

pretable by both humans and machines. More precisely, PSyKE output theories are structured

as lists of Prolog rules or facts. Rule heads are (𝑛+ 1)-ary predicates, where 𝑛 is the number

of input features in the dataset. These predicates carry 𝑛 variables – i.e., one for each input

feature – and either a constant or a list – i.e., the output value(s) – as argument. Predicate names

recall the classification/regression under study. Without lack of generality, in the following

we assume the case under study to involve mono-dimensional classification/regression tasks.



Rule bodies can be empty – if rules are facts – or conjunctions of literals where each literal is a

predicate expressing inequality, equality, or interval inclusion between attribute actual values

and fixed constants calculated through the extraction process. Accordingly, a rule-extraction

procedure targeting a mono-dimensional classification or regression 𝑡𝑎𝑠𝑘 on a data set having

𝑛 input features and 𝑚 relevant output values, shall output theories of the following form:

⟨𝑡𝑎𝑠𝑘⟩(X1, . . . , X𝑛, y1) :- 𝑝1,1(X̄), . . . , 𝑝𝑛,1(X̄).
⟨𝑡𝑎𝑠𝑘⟩(X1, . . . , X𝑛, y2) :- 𝑝1,2(X̄), . . . , 𝑝𝑛,2(X̄).

.

.

.

⟨𝑡𝑎𝑠𝑘⟩(X1, . . . , X𝑛, y𝑚) :- 𝑝1,𝑚(X̄), . . . , 𝑝𝑛,𝑚(X̄).

where (i) 𝑡𝑎𝑠𝑘 is the (𝑛+ 1)-ary relation representing the classification or regression task at

hand, (ii) each X𝑖 is a logic variable named after the 𝑖𝑡ℎ input attribute of the currently available

data set, (iii) X̄ is the 𝑛-nuple X1, . . . , X𝑛, and (iv) each 𝑝𝑖,𝑗 is either a 𝑛-ary predicate expressing

some constraint about one, two or more variables, or the true literal—which can be omitted.

Notice that, in classification tasks, the total amount of rules (𝑚) may still be greater than the

total amount of classes (𝑘), as there may be more than one rule for the same class.

Currently, the supported sorts of predicates in rules bodies – i.e. the admissible shapes for

each 𝑝𝑖,𝑗 – are as follows:

equality involving a single variable and a constant—e.g. X = 𝑐, where 𝑐 is a constant of any

sort (possibly, a number)
4

inequalities involving a single variable and a constant—e.g. X ≷ 𝑐

interval inclusion involving a single variable and two constants—e.g. X in [𝑙, 𝑢], where

𝑙, 𝑢 ∈ R and 𝑙 < 𝑢

interval exclusion like the above, but negated—e.g. X not_in [𝑙, 𝑢]

M-of-N involving 𝑁 variables—e.g. at_least(𝑀, [X1, . . . , X𝑁]), where 𝑀,𝑁 ∈ N≥0

Despite many other forms can be adopted for the output theories, we argue the proposed one

is a good trade-off among human and machine interpretability. In fact, rules of this form are

well-formed logic programs, which may be executed by a logic reasoner—such as a Prolog

interpreter. Furthermore, the proposed form is open to many sorts of post-processing. For

instance, recurrent conjunctions of predicates in rules bodies may be factorised into their own

general-purpose rules. Similarly, redundant or cumbersome sub-expressions may be simplified.

However, the proposed form is far from perfection: we plan to explore alternative directions

in the future. Noticeably, using Prolog syntax does not impose exploiting also its semantics—i.e.,

different interpreters can be exploited over such Prolog rules. For instance, on the one side, by

exploiting a Prolog interpreter, rules are interpreted as functional (one-way)—meaning that

it is possible to compute a prediction given an assignment of all input variables, but it is not

possible to generate a correct assignment of those input variables given the expected prediction

alone. On the other side, a Constraint Logic Programming solver [50, 51] may interpret the

same rules as constraints, and compute coherent assignments for any subset of both input and

output variables—providing rules with a relational (two-ways, generative) semantics.

4

The same result could be attained by allowing constants in rules heads.



4. Case Study: The Iris Data Set

Here we exemplify the effectiveness and versatility of PSyKE by describing its exploitation in a

toy scenario. In particular we exploit PSyKE to extract Prolog rules on a number of classifiers

trained on the well-known Iris data set.
5

Notably, the Iris data set contains 150 rows describing

as many individuals of the Iris flower. For each exemplary, 4 continuous input features – petal

and sepal width and length – are recorded, other than a categorical class label—i.e. which

particular sort of Iris plant the exemplary has been classified as. There are three particular

sub-sorts of Iris in this data set – namely, Setosa, Virginica, and Versicolor –, and the 150

examples are evenly distributed among them—i.e. there are 50 instances for each class.

The experimental setting is as follows. First, we train 3 different sorts of classifiers on the Iris

data set—namely, a k-nearest-neighbors (kNN), a multi-layer perceptron (MLP), and a decision

tree (DT). Then we let PSyKE extract logic rules out of these classifiers using as many extraction

procedures. In particular, we rely on REAL, Trepan, and Cart. A portion (50%) of the original

data set – namely, the test set – is put aside before training to later enable the evaluation of the

extracted rule predictive performance.

Accordingly, within the scope of this experiment, we rely on accuracy as the preferred metric

for both predictive performance and fidelity—where the former measures how good a classifier

or the corresponding extracted rules are in classifying Iris instances in absolute terms, while

the latter measures the adherence of the extractor output rules w.r.t. the original classifier.

4.1. The experiment

Let us assume the Iris data set can be loaded from a CSV file via a Kotlin script using Smile. The

Iris data set only contains continuous features. Therefore, Cart is the only algorithm that can be

directly applied to it, whereas REAL and Trepan can only operate on binary data. Accordingly,

PSyKE provides a simple two-step procedure to binarise the data, involving both discretisation

and one-hot encoding: a data set can be discretised, one-hot encoded, and split into training

and test set via a couple of instructions, providing the percentage of samples to be taken apart

from the whole data set to attain the test set. As the next step, we train 3 different classifiers

on the training set—namely a kNN, a MLP, and a DT.
6

Finally, in the following paragraphs, we

show how rules can actually be extracted and what their ultimate shape actually is.

4.1.1. REAL

The PSyKE REAL algorithm can be applied to any Smile Classifier model parametrised with

a DoubleArray—e.g., the aforementioned MLP and kNN are suitable, whereas the DT is not.

The extracted theory is dependent from the training set; different training instances can produce

different rules, resulting in slight variations also in the output theory complexity—intended as

number of clauses and terms. An example is reported in the following:

5

https://archive.ics.uci.edu/ml/datasets/iris [Online; last accessed September 29, 2021].

6

Code of experiments is available at https://github.com/sabbatinif/PSyKE. Please consider reading the docu-

mentation of Smile for a more detailed explanation of the model-specific parameters: https://haifengl.github.io/

classification.html and https://haifengl.github.io/regression.html.

https://archive.ics.uci.edu/ml/datasets/iris
https://github.com/sabbatinif/PSyKE
https://haifengl.github.io/classification.html
https://haifengl.github.io/classification.html
https://haifengl.github.io/regression.html


�
1 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, setosa) :-
2 PetalWidth =< 0.65.
3 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, versicolor) :-
4 PetalWidth in [0.65, 1.64].
5 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica) :-
6 PetalWidth > 1.64.
� �

The theory produces an input space partitioning as reported in Figure 6c. It is worthwhile to

notice that – especially with more complex data sets – the partitioning could be non-exhaustive—

i.e., the logic rules could be unable to classify some samples.

4.1.2. Trepan

PSyKE provides a Trepan algorithm applicable under the same constraint described above for

REAL and also its output rules can vary with different training sets. Differently from REAL,

Trepan accepts as input 3 optional parameters stating the minimum number of samples to

consider for performing further splits (minExamples, default: 0), the maximum depth of the

produced tree (maxDepth, default: 0, i.e. no constraints), and the criterion to adopt for the best

split selection (splitLogic). A default logic is chosen if not otherwise specified. An example

of output theory is reported in the following:�
1 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, setosa) :-
2 PetalLength =< 2.28.
3 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica) :-
4 PetalLength > 2.28, PetalWidth not_in [0.65, 1.64].
5 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, versicolor) :- true.
� �

This theory produces an input space partitioning as reported in Figure 6d. In this case, the

partitioning is always exhaustive.

4.1.3. Cart

Cart is the third algorithm included in PSyKE to tackle classification tasks. It is the only proce-

dure applicable to a DecisionTree classifier and it does not require any extra parameter, since

the extraction only relies on the tree structure of the DecisionTree—that is, all the parame-

ters have to be tuned during the DecisionTree creation and training. The DecisionTree
can accept both one-hot encoded and continuous features. In the same way as many other

algorithms, Cart is able to achieve comparable or even better results when relying on a good

discretisation/one-hot encoding technique. In the following an example of theory obtained with

continuous features is reported:�
1 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, setosa) :-
2 PetalLength =< 2.75.
3 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, versicolor) :-
4 PetalLength > 2.75, PetalLength =< 4.85.
5 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica) :-
6 PetalLength > 2.75, PetalLength > 4.85.
� �
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Figure 6: Comparison between Iris data set input space partitionings performed by the algorithms

implemented in PSyKE. Only the two most relevant features are reported—i.e., petal width and length.

Figure 6f reports the corresponding input space partitioning. The output rules are always

exhaustive. The same data set, but previously one-hot encoded, leads to the following theory

and to the partitioning reported in Figure 6h:�
1 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, versicolor) :-
2 PetalLength > 2.28, PetalWidth =< 1.64.
3 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica) :-
4 PetalLength > 2.28, PetalWidth > 1.64.
5 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, setosa) :-
6 PetalLength =< 2.28.
� �

4.2. Results

In the following we report the results of REAL, Trepan, and Cart applied to the Iris data set.

All the results are resumed in Figure 6. Figure 6a reports the Iris data set sample distribution

in the input space, with emphasis only on the two most relevant features—i.e., petal width

and length. Column Predictors represents the ML step of the process. Accordingly, Figure 6b,



Table 2

Comparison between accuracy and fidelity measurements with different combinations of extractor al-

gorithms and underlying models.

Predictor Extractor

Type Accuracy Algorithm Fidelity Accuracy

5-NN 0.94 REAL 0.98 0.95

Trepan 0.96 0.96

MLP 0.92 REAL 0.95 0.95

Trepan 0.99 0.92

DT (continuous features) 0.92 Cart 1.00 0.92

DT (binarised features) 0.96 Cart 1.00 0.96

Figure 6e and Figure 6g represents the decision boundaries of a 5-NN predictor and 2 decision

trees trained with a half of the data set samples, respectively. The first DT is trained with the

original Iris data set; the other with the binarised version. Finally, column Extractors represents

the PSyKE output. In particular, different extraction procedures – namely, REAL and Trepan –

applied to the 5-NN are depicted in Figure 6c and Figure 6d, respectively – and Cart extraction

applied to decision trees is depicted in Figure 6f and Figure 6h.

It is worth noticing that (i) Cart – for its design – always produces partitionings equivalent

to those of the underlying DT, and (ii) all extractor output partitionings are different – namely,

a procedure only uses the petal width attribute, another one uses only the petal length and the

remaining use both input features –, but all solutions share a similar predictive performance.

Omitted in Figure 6, the results of REAL and Trepan applied to a MLP are presented in

Table 2, where a numerical assessment of the aforementioned predictors and extractors is

reported. Values are averaged upon 25 executions, each one with different random train/test

partitionings, but same test set percentage and same parameters for predictors and extractors.

The table reports the underlying predictor accuracy as well as the fidelity and accuracy of the

extraction procedure. We plan to enhance comparisons between different extractors through

fidelity assessments carried out by measuring the decision boundary overlapping regions. From

Table 2 it can be noticed that the Cart extractor always has a fidelity of 1.0, since it only inspects

the underlying decision tree nodes to build its output rules without any knowledge loss. This

implies that PSyKE Cart is an equivalent but explainable alternative to Smile DecisionTree
model, always producing the same output predictions. As for the other extractors, both REAL

and Trepan are able to achieve good results in terms of fidelity and accuracy – always above

0.9 in our experiments – in some cases even with a better performance w.r.t. the original model.

5. Conclusions

In this paper we present the design of PSyKE, a new general-purpose platform supporting

symbolic knowledge extraction from opaque ML predictors. PSyKE offers many comparable and

interchangeable extraction procedures providing as output first-order logic clauses. It can be



exploited in the majority of supervised learning tasks—i.e., classification and regression tasks.

In the future we plan to enrich PSyKE with other state-of-the-art extraction algorithms,

comparison metrics between the implemented procedures, and other utilities—i.e., discretisation

strategies. We also plan to explore other formalisms to present output rules – e.g. the ProbLog

syntax to introduce the concept of probabilistic rule –, as well as other representations and

extraction procedures which are better suited to manage data sets involving a wide number of

features.

From a research perspective, we aim at further investigating the effectiveness of PSyKE in

running EU projects, like StairwAI
7

and Expectation [52].

StairwAI is an H2020 project aimed at providing a service layer for the AI-on-demand

platform,
8

with the purpose of aiding both individual and companies to (i) find the most

adequate AI asset for their needs – requiring mapping of use cases to proper AI assets –,

and (ii) experimenting selected AI assets on custom data and on specific problems, using the

platform itself—thus requiring tools for predicting the hardware resources needed for running

the corresponding software.

Expectation is a CHIST-ERA IV project
9

aimed at exploring the provisioning of personalised

explanations for ML techniques by combining SKE and multi-agent-based negotiation and

argumentation. There, symbolic knowledge is expected to act as the lingua franca among

many heterogeneous ML-based predictors – possibly trained on different data sets, via different

algorithms, at different locations –, hosted by as many software agents. Personalisation and

predictive accuracy are therefore attained by combining the symbolic knowledge extracted by

several agents. The combination takes advantage of negotiation and argumentation techniques,

possibly involving the users themselves.

Both projects massively rely on sub-symbolic AI, and in both cases the need of making

sub-symbolic knowledge explainable is prominent. PSyKE could then be applied to extract logic

rules and reveal information about the path that leads to a certain prediction—in the explanation

perspective. Since PSyKE currently works as a distiller of knowledge, further investigation will

be devoted to the explanation of a single outcome (prediction of a model). Moreover, it could be

interesting to compare results with those obtained by directly learning a symbolic model .
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