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Abstract
Agent-based modeling and simulation techniques are widely and successfully used for analyzing com-

plex and emergent phenomena in many research and application areas. Among the many different

reasons which sustain the flexibility and success of such techniques, it is important to mention the

availability of a great variety of software tools, easing (1) the development of models, (2) the execution

of simulations, and (3) the analysis of results. Currently, with the rapid global spread of the COVID-19

pandemic, one of the most important research area is dedicated to define algorithms and systems to

support epidemic forecasting simulations, scalable on large populations. In particular, in this paper, we

propose an agent-based epidemic model and a distributed architecture that can be used for the simula-

tion of populations represented by millions of agents. Moreover, the paper presents the results of the

simulations on the data of the population of Lombardy.

Keywords
Epidemic modeling, multi-agent simulation, simulation, actor model, ABMS

1. Introduction

Spreading phenomena are widely diffused in the real world; for this reason, their modeling is

crucial in several domains. For example, in biological systems, it is important to model how an

infectious pathogen spreads over a population [1]; in cybersecurity, it is necessary to understand

how a digital virus spreads over the nodes of a network [2]; in sociology and in Social Network

Analysis, it is interesting to track how opinions and behaviors spread among a community [3];

in economics, it is interesting to study the way companies in different sectors are affected by the

spreading of financial chain effects. The common point of all of these systems is that they can be

represented by active entities which interact following different behaviours and models that can

be generalized as a sociality factor. Different modeling techniques have been proposed to model

spreading phenomena in real and complex scenarios. Two widely used techniques are System

Dynamics (SD) and Agent-Based Modeling (ABM). System Dynamics analyzes the modeled

system at a high abstraction level, where the interacting entities are divided into compartments.
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A common case is the epidemiological SEIR model (Susceptible Exposed Infective Recovered)

[4], where the population can move from one compartment to another according to predefined

flow rates. However, the traditional SEIR model is not suitable for fine-grained modeling and

not for all domains. On the other hand, agent-based approaches model the behavior of each

individual agent and the interaction between agents. ABM can be used to study the system at

different abstraction levels and represents an optimal choice for fine-grained simulations [5, 6].

In this paper, we propose a distributed framework (ActoDemic) that aims to facilitate the

design and implementation of spreading models using Agent-Based Modeling and Simulation

techniques (ABMS) for large scale scenarios. We aim to develop a general and task-independent

framework. Hence, our system tries to satisfy different requirements: it has to be suitable for

different domains, collaborators and computing facilities. Each agent represents an entity that

is involved in some interactions in each simulation epoch, depending on its own customizable

properties. Executing millions of concurrent agents could represent a bottleneck for ABMS. In

order to solve this issue, we implemented the software agents as concurrent actors exploiting

the ActoDeS Framework [7]. The actors have their own behavior and change it by processing

asynchronous messages received from the other actors. Finally, as a use-case to test and validate

our software architecture, we present a simulation of the COVID-19 outbreaks in Italy during

the early-stage of the pandemic. We model about 10 millions of agents, interacting reciprocally

using a social model that we have also implemented as a custom property of ActoDemic. To

achieve such a result we have exploited the computational facilities of the High Performance

Computing of the University of Parma, to scale and distribute the computational load of millions

of agents over the available resources.

2. Literature review

The techniques to model and solve real and complex epidemic scenarios can be divided in

two main sets: System dynamics techniques (SD) and agent-based modeling (ABM). System

dynamics allows to analyze the modeled system at a high abstraction level where the population

is divided into compartments. A common case is the SEIR model (Susceptible Exposed Infective

Recovered) [4], where the population can move from one compartment to another according

to predefined flow rates. However, the traditional SEIR model is not fine-grained enough to

model some specific conditions, for example the lockdown policies in the case of Covid-19

management and control. This limit has motivated several research works that aim to extend

that model to achieve more heterogeneity and flexibility [8, 9, 10]. However, the extensions do

not address the main key-issue that is related with the main parameter, the basic reproduction

number (𝑅0) that is not policy-invariant. Indeed, it depends on the number of interactions

among the spreaders and the infection probability of the contacts. For example, it is hard to

translate a real policy into the value of 𝑅0 it will induce in the case of Covid-19 [11]. On

the other hand, agent-based approaches model the behavior of each individual agent and the

interaction between agents. ABM can be used to study the system at different abstractions

levels. For a discussion about ABM and its advantages over system dynamics models, we refer

the reader to [5] and [6]. In complex scenarios, the spreading estimation is challenging and

may requires to take into account heterogeneous interaction rates among the spreaders. These



requirements can be easily modeled using ABMS. In [1] individuals are modeled as moving

particles. The infections take place when two particles come closer than a certain contact radius.

In [12] Social distancing for Covid-19 is modeled as changes in the contact radius or momentum

equation of the particles introducing several parameters that are difficult to estimate for large

scenarios. In [13], the authors model Covid-19 spreading by replacing the moving particles

with contact networks for households, work and random contacts. However, to the best of our

knowledge, we found a lack of models that can simulate systems with a fine-grained detail in

real large scenarios. Most examples in literature are suitable for modeling a limited number of

individuals and to achieve statistics that are then extended to the most general large case.

3. ActoDeS Framework

ActoDeS is a software framework that simplifies the development of concurrent and distributed

systems and ensures an efficient execution of applications [7]. ActoDeS is implemented in Java

and takes advantage of some implementation solutions already used in JADE [14], [15] [16],

and in CODE [17]. ActoDeS has been mainly used for the development of applications in the

areas of agent-based modeling and simulation [18], [19], evolutionary computation [20] and

data analysis [21], [22], [23], [24], [25], [26].

ActoDeS offers a layered architecture made up of a run-time and an application layer. The run-

time layer provides the software components that implement the middle-ware infrastructures

that support the development of standalone and distributed applications. The application layer

provides the software components that an application developer needs to extend or directly use

for implementing the specific actors of an application.

In particular, an actor is an autonomous and concurrent object, characterized by a state

and a behavior, that exhibits the ability to interact with other actors through the exchange of

asynchronous messages. The communication between the actors is buffered: the incoming

messages are stored in a mailbox until the actor is ready to process them; moreover, an actor

can set a timeout for waiting for a new message and can then execute specific actions if the

timeout is reached. Moreover, after the analysis of its incoming messages, an actor can send

more messages to itself or to others, create new actors, update its state, change its behaviors and,

finally, terminate its own execution. Each behavior can define a policy for handling incoming

messages, through handlers called “cases”. Each case can only process messages corresponding

to a specific pattern. Therefore, if an unexpected message arrives, then the actor mailbox

maintains it until another behavior is able to process it.

As introduced above, ActoDeS can be used for developing distributed applications. In fact,

depending on the complexity of the application and on the availability of computing and

communication resources, an application can involve one or more computational nodes. In

ActoDeS, each computational node maintains an actor space that acts as a “container” for a

subset of the actors of the application and provides them with the services necessary for their

execution. In particular, an actor-space contains a set of actors (application actors) that perform

the tasks specific to the current application and two special actors called executor and service

provider. The executor manages the concurrent execution of the actors of the actor space. The

service provider enables the actors of an application to perform new kinds of actions.



4. ActoDemic

ActoDemic aims to facilitate the design and development of spreading phenomena in large-scale

scenarios. The base unit is represented by actors that, depending on the target application,

represent the entities of the system to model and simulate. If a fine-grained detail is required by

the simulation, it is clear that a large number of concurrent actors is required too. Thus, we

have used ActoDeS as a backbone to support concurrent agents, whose computational load

can be distributed over several nodes. Moreover, since ActoDes is a Java-based framework,

ActoDemic is able to support different operating systems and to enable fast development and

prototyping, thanks to Java’s built-in features such as automated serialization and extensive

libraries. ActoDemic defines at least one actor space in each computational node involved in

the simulation. Indeed, one of the major problems to deal with, when designing a large scale

ABMS, is that the entire set of agents may not fit in a single cluster node. When a spreading

phenomenon has to be modeled, the developer should define the behavior of the entities, the

way they interact, and, finally, the characteristics of the spreading phenomenon. To support a

wide range of spreading phenomena, ActoDemic provides a base version of the actors that can be

customized by defining new behaviors in the form of new Java classes. The base actor to be used

for modeling the system entities is called Base Spreader (BS). For example, if we want to model

the spreading of a pathogen among people, every person can be modeled and implemented as a

BS. A Base Spreader has a set of default attributes that can be enabled, configured and modified

to best suit the model that is going to be realized:

– Identification number: Unique id that discriminates each individual.

– Belonging to a community or cluster of entities: As a general point in a spreading

simulation, we might want to distinguish entities in different clusters and give a higher

bias to the interactions among the cluster and lower outside. For example, we might want

to divide entities by geographical position or define a social community. If this aspect is

not required, the entities can be part of a whole cluster of entities.

– Interaction level: Different interaction ratios can be defined among the entities to model

more complex and fine-grained scenarios;

– Current phase: An indicator that specifies in which contagion phase the entity is;

– Spreading reducer: A damper that can reduce the spreading. For example, we might

want to model a vaccination, a protective device or the use of an Anti-malware in a

computer network.

4.1. A Modular Software architecture

ActoDemic emphasizes software modularity for all the aspects related to the execution and

management of the simulation. Moreover, a modular structure can better adapt to any proposed

epidemic model and be easier to configure. The modular architecture is presented in Figure 1.

The architecture is built around four modules: Agents initialization and distribution module

(AID), Spreading Management (SM), Synchronization and Message passing (SMP) and, finally, a

utility to generate reports and evaluate the simulation (RG).
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Figure 1: Framework modules

4.1.1. Agents initialization and distribution module

The AID module enables the distribution of the simulation over different nodes. It manages the

initialization of all the ActoDeS entities to support the actors and the exchange of the messages.

As a first step, AID initializes the required actor-spaces. Every created actor-space owns a

thread and shares it with the agents that live in it. Hence, every individual is a passive actor

and shares its thread with the other actors in the same space. Moreover, AID creates the base

spreaders and distributes them over the nodes, according to different criteria that the developer

can tune to match the system requirements:

a. Partitioning entities according to their cluster or community, if more than the default

one are defined;

b. Splitting the population in equal-size subsets, depending on the number of actor spaces

involved in the simulation.

In order to manage the base spreaders, AID module initializes the ActoDeS schedulers and

managers in each actor-space presented in Section 3. The AID module is unique for each

application and launches all the distributed modules. In each actor-space, each manager creates

the subset of agents for its computational duties and synchronizes the simulation execution on

that node with the others. Moreover, the last created manager assumes the role of “Master”. For

each computational nodes it is possible to define different actor spaces. The default algorithm

1 distributes the whole population of actors over the 𝑁 available actor spaces according to

the identification number of each actor. This algorithm is executed by the AID module. Every

subset includes, generically, the agents that go from (𝑛− 𝑘) · 𝑝− 1 to (𝑛− 𝑘+1) · 𝑝− 1, where

𝑛 is the number of partitions, 𝑘 identifies the actual partition and 𝑝 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑁 is a constant.



Algorithm 1 Pseudo-code for distributing the whole agents’ set across N actor-spaces

1: 𝒩 ← 𝐺𝑒𝑡𝑇𝑜𝑡𝑎𝑙𝐴𝑐𝑡𝑜𝑟𝑆𝑝𝑎𝑐𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑠()
2: ℛ ← 𝐺𝑒𝑡𝐴𝑙𝑙𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠()
3: function BuildPopulation(𝒩 ,ℛ)

4: 𝑚𝑎𝑠𝑡𝑒𝑟 ← 𝑎𝑚𝐼𝑇ℎ𝑒𝑀𝑎𝑠𝑡𝑒𝑟()
5: 𝐵𝑒𝑔𝑖𝑛← ∅
6: 𝐸𝑛𝑑← ∅
7: if 𝑚𝑎𝑠𝑡𝑒𝑟 is 𝑇𝑟𝑢𝑒 then
8: for (𝑖 = 0; 𝑖 < 𝒩 ; 𝑖++) do
9: 𝒮 ← ((𝒩 − 𝑖) · 𝑝− 1)

10: ℰ ← ((𝒩 − 𝑖+ 1) · 𝑝− 1)
11: 𝑆𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(ℛ[𝑖], (𝒮, ℰ))
12: end for
13: end if
14: loop
15: Wait a message from the master Actor-space ◁
16: end loop
17: 𝐵𝑒𝑔𝑖𝑛,𝐸𝑛𝑑← 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐹𝑟𝑜𝑚𝑀𝑎𝑠𝑡𝑒𝑟()
18: 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐵𝑒𝑔𝑖𝑛,𝐸𝑛𝑑)
19: end function

where:

• 𝒩 is the number of total Actor-Spaces that we want to create;

• ℛ is a set that contains all the Actor-Space references (unique system-wide id that we

need to reach an actor and communicate with it);

• 𝑚𝑎𝑠𝑡𝑒𝑟 is a Boolean value that specifies whether an Actor-space acts as a master or not;

• 𝑆𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒() is a function that communicates to an Actor-space which population

subset it has to manage.

• 𝐵𝑒𝑔𝑖𝑛,𝐸𝑛𝑑 define the range of the actors to be created and managed ;

• 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛() divides the population into subsets

Algorithm 2 Pseudo-code to distribute X actor-space across N computational nodes

1: 𝒩 ← 𝐺𝑒𝑡𝑁𝑜𝑑𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟()
2: 𝒯 ← 𝐺𝑒𝑡𝑇𝑎𝑠𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒𝑠𝑁𝑢𝑚𝑏𝑒𝑟()
3: function SpreadActorSpaces(𝒩 , 𝒯 )

4: 𝑁_𝐽𝑂𝐵 ← 𝒩 · 𝒯
5: 𝐵𝑟𝑜𝑘𝑒𝑟𝐼𝑝← ∅
6: for (𝑖 = 0; 𝑖 < 𝑁_𝐽𝑂𝐵; 𝑖++) do
7:

8: if 𝑖 == 0 then
9: 𝐵𝑟𝑜𝑘𝑒𝑟𝐼𝑝← 𝑆𝑒𝑡𝐵𝑟𝑜𝑘𝑒𝑟𝐼𝑝()

10: 𝐿𝑎𝑢𝑛𝑐ℎ𝐴𝑐𝑡𝑜𝐷𝑒𝑚𝑖𝑐(𝑏𝑟𝑜𝑘𝑒𝑟,𝐵𝑟𝑜𝑘𝑒𝑟𝐼𝑝)
11: else if 𝑖 == (𝑁_𝐽𝑂𝐵 − 1) then
12: 𝐿𝑎𝑢𝑛𝑐ℎ𝐴𝑐𝑡𝑜𝐷𝑒𝑚𝑖𝑐(𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟,𝐵𝑟𝑜𝑘𝑒𝑟𝐼𝑝)
13: else
14: 𝐿𝑎𝑢𝑛𝑐ℎ𝐴𝑐𝑡𝑜𝐷𝑒𝑚𝑖𝑐(𝑛𝑜𝑑𝑒,𝐵𝑟𝑜𝑘𝑒𝑟𝐼𝑝)
15: end if
16: end for ◁ The For cycle is managed by MPI on SLURM

17: end function



where:

• 𝒩 : Number of computational nodes;

• 𝒯 : Number of tasks using a single CPU on every node;

• 𝑁_𝐽𝑂𝐵 Number of actor-spaces that will be created;

• 𝐿𝑎𝑢𝑛𝑐ℎ𝐴𝑐𝑡𝑜𝐷𝑒𝑚𝑖𝑐() is the function that launches an ActoDemic instance and it takes

two arguments.

We can distinguish three entities that play a fundamental role in ActoDemic and are inherited

from ActoDeS: the Broker, the generic node and the Initiator. The Broker receives messages

from producers and sends messages to consumers. The Initiator acts like the master node and

coordinates the agent creation process across the various actor-spaces. AID provides also a

sub-module that enables the use of ActoDemic with the Slurm Workload Manager (SLURM)

and the MPI protocol [27]. SLURM is an open source, fault-tolerant, and highly scalable cluster

management and job scheduling system for large and small Linux clusters. The MPI protocol

is useful to distribute and manage the actor-spaces across the computational nodes. These

capabilities enable the use of ActoDemic in High Performance Computing scenarios where

SLURM and MPI are often a standard. An explanation of this sub-module is given by algorithm

2.

4.1.2. Spreading Management Module

ActoDemic exploits some concepts from Network Science to model the interactions among

the system entities. The Spreading Management module (SM) defines the way the interac-

tions should occur. Every actor-space manages its own actors, as well as their own different

interactions. It assumes that a generic actor represents a node in a generic graph and the

outgoing and incoming links represent, respectively, the entities with which the node interacts

and vice versa. Graph theory allows us to study the distribution of interactions, by studying

the node degree distribution. The distribution of interactions is a crucial factor that affects

the spreading of an epidemic phenomenon. ActoDemic provides a simple way for tuning this

distribution when defining the interactions. It allows the user to choose a distribution and set it

as default. The available distributions that the framework provides are: power-law, log-normal,

exponential, Gaussian and Poisson. The SM module also allows to partition the entire agents’

set into different clusters and give a bias to the interactions such that they are higher inside the

cluster and lower outside.

When two individuals interact with each other, a procedure that simulates an infection is

started. We implemented an epidemic diffusion model starting from the compartments of the

SEIR mathematical model (Susceptible-Exposed-Infective-Recovered)[4]. SEIR is based on a

series of dynamic differential equations that consider the amount of the population subject to

contagion, the trend over time of the number of individuals who recover after infection, and

of the casualties. A limit of this model is its coarse-grain nature with respect to individual

behaviors. Moreover, the SM module provides a method to control the contagion power through

a variable called “Transmission Probability” (TP). This variable can take values between 0 and 1,

to express the probability for a contagion operation between two entities to be successful.



However, the compartments are fully customizable. A single compartment can be disabled,

changing in this way the development of the infection. Moreover, intermediate compartments

can also be added to add steps to the simulation process and even the duration between the

various phases can be tuned. ActoDemic also makes it possible to enable and specify the

behavior in case of a re-infection event after a recovery.

An example of a full infection cycle is shown in Figure 2. This scheme represents the COVID-

19 infection cycle. We shall deepen this aspect in section 5.

Finally, the SM module is responsible for the initialization and the implementation of the

damper that is able to scale the transmission probability.
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Figure 2: Example of a generic infection Cycle

4.1.3. Synchronization and Message passing Module

The SMP module manages the message exchange and time synchronization.

ActoDemic uses a very simple scheduler called "CycleScheduler" provided by ActoDeS. This

tool can be used in a wide variety of applications; more specifically, also in ABMS applications.

Furthermore, this scheduler manages the passive actors within its actor-space and cyclically

repeats the same actions, until the simulation ends:

1. Send a “step” message to all agents and increment the “step” value; this operation triggers

the transition from one epoch to the next.

2. Perform an execution step of all agents.

Every actor-space is modeled as an actor and thus an actor cannot access the internal state of

other actors. Therefore, if one or more Base Spreader that belongs to an actor-space interact

with some other Base Spreaders of a different actor-space then we must inform both actor-spaces

of that interaction. This can only be done with a messages exchange system.

Another typical property of the actor model is that the exchange of messages is asynchronous.

This property creates a synchronization problem, because an actor-space could move to the

next epoch without receiving all the necessary information from all the other actor-spaces.

Moreover, an actor-space needs to retrieve the information from all other actor-spaces before

triggering the transaction of its actors to the next epoch. SMP solves this problem by creating a

mechanism that acts as a “barrier” and does not allow all the actor-spaces to switch to the next

epoch if the message exchange between all the actor-spaces has not been completed.



Information routing and management may differ according to the target model the user wants

to implement. However, there is a basic scheme that we report here. Some information is sent

across every partition type, while some information can only be sent or received by the master.

The content of a generic message can be schematized in this way:

1. Information sent to all partitions:

– Information about Base Spreaders’ interactions: it informs the actor-space of the

interaction between two or more of its Base Spreaders;

– Base Spreaders that have to change their status: it specifies which Base Spreaders

have to change their status due a trigger situation;

– Base Spreaders that have been closed: actors that have to end their cycle;

– Statistical Data: data needed to generate reports;

– Synchronization message: message that acts like a “barrier”. When an actor-space

receives all the synchronization messages from all the actor-spaces involved in the

simulation, then it can move to the next epoch;

– End signal: a message that allows the end of simulation process;

2. Information sent to master only:

– Partial summary report: data needed to generate the final reports;

3. Information sent only by the master:

– Base spreaders that have to shutdown themselves: the master decides who should

end their execution, based on the user’s criteria.

4.1.4. Reports generation module

The RG module enables the generation of reports during the simulation process. The user can

decide whether to enable, or not, the generation of reports. Moreover, the user can decide how

often a report is to be generated.

In general, at the end of every epoch every actor-space generates a report that regards only its

partition and its actors: these are called “intermediate reports”. Furthermore, the intermediate

reports are also used to support a “Save&Load” functionality. Thanks to this mechanism it is

possible to restart the simulation process from a specific epoch. However, in order to do so,

reports need to include certain information for each Base Spreader within the actor-space:

– The Identification Number

– The belonging to any type of social cluster

– The interaction level

– The epidemic phase it is currently going through

– How much the epidemic phases must last

– If the Base Spreader has an active Spreading reducer

– A set that maintains the information about the past interactions with the other Base

Spreaders

Finally, at the end of the simulation, the master node generates a final report that summarizes

the most important and relevant information. In particular, it generates a summary for each

simulation epoch showing how many people belong to each specific epidemic compartment.



The RG module is also the one responsible for the initial configuration. Thanks to this,

ActoDemic supports an external configuration file, in which it is possible to customize and

specify all the properties explained in the article.

5. Use-Case: COVID-19 spreading in Lombardy

5.1. Modelling

After building and modeling the framework in all its features, we needed a real use case to test

it. Therefore, to validate ActoDemic, we focused our attention on COVID-19 spreading. The

social interactions, which are the major cause of COVID-19 spreading, can be easily modeled

by properly setting the parameters on which ActoDemic depends.

The proposed model simulates about ten million independent agents that reproduce the

social behaviour of the inhabitants of Lombardy, a region in northern Italy. We have decided to

simulate the COVID-19 epidemic spread in Lombardy for several reasons. It was the first region,

in Italy, to be affected by the virus and currently it is the first for number of infections; therefore,

it is the Italian region that offers the most abundant statistical data, that can be used to compare

and validate our model. This represents an interesting use-case to test the robustness of our

methodology.

To make ActoDemic suitable for our use-case, we have customized every framework module.

Every person involved in the simulation process is represented by a Base Spreader and every

epoch represents a generic day in a real-life situation.

The ten million people living in Lombardy are subjected to a partition by districts. Accordingly,

we have divided the entire population geographically respecting the number of Lombardy

provinces and the distribution of their inhabitants, creating several social communities. We

have assigned an additional feature to each Base Spreader: its age. The alter parameter is crucial,

because it adds information in our design and can be used to better model the social interactions.

We have also respected the Lombardy age distribution [28]. To model social interactions even

more efficiently, we have defined three interaction ratios: high, medium and low. These have

been introduced to increase or decrease the average number of the subjects’ daily contacts with

other people, based on their age. To estimate the average number of a Base Spreader’s contacts,

we have used data from the Italian National Institute of Health [29] and [30].

To correctly model the pathogen spread, we have customized the SM module. We have used

the base SEIR model, adding two extra compartments: Positive and Quarantine. These phases

are typical in the COVID-19 infection cycle. Initially, all people are in the susceptibility stage.

In this compartment, every subject can be infected by another one who is contagious. An

individual who is infected moves from a susceptibility phase to an incubation phase and remains

in this stage for a certain time, before moving into an infection stage. A subject in this condition

can infect other people. When this phase ends, the person becomes positive. After a certain

time, a positive will either heal or die. There is no death probability, but deaths follow the real

death curve trend in Lombardy. When an individual heals, it cannot be infected any more. In

particular, the incubation phase lasts from 7 to 14 days, the infectious phase from 3 to 7 days,

and the positive phase from 14 to 30 days [31] [32]. Figure 2 shows a diagram that represents

the infection cycle.



To model COVID-19 compartments we have used preliminary data collected by [31], [32]

and the age susceptibility to COVID-19 virus. Moreover, the SM module supports a damper to

mitigate the contagion spread; we have used this particular feature to simulate the adoption

of protective devices. We have collected data about the percentage of the population that was

using protective devices [33] and their effectiveness [34]. The last property expected by the

SM module concerns the distribution of social interactions. For this reason, we have evaluated

various hypotheses, but, in the end, we have decided to focus our studies on a power-law

distribution. We assume a common hypothesis in network science that asserts that social

networks commonly have a power-law distribution with an exponent between 2 and 3, also

known as the scale-free property [2]. Contact networks are usually modeled with a power-law

distribution [35]. We have exploited these interaction ratios to also model the lockdown policy

and the contagion containment strategy adopted in Italy in the first pandemic months. Modeling

the Italian lockdown has required different pieces of information about the set of “essential

workers” [36]. Remember that the only people who were not subjected to limitations were

those who worked in the so-called "essential sectors".

The information that the actor-spaces exchange with each other need to be modified to make

the simulator work. Accordingly, we have customized the SMP module to modify the message

contents:

1. Information sent to all partitions:

– Information about people’s meeting

– People who have to change their infection phase to "Incubated" due an infection

– Number of people expected to die in that partition

– Statistical Data

– Synchronization message

– End signal

2. Information sent to master only:

– Currently positive people

– Currently infected people

– Partial summary report

3. Information sent only by the master:

– Total people expected to die

The last module we have customized is the RG module. In our use-case, we generate an

intermediate report at the end of every epoch. Obviously, the information included in each

intermediate report has been customized ad-hoc for our use-case. It contains the following

information: id, age, province of residence, essential worker (Boolean value), mask wearing

(Boolean value), incubation days period, infection days period, positive days period and usual

Contacts’ List.

At the end of the simulation process, a summary report is generated, containing the follow-

ing information: epoch, positive people, infected people, infected people, susceptible people,

recovered people, dead People.

Once every customization has been realized, the framework is ready to be tested and to

reproduce some results. In the next section, we report the results we have obtained in our

use-case.



5.2. Experimentation

In order to evaluate our simulator, we have considered two different COVID-19 outbreaks in

Lombardy (Italy). In particular, we are interested in modeling the first wave form January to

April 2020 and the second one between August and December 2020. The combination of these

two waves has been taken in consideration to validate our simulator and for modelling its

parameters.

When the simulation process starts, all agents are in the susceptibility status, as previously

reported. In this way, no one can start a hypothetical contagion. Hence, at the beginning of

the simulation we have to choose randomly which Base Spreader will start directly from an

incubation phase. In addition, to do this, we respect the number of positives people between 20

and 29 February in Lombardy on a provincial basis.

We have calibrated the transmission probability with a random-search over the probability

space. We have estimated this value trying to chase up the contagion curve until the pre-

lockdown date, March 8th, 2020. The lockdown is an Italian policy to prevent the contagion

spread that implies the closure of non-essential activities, social distancing and some rules for

limiting the movement of people. The value satisfying these hypothesis is 0.3. A summary

histogram is shown in figure 3b.

5.3. Results

In this section, we present the results that we have obtained simulating different scenarios and

considering each time an average of 10 different runs, since the entire simulation process is

stochastic in most of its steps. For each case, we have measured the simulation quality using the

Pearson correlation and the Root-mean-square error (RMSE) between simulated data and real

data from the Italian government [37]. The Person correlation expresses any linear relationship

between two statistical variables. This value ranges from −1 to 1, where 1 corresponds to a

strong positive linear correlation and −1 corresponds to a strong negative linear correlation.

In our case, it explains how much the trend of the simulated contagion curve resembles the

real one. The Root-mean-square error is computed between the predicted values and the real

data. Figure 3a shows the results of the simulation in the early-stage of the pandemic between

January and April 2020 with the COVID-19 Transmission probability (CTP) equal to 0.3. The

blue curve represents the real contagion data, while the red curve represents the simulated

data. Pearson correlation and RMSE referred to Figure 3a until April 30th are equal to 0.992 for

Pearson correlation and 38818, respectively. The number of the total positives obtained using

the simulator in that date, exceeds by about 53,000 units the number of actual positives (Figure

3a).

The results in Figure 3a seem to support our thesis, but it is widely conceivable that the real

data measured over that period were underestimated.

A comparison with the ISTAT ’s serological investigation reveals a very different situation

[38]. This study shows that, on July 15th, the actual number of COVID-19 cases in Lombardy

was about 7.92 time greater than the data form COVID-19 tests. In addition, the study shows

that about 7.5% of the Lombard population had developed antibodies for the COVID-19. The

population of Lombardy is about 10,060,000 people, 7.5% of which is therefore equivalent to
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about 754,500. This strengthens the hypothesis that the spring data were underestimated.

Assuming that this ratio is constant over time, we retro-projected this data and observed how

many positive people could be estimated.

Therefore, we have used the data of the second wave (August to December 2020) to perform

a fine tuning procedure. We have used the previously obtained CTP to verify whether the

simulated data properly followed the real data generated by the second wave. The values

obtained greatly underestimated the actual data. For this case, the Pearson correlation is 0.988

and the RMSE is 27415.

Due to the large estimation error, we have decided to estimate again the transmission proba-

bility parameter, using the data of the second wave. We have searched for a value that follows

the contagion curve correctly. The best value that satisfies our hypothesis is 0.53. In this final

case the Pearson correlation is 0.996 while the RMSE is 6405.



5.4. Final Projections

In the light of the previous considerations, we have decided to simulate again the first wave

with the new CTP value. Moreover, we have added also the data obtained from the comparison

with the national screening activity. The whole process is shown in Figure 3c. The blue curve

represents the actual data, the green curve represents the serological data projection on the

real data and the red curve represents the simulated data with transmission probability equal

to 0.53. The second estimation of the COVID-19 Transmission Probability using the autumn

data is confirmed as a better choice to validate our model. The difference with the serological

data projection on April 30th, corresponding to the last simulation day, is only 83,369 units.

Seroprevalence analysis is much more reliable than the data collected during the months of

March and April, because it also takes into account asymptomatic people, which is a very crucial

factor. Considering the cumulative curves in Figure 3c, the Pearson correlation is 0.996 and the

RMSE is 249,529. In the comparison between simulated and serological data Pearson correlation

is again 0.996 while the RMSE is 56,009. Matching data confirms the validity of our hypothesis

and of our simulation model.

6. Conclusion

In this paper, we have presented a framework that aims to combine a fine-grained spreading

model with a large-scale scenario. This result is achieved by exploiting an efficient multi-agent

system that can be run on a distributed architecture. The proposed framework has been designed

with a modular structure to be user-friendly and easy to customize. We have validated our

framework simulating the outbreaks of COVID-19 in Lombardy (Italy) in 2020.

Actodemic met our expectations in our use-case. Indeed, simulating 10 millions concurrent

agents requires several resources around 600-800 GB of Ram, 32 CPUs with an average execution

time for each simulation equal to 6 hours. Obviously these results have been possible also

thanks to the use of the High Performance Computing facilities. The results indicates that

the framework is able to simulate and accurately reproduce a spreading phenomenon. The

experiment provides a new insight into the spreading modelling with a multi agent system,

which allows to model the agents’ behaviour at a low abstraction level.

Future developments are related to establish how much the framework can become better by

adding more features and modules to make ActoDemic faster and more customizable and to

find a way to implement and support a higher number of agents with less resources. Moreover,

different solutions for message exchanging and other multi-agent paradigms could lead to

improvements that would make the framework even more performing.
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