
Bayesian-Inference-based Inverse Estimation
of Small Angle Scattering

Akinori Asahara,1 Hidekazu Morita,1 Masao Yano,2 Tetsuya Shoji,2
Kanta Ono3, Chiharu Mitsumata4, Kotaro Saito5

1Hitachi Ltd., 2Toyota Motor Corporation, 3High Energy Accelerator Research Organization
4National Institute for Materials Science, 5Paul Scherrer Institute

Abstract

As an application of machine-learning algorithms, we im-
proved SAS (Small Angle Scattering), which is common
experiment in material science, by developing a Bayesian
inference and deriving the confidence-level contour. In the
SAS experiment, the grain-size of the sample material has
to be estimated from the distribution of the scattered beam.
A stochastic model and maximum-likelihood inference with
EM-algorithm are often used, but the result is noisy due to
data noise. With the proposed method, the grain-size distri-
bution can be estimated similarly to the maximum-likelihood
inference method and the confidence levels can be visualized.
Thus, researchers can determine estimation reliability and de-
cide whether there are sufficient data. Simulation-generated
datasets were processed with the proposed method to evalu-
ate its effectiveness, and it was confirmed that it is useful for
automatic SAS data analysis.

Introduction
Information technology for making material development
faster, sometimes called Materials Informatics (MI), being
investigated(National Institute of Standards and Technology
2019). This technology will help researchers to extract new
knowledge of materials.

One of the usecases of the technology is to automatically
find features of new materials characteristics from exper-
imental data. Traditionally, researchers carefully inspected
experimental data to find such features. However, it is time-
consuming and the researchers might miss such features.
To solve this problem, methods known as ”data mining”
are applicable to finding such features. With these methods,
knowledge extraction from experimental data can be carried
out automatically. Therefore, experiments are made faster.

This paper focuses on small-angle scattering (SAS) (Hig-
gins and Benoı̂t 1994)(Asahara et al. 2019). SAS is a scat-
tering experiment for observing the microstructures of ma-
terials. In this experiment, the particle beam incident upon
the sample interacts with the microstructures inside. An in-
strument setting of SAS is illustrated in Fig. 1. The direc-
tions of the particles change due to interactions with the mi-
crostructures of the materials. The number of particle de-
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Figure 1: SAS Experiment

tection events on a plane during SAS form a pattern on the
plane (called an SAS pattern), reflecting the features of the
microstructures. Various particles, such as those of x-ray,
ion-beam, etc, can be applied to SAS.

One of the objectives of SAS is estimation of microscale-
grain-size distribution in material samples. Material science
researchers carefully observe SAS patterns to obtain grain-
size information about the microstructure of the sample ma-
terial.

Therefore, several automatic estimation methods of grain-
size distribution with SAS pattern data have been proposed.
One of the such methods, called Indirect Fourier Transfor-
mation (IFT), is a based on function optimization to fit the
grain-size distribution to SAS pattern. However that requires
lots of effort for parameter adjustment by material science
researchers. To reduce such effort, a maximum-likelihood
(ML) inference (Asahara et al. 2020), is a stochastic method
for machine learnings, was proposed. The ML inference
frees researchers from such effort due to the probabilistic
modeling of SAS experimental processes but its reliability
is insufficient. ML inference tends to fit to the noise caused
by observation because it is point-wise, that is, the result is
only one certain parameter setting.

A method of Bayesian inference and a derivation of the
confidence level contour are proposed in this work. For
Bayesian inference, parameters of the model for SAS are
also stochastic, i.e., the probabilities of certain grain-size
distributions can be evaluated when an SAS pattern is ob-
tained. Because all grain-size distributions derived from the
proposed method can be reliably considered as possible so-
lutions, the contour with a confidence level higher than the
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Figure 2: SAS pattern analysis with graphs

given threshold can be visualized.

Problem Settings
Small Angle Scattering
In SAS, particle beam incident upon the sample interacts
with the microstructures inside. The directions of the parti-
cles thus change due to the interactions. The angle θ between
a straight beam and the changed direction of the scattered
beam depends on the interaction. Finally, detectors arranged
on a plane detect the scattered beam. The number of detec-
tion events form SAS pattern on the plane.

The particle behavior during SAS is stochastic, modeled
with a differential equation known as the Schödinger equa-
tion. Because the distance between the sample and plane is
large enough, the coordinate values on the plane x = (x, y)
are approximately in proportion to θ. The probability den-
sity function (PDF) P (x) of detection corresponds to the
probability that a particle goes in the direction of θ, which is
related to microscopic structures called grains.

Assume a simple case in which the grains are balls. Inten-
sity I(r, q) of an SAS pattern scattered with balls of radius
r (grain size) is proportional to I(r, q) as follows,

I(r, q) ∝ I(r, q) = 1

r3

(
sin qr

q3
− r cos qr

q2

)2

, (1)

where the q indicates a quantity called wave number, which
is the frequency of the wave function multiplied by 2π. The
frequency of the wave function is three dimensional because
it is derived with the Fourier transformation of the wave
function in three dimensional space. The θ depends on the
frequency, so the size of q = q along the vertical vector to
the incident beam (”q = (qx, qy)” in Fig 1) appears in the
formula. Therefore, q indicates the location x on the detec-
tion plane, derived from distance between the incident beam
center and that location. That is, we can obtain actual SAS
intensity corresponding to I(r, q) by converting x to q.

An SAS pattern formed by multiple grain sizes is the
weighted sum of I(r, q) over r, and the weight is the grain-
size distribution f(r) of the material. Accordingly the scat-
tering pattern S(q) is derived as

S(q) ∝
∫
f(r)I(r, q)dr. (2)

To estimate f(r), S(q), which is the integration of
f(r)I(r, q), should be decomposed to the summation of

I(r, q); however, this is difficult, relating to the phase prob-
lem(Feigin, Svergun et al. 1987). Thus, material science re-
searchers have tried to guess f(r) with clues from small fea-
tures latent in the plot of I(r, q), as shown in Fig. 2. This fig-
ure presents a log-log plot of an SAS pattern, and its domain
is separated into three parts (a), (b), and (c). In (a) (q → 0)
and (b) (q → ∞) , S(q) behaves linearly, being indepen-
dent from r as shown the graph. Only in (c), I(r, q) oscil-
lates and it’s frequency depends on r. Material science re-
searchers accordingly have to discover the fluctuation at (c)
because it gives implicit hints to determine f(r). Therefore,
f(r) is only roughly estimated. If f(r) is estimated directly,
the SAS could provide much more information of the sam-
ple.

Threfore, a method for automatic estimation of f(r) is
needed.

Related Works
Indirect Fourier Transformation
Parametric function fitting is a known automatic grain-size
estimation method for SAS. With this method, parameters
of the function f(r) are adjusted to fit to the obtained SAS
pattern(Joachim and Ingo 2018). However, the form of f(r)
is required and the true f(r) is generally unknown in actual
situations.

To avoid such difficulty, a function having a more general
formula should be used. One method using such a function
is Indirect Fourier Transform (IFT) (Otto 1977). With IFT,
weighted summation of multiple stepwise functions θn(x),
where θn(r) returns 1 when rn < r < rn+1, and 0 other-
wise, is assumed as the formula. The integral of S(q) un-
der this assumption is decomposed into definite integrations
which can be carried out analytically and reformed as a lin-
ear combination of the weights, denoted an. After minimiz-
ing the difference between the linear combination of an and
the SAS pattern, f(r) is obtained as the sum of anθn(r).

The resolution of f(r) is determined by θn with IFT, as
shown above. Therefore, the range of θn should be small to
improve the resolution of f(r). However the higher resolu-
tion setting makes estimation error larger because more ans
have to be determined when the range of θn is set smaller.
The SAS pattern must be more accurate because the number
of detection events in the small range are few and sensitive
to small errors.

A method for avoiding this problem is to add regulariza-
tion terms to suppress over fitting. However, the regulariza-
tion terms must be adjusted manually. To automate regular-
ization, complicated methods for determining the regular-
ization terms have been proposed, but they are not in wide
use yet.

Maximum Likelihood Inference
Another method is ML inference, often used for machine
learning. The SAS process is modeled as a stochastic pro-
cess with latent variables which indicates the r of particle
interaction. The likelihood derived from the stochastic pro-
cess is maximized to fit the SAS pattern. As a result, (r) is
obtained as the optimal model parameter of the stochastic
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Figure 3: Probabilistic solution of scattering problems

process. No assumption is required for this method if a non-
parametric model (that is, a very general stochastic model
such as a Gaussian mixture) is applied for the SAS process.

The expectaion-maximizedion (EM) algorithm(Bishop
2006) is a well known algorithm for non-parametric ML
inference (Zhang 1993)(Demoment 1989) (Nagata, Sugita,
and Okada 2012). Similar methods are used in astrophysics
(William 1972) (Leon 1974), bioinformatics (Lustig et al.
2008) (Lustig, Donoho, and Pauly 2007) and compressed
sensing (Donoho 2006). An application for grain-size esti-
mation was also proposed(Asahara et al. 2020). The SAS
process is modeled as a combination of two random choice
processes for the EM algorithm. In the first process, the in-
cident beam interacts with grains, and in second process, the
incident beam changes its direction and arrives at a point on
the detector plane. E-step to obtain the expectation value of
interacting grains and M-step to obtain f(r) with ML are
iteratively carried out to derive the solution of the ML infer-
ence.

The EM algorithm automatically derives f(r), though the
result is noisy when a noisy SAS pattern is input. As shown
in Formula (1), the rate of event detection at high-q de-
creases in proportion to 1/q4. Thus, a long time to collect
detection events is required to obtain the detection events at
higher q. An SAS pattern does not reflect probability at high-
q when the experimental time is limited. This causes noisy
SAS patterns.

Such noise can be reduced by obtaining more detection
events; however, the cost is extremely high. Since the gen-
eration of incidental particle beam, such as a neutron beam,
is costly, researchers have to save on beam time. Therefore
estimation reliability should be evaluated, since the exper-
iment should be finished as soon as a sufficient amount of
data is obtained.

Proposed Method
MAP Inference
Maximum A Posteriori (MAP) inference is Bayesian pa-
rameter estimation method. With MAP inference, a PDF
of parameters (called a prior) is defined and revised after
obtaining observations (the revised PDF is called a poste-
rior). The parameter setting that gives the maximum poste-
rior is adopted as the inference result. The number of de-
tection events in an SAS pattern is denoted as K integers:
{n0, · · ·nK}, where each integer corresponds to the particle
detector for each wavenumber. That is, nk is the number of

detection events at qk in the SAS pattern. Grain-size param-
eters to be estimated are as denoted {π0, · · · , πL}, where πi
indicates the ratio of ri grains to all grains and assumed pro-
portional to f(r), which indicates the grain-size ratio. Ac-
cordingly, πi posterior is maximized after obtaining the SAS
pattern, which is denoted as P ({πi}|{nk}).

The P ({πi}|{nk}) can be easily rewritable with Bayes
theorem:

P ({πi}|{nk}) =
P ({nk}|{πi})P ({πi})

P ({nk})
, (3)

where P ({nk}) is a prior regarding the events related to the
wavenumber qk. Since it is independent from f(r), P ({nk})
will be canceled with a normalization constant. Thus the
P ({nk}|{πi}) and the P ({πi}) should be handled carefully.

The P ({nk}|{πi}) is the posterior of the number of de-
tection events after determining {πi}. Note the probabil-
ity of one-particle detection at q after interaction with r
is proportional to I(r, q) (as shown in (1)). Therefore, the
SAS process is modeled as an N -times iteration of the ran-
dom sampling (the probability is

∑
i πiI(ri, qk)). That is,

P ({nk}|{πi}) is a multinomial function with the parameter∑
i πiI(ri, qk):

P ({nk}|{πi}) = Mul({nk}; {
∑
i

I(ri, qk)πk}). (4)

where ηjk = I(qj , rk) is defined for ease of reference here-
after.

The P ({πi}) is a prior regarding r. Generally, a prior
is determined as the conjugate prior of the posterior (i.e.
P ({nk}|{πi})). Because the conjugate prior of a multi-
nomial distribution is the Dirichlet distribution, the prior
of P ({nk}|{πi}) should be similar to Dirichlet distribu-
tion. Accordingly the parameter-transformed the Dirichlet
distribution D̂ir is defined for P ({nk}|{πi}) as the prior
P ({πi}):

P ({πi}) = D̂ir({πk}; {αk}) ∝
∏
K

(∑
k

π̂lηlk

)αk−1

, (5)

where αk is a hyperparameter of Dirichlet distribution,
which indicates knowlege obtained in advance. This leads
to

P ({nk}|{πi})P ({πi})
= Mul({nk}; {

∑
i

ηikπk})D̂ir({πk}; {αk})

= D̂ir({πk}; {nk + αk}). (6)
For estimating {πi}, P ({πi}|{nk}) should be max-

imized with the formulation as P ({πi}|{nk}) ∝
P ({nk}|{πi})P ({πi}). The procedure to estimate this
is similar to that of the EM algorithm. For simplicity, the
logarithm of the posterior is maximized by {πk} under
constraint

∑
πk = 1. Therefore, the maximization is

carried out with the Lagrange multiplier method. Finally, by
iterating the following formula until the convergence, {π̂tl}
at t→∞ is obtained as f(r).

π̂t+1
l =

∑
k

(nk + α0)∑
(nk + α0)

π̂tlηl,k∑
j π̂

t
jηj,k

. (7)



Algorithm 1: MAP inference of grain size
Input: SAS pattern intensity nk ≥ 0, wavenumber qk ≥ 0
(k = 0, 1, · · · ,K)
resolution of grain size rl ≥ 0 where (l = 0, 1, · · · , L)

Output: {πl}
N ⇐

∑
k(nk + αk), {ηlk} ⇐ { I(rl,qk)∑

m I(rl,qk)
},

{πl} ⇐ 1/L
repeat
{πl} ⇐

∑
k
nk+αk

N
πlηlk∑
j πjηjk

until convergence

The algorithm of MAP inference is shown in Algorithm 1.

Uncertainty of Parameters
To evaluate the confidence level of the inference, the accu-
mulation of the probability around the MAP-inference result
should be evaluated. The following pl is the accumulation
from the MAP inference result π̂l to π̂l + δ.

pl =

∫ π̂l+δ

π̂l

dπl

∫ ∫
dπ0 · · · dπNP ({πi}|{nqk}) (8)

From this definition, the contour can be visualized with δ de-
termined by pl, for instance, to visualize the 95% confidence
level contour, δ is determined to satisfy pl = 0.95.

To derive δ, the constraint
∑
πl = 1 should be satisfied

during integration. Therefore, integration is difficult to be
carried out. For the problem of the difficulty, an approxi-
mation is introduced. In P ({πi}|{nqk}), i.e., the Dirichlet
distribution, the effect of {πi} changes exponentially. There-
fore, the contribution from {πi} far from the MAP inference
result can be ignored because it decays exponentially.

Consequently πis are fixed to the following π̃, which is
near from {π̂i}, instead of integration.

π̃i =
π̂i∑
i 6=l π̂i

× (1− (π̂l + δ)). (9)

With the π̃i,

pl '
∫ π̂l+δ

π̂l

P (π̃0, · · · , πl · · · π̃L|{nqk})dπl. (10)

The procedure to calculate pl is simple: iter-
ating πl is shifted by a very small value, and
P (π̃0, · · · , πl · · · π̃L|{nqk}) is added to pl with re-
calculated π̃i until pl becomes higher than the threshold.

Smoothing, which is used to reduce noise, should be taken
into account by the uncertainty calculation. Smoothing to re-
move noise from the estimation result involves multiply a fil-
ter matrix by πi. A Gaussian filter is often used for this pur-
pose. However, as discussed above, since uncertainty is es-
timated based on probability, non-stochastic smoothing may
make conflicts with the MAP inference result, e.g., negative
πl.

To avoid such conflicts, smoothing should be done with a
stochastic model. Remember ηl,k is multiplied by {πi} in-
sideP ({πi}|{nqk}). Therefore the matrix for smoothing can

be merged with ηl,k as
∑
j Aljηl,k where Alj is the smooth-

ing matrix. This change indicates that
∑
lAljπl not {πl}

corresponds to r. In this setting, {πl} corresponds to the
weight of a component such as a Gaussian packet. That is,
f(r) is represented as the combination of these components.

Experiments
Experimental Settings
We conducted an experiment to evaluate whether the pro-
posed method can be used to estimate f(r) consistent with
an SAS pattern. In the experiment, simulation-generated
SAS pattern datasets were processed to compare the results
with the ground truth.

The datasets were processed with the proposed method,
and ML inference method by the EM algorithm for com-
parison. Ten thousands iterations of the MAP inference and
the EM algorithm were carried out instead of checking con-
vergence, to simulate the situation in which the processing
time is limited during the SAS experiment. For the proposed
method, a Gaussian-smoothing matrix is multiplied by ηl,k;
therefore, the result was expected to be smooth and the con-
fidence level contour to be consistent with it.

In the experiment, three types of diffrent f(r) were de-
fined. Each pattern is one gamma distribution or the sum of
three Gamma distributions having the most frequent point
around 10nm. The f(r) was discretized by 0.05 nm, and its
domain is set from 0 to 20 nm (i.e., 400 values), correspond-
ing to f(r) in (2).

To obtain the SAS patterns, random sampling was car-
ried out. The detection-event number was set to 10,000, and
the SAS patterns of the f(r)s were generated. First, q’s do-
main, which is from 0.1nm−1 to 10nm−1, was discretized
into 200 lots denoted as qk. The S(qk) was calculated by
evaluating the integration of (2). Random sampling along
S(qk), i.e. the probability of detection, was carried out to
simulate particle-detection events and the event number was
counted to generate SAS patterns.

A computer with Intel(R) Core(TM) i3-4150 3.50GHz
CPU and 11 GB RAM and Cent OS was used for the exper-
iment. The implementation was based on Python 3.6.5, and
numpy library (Oliphant 2006) was used to improve the effi-
ciency of the calculation. Each calculation time lasted about
1 minute, which was short enough for carrying out before
SAS is finished.

Settings for the proposed method is as follows: αk, which
is a hyperparameter used in the proposed method, was 1.0;

Gaussian-smoothing matrix was Aij = exp − 1
2

(
ri−rj
0.5

)2
;

the threshold of the confidence contour was 95%.

Experimental Results
Figure 4 shows the results. Figure 4 (a) plots the SAS pattern
by log-log plot, Fig. 4 (b) plots f(r) estimated with MAP
inference, and Fig.4 (c) plots the f(r) estimated with ML
inference for comparison. The blue lines in Fig. 4 (a) plot
10000 × S(qk) and orange points shows SAS pattern gen-
erated with the S(qk); The black lines in Figs. 4 (b) and (c)
plot the truth, i.e. the original f(r); the red lines in Figs.
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Figure 4: Results of Pattern 1, 2, 3

(b) and (c) plot the estimation results; and red areas indicate
95% confidence.

The f(r) of Pattern 1 has only one peak at the center of
the q-range. In Fig. 4 (b), 95% confidence level area indi-
cates that r around the center is quite uncertain. As shown
in Fig. 4 (c), the SAS pattern of Pattern 1 is so noisy that
the ML inference results become noisy. The MAP inference
results are better and the confidence-level area can be drawn
without conflicts.

The f(r) of Pattern 2 has a peak at lower q. In Fig. 4 (b),
the 95% confidence level area around the peak is extremely
high. The MAP inference curve (red curve) differs from the
truth curve (black line). However, at low q, the truth curve is
outside the 95% confidence level area, showing that the 95%
confidence level area is not perfect.

The f(r) of Pattern 3 has three peaks. As shown in Fig.
4 (c), it is difficult to observe the three peaks from the ML
inference results. The three peaks from the MAP inference
results in Fig. 4 (b) are more readable than those from the
ML inference results Fig..4 (c). Though the MAP inference
curve differs from the truth curve, most of the truth curve is
inside the 95% confidence level area, except for low q.

Discussion
All results in Fig. 4 (b) are similar to tge truth. In contrast,
the results in Fig. 4 (c), results include noise. The 95% con-
fidence level area works well, but there are conflicts in low

q. As shown in Fig. 4 (a), the number of events at high q
SAS pattern is almost zero or one because S(q) in the high
q is very small. The high q corresponds to the low r com-
ponent of the distribution because the low r corresponds to
a large wave number due to I(q, r). Therefore, the results
in Fig. 4 (c) oscillate due to the loss of the high-frequency
component.

One problem with MAP inference is the behavior at the
low-r region. The estimated fluctuation is small in spite
of the estimated f(r) being inaccurate. Because I(r, q) is
small when both r and q are low, a high q is considered to
contribute to this behavior. As mentioned above, the obser-
vations at a high q are extremely low. Because sparseness
might cause inconsistent visualization, more experiments
are required to specify this cause.

Figure 5 shows the results with ML inference when SAS
Pattern3 is ideal, i.e. SAS pattern which is completely in
proportion to S(q). This shows that the f(r) can be recon-
structed if SAS pattern is perfect. Because the low q of Fig.
4 (a) is quite similar to S(q), the difference is considered to
ogirin from the high q loss.

Figure 6 shows the results without a Gaussian filter. The
confidence level contour is also consistent with the MAP in-
ference results. Similarly to that with the Gaussian filter, the
truth is within the 95% confidence level area, except for low
r. The results agree but difficult to read due to oscillation.
From these results, MAP inference improves the f(r) es-
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Figure 6: MAP inference results without Gaussian smoother

timation and visulalizes it with reliability. This shows that
SAS can become more useful for observing the microstruc-
tures of materials, except for low r, which indicates grains
that are too small to observe during SAS.

Conclusion and Future Work
An MAP inference grain-size-distribution estimation
method was proposed for automatically analyzing SAS pat-
terns. The experimental results indicates that the proposed
method can accurately estimate the original grain-size
distribution from SAS patterns. It enables visualization of
parameter fluctuation, whereas ML inference does not. This
information will help researchers to decide whether the
experimental time is sufficient or not.

For future works, we will attempt to solve the problem
with the proposed method. was shown in the experiment,
which is inaccurate fluctuation in low r region. We will take
it into account non-ball scattering bodies by considetring
two dimensional SAS patterns.
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