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Abstract

Sparse regression on a library of candidate features has de-
veloped as the prime method to discover the partial differ-
ential equation underlying a spatio-temporal data-set. These
features consist of higher order derivatives, limiting model
discovery to densely sampled data-sets with low noise. Neural
network-based approaches circumvent this limit by construct-
ing a surrogate model of the data, but have to date ignored
advances in sparse regression algorithms. In this paper we
present a modular framework that dynamically determines
the sparsity pattern of a deep-learning based surrogate using
any sparse regression technique. Using our new approach,
we introduce a new constraint on the neural network and
show how a different network architecture and sparsity es-
timator improve model discovery accuracy and convergence
on several benchmark examples. Our framework is available
at https://github.com/PhIMaL/DeePyMoD

Introduction
Model discovery aims at finding interpretive models in the
form of PDEs from large spatio-temporal data-sets. Most
algorithms apply sparse regression on a predefined set of can-
didate terms, as initially proposed by Brunton et al. for ODEs
with SINDY (Brunton, Proctor, and Kutz 2016) and by Rudy
et al. for PDEs with PDE-find (Rudy et al. 2017). By writ-
ing the unknown differential equation as ∂tu = f(u, ux, ...)
and assuming the right-hand side is a linear combination of
predefined terms, i.e. f(u, ux, ...) = au + bux + ... = Θξ,
model discovery reduces to finding a sparse coefficient vec-
tor ξ. Calculating the time derivative ut and the function
library Θ is notoriously hard for noisy and sparse data since
it involves calculating higher order derivatives. The error
in these terms is typically high due to the use of numerical
differentiation techniques such as finite difference or spline
interpolation, limiting classical model discovery to low-noise
and densely sampled data-sets. Deep learning-based methods
circumvent this issue by constructing a surrogate from the
data and calculating the feature library Θ as well as the time
derivative ut from this digital twin using automatic differen-
tiation. This approach significantly improves the accuracy of
the time derivative and the library in noisy and sparse data
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sets, but suffers from convergence issues and, to date, does
not leverage advanced sparse regression techniques.

In this paper we present a modular approach to combine
deep-learning based models with state-of-the-art sparse re-
gression techniques. Our framework consists of a neural
network to model the data, from which we construct the
function library. Key to our approach is that we dynamically
apply a mask to select the active terms in the function library
throughout training and constrain the network to solutions of
the equation given by these active terms. To determine this
mask, we can use any non-differentiable sparsity-promoting
algorithm (see figure 1). This allows us to use a constrained
neural network to model the data and construct an accurate
function library, while an advanced sparsity promoting algo-
rithm is used to dynamically discover the equation based on
output from the network.

We present three experiments to show how varying these
components improves the performance of model discovery.
(I) We replace the gradient-based optimisation of the con-
straint by one based on ordinary least squares, leading to
much faster convergence. (II) We show that using PDE-find
to find the active components outperforms a threshold-based
Lasso approach in highly noisy data-set. (III) We demon-
strate that using a SIREN (Sitzmann et al. 2020) instead of a
standard feed forward-neural network allows us to discover
equations from highly complex data-sets.

Related Work
Sparse regression Sparse regression as a means to dis-
cover differential equations was pioneered by SINDY (Brun-
ton, Proctor, and Kutz 2016) and PDE-find (Rudy et al.
2017). They have since been expanded to automated hyper-
parameter tuning (Champion et al. 2019a; Maddu et al.
2019); a Bayesian approach for model discovery using
Sparse Bayesian Learning (Yuan et al. 2019), model dis-
covery for parametric differential equations(Rudy, Kutz, and
Brunton 2019) and evolutionary approach to PDE discovery
(Maslyaev, Hvatov, and Kalyuzhnaya 2019).

Deep learning-based model discovery With the advent of
Physics Informed neural networks (Raissi, Perdikaris, and
Karniadakis 2017a,b), a neural network has become one of
the prime approaches to create a surrogate of the data and
then perform sparse regression on the networks prediction
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Figure 1: Schematic overview of our framework. (I) A function approximator constructs a surrogate of the data, (II) from which
a Library of possible terms and the time derivative is constructed using automatic differentiation. (III) A sparsity estimator
selects the active terms in the library using sparse regression and (IV) the function approximator is constrained to solutions
allowed by the active terms by the constraint.

(Schaeffer 2017; Berg and Nyström 2019). Alternatively,
Neural ODEs are introduced to discover unknown governing
equation (Rackauckas et al. 2020) from physical data-sets.
Different optimisation strategy based on the method of alter-
nating direction is considered in (Chen, Liu, and Sun 2020),
and graph based approaches have been developed recently
(Seo and Liu 2019; Sanchez-Gonzalez et al. 2018). (Grey-
danus, Dzamba, and Yosinski 2019) and (Cranmer et al. 2020)
directly encode symmetries in neural networks using respec-
tively the Hamiltonian and Lagrangian framework. Finally,
auto-encoders have been used to model PDEs and discover
latent variables(Lu, Kim, and Soljačić 2019; Iten et al. 2020),
but do not lead to an explicit equation and require large
amounts of data.

Deep-learning based model discovery with
sparse regression

Deep learning-based model discovery uses a neural network
to construct a surrogate model û of the data u. A library of
candidate terms Θ is constructed using automatic differentia-
tion from û and the neural network is constrained to solutions
allowed by this library (Both et al. 2019). The loss function
of the network thus consists of two contributions, (i) a mean
square error to learn the mapping (~x, t)→ û and (ii) a term
to constrain the network,

L =
1

N

N∑
i=1

(ui − ûi)2 +
1

N

N∑
i=1

(∂tûi −Θiξ)
2
. (1)

The sparse coefficient vector ξ is learned concurrently with
the network parameters and plays two roles: 1) determining
the active (i.e. non-zero) components of the underlying PDE
and 2) constraining the network according to these active
terms. We propose to separate these two tasks by decoupling

the constraint from the sparsity selection process itself. We
first calculate a sparsity mask g and constrain the network
only by the active terms in the mask: instead of constraining
the neural network with ξ, we constrain it with ξ◦ g, replacing
eq. 1 with

L =
1

N

N∑
i=1

(ui − ûi)2 +
1

N

N∑
i=1

(∂tûi −Θi(ξ · g))
2
. (2)

Training using eq. 2 requires two steps: first, we calculate g
using a sparse estimator. Next, we minimise it with respect to
the network parameters using the masked coefficient vector.
The sparsity mask g need not be calculated differentiably, so
that any classical, non-differentiable sparse estimator can be
used. This approach has several additional advantages: i) It
provides an unbiased estimate of the coefficient vector since
we do not apply l1 or l2 regularisation on ξ, ii) the sparsity
pattern is determined from the full library Θ, rather than only
from the remaining active terms, allowing dynamic addition
and removal of active terms throughout training, and iii) we
can use cross validation in the sparse estimator to find the
optimal hyper parameters for model selection. Finally, we
note that the sparsity mask g mirrors the role of attention in
transformers (Bahdanau, Cho, and Bengio 2016).

Using this change, we construct a general framework for
deep learning based model discovery using four modules (see
figure 1). (I) A function approximator constructs a surro-
gate model of the data, (II) from which a Library of possible
terms and the time derivative is constructed using automatic
differentiation. (III) A sparsity estimator constructs a spar-
sity mask to select the active terms in the library using some
sparse regression algorithm and (IV) a constraint constrains
the function approximator to solutions allowed by the active
terms obtained from the sparsity estimator.



Training We typically calculate the sparsity mask g using
an external, non-differentiable estimator. In this case, updat-
ing the mask at the right time is crucial: before the function
approximator has reasonably approximated the data, updat-
ing the mask would adversely affect training, as it is likely
to select the wrong terms. Vice versa, updating the mask too
late risks using a function library from an overfitted network.
We implement a procedure in the spirit of ”early stopping”
to decide when to update: the data-set gets split into a train
and test-set and we update the mask once the mean squared
error on the test-set reaches a minimum or changes less than
a preset value δ. We typically set δ = 10−6 to ensure the
network has learned a good representation of the data.

After the first update, we periodically update the mask
using the sparsity estimator. In figure 2 we demonstrate this
training procedure on a Burgers equation with 1500 samples
with 2% white noise. It shows the losses on the train- and
testset in panel A, the coefficients of the constraint in panel
B and the sparsity mask in C. In practice we observe that
large data-sets with little noise typically discover the correct
PDE after only a single sparsity update, but that noisy data-
sets require several updates, removing only a few terms at a
time. Final convergence is reached when the l1 norm of the
coefficient vector remains constant.

Package We provide our framework as a python based
package at https://github.com/PhIMaL/DeePyMoD, with the
documentation and examples available at https://phimal.
github.io/DeePyMoD/. Mirroring our approach, each model
consists of four modules: a function approximator, library,
constraint and sparsity estimator module. Each module can be
customised or replaced without affecting the other modules,
allowing for quick experimentation. Our framework is built
on Pytorch (Paszke et al. 2019) and any Pytorch model (i.e.
Recurrent Neural Networks) can be used as function approxi-
mator. The sparse estimator module follows the Scikit-learn
API (Pedregosa et al.; Buitinck et al. 2013), i.e., all the build-
in Scikit-learn estimators, such as those in PySindy(de Silva
et al. 2020) or SK-time (Löning et al.), can be used.

Experiments
Constraint The sparse coefficient vector ξ in eq. 1 is typ-
ically found by optimising it concurrently with the neural
network parameters θ. Considering a network with parameter
configuration θ∗, the problem of finding ξ can be rewrit-
ten as arg minξ |ut(θ∗)−Θ(θ∗)ξ|2. This can be analytically
solved by least squares under mild assumptions; we calcu-
late ξ by solving this problem every iteration, rather than
optimizing it using gradient descent. In figure 3 we compare
the two constraining strategies on a Burgers data-set1, by
training for 5000 epochs without updating the sparsity mask2.

1We solve ut = uxx+ νuux with a delta-peak initial condition
for ν = 0.1 for x = [−3, 4], t = [0.5, 5], randomly sample 2000
points and add 10% white noise.

2All experiments use a network with a tanh activation function
of 5 layers with 30 neurons per layer. The network is optimized
using the ADAM optimiser with a learning rate of 2 · 10−3 and
β = (0.99, 0.999).
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Figure 2: A) MSE of the test-set and the total loss of the train-
set as function of the number of epochs. The vertical line
indicates the first time the sparsity mask is applied. B) The
twelve coefficients as function of the number of epochs. The
two terms uxx and uux need to be recovered. C) Dynamic
sparsity mask during training. Yellow components are active,
blue components are inactive.

Panel A) shows that the least-squares approach reaches a
consistently lower loss. More strikingly, we show in panel
B) that the mean absolute error in the coefficients is three
orders of magnitude lower. We explain the difference as a
consequence of the random initialisation of ξ: the network
is initially constrained by incorrect coefficients, prolonging
convergence. The random initialisation also causes the larger
spread in results compared to the least squares method. The
least squares method does not suffer from sensitivity to the
initialisation and consistently converges.

Sparsity estimator Implementing the sparsity estimator
separately from the neural network allows us to use any
sparsity promoting algorithm. Here we show that a classi-
cal method for PDE model discovery, PDE-find (Rudy et al.
2017), can be used together with neural networks to per-
form model discovery in highly sparse and noisy data-sets.
We compare it with the thresholded Lasso3 in figure 4 ap-
proach (Both et al. 2019) on a Burgers data-set 4 with vary-
ing amounts of noise. The PDE-find estimator discovers the

3We use a pre-set threshold of 0.1.
4See footnote 2, only with 1000 points randomly sampled.
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Figure 3: A) Loss and B) mean absolute error of the coeffi-
cients obtained with the gradient descent and the least squares
constraint as a function of the number of epochs. Results have
been averaged over twenty runs and shaded area denotes the
standard deviation.

correct equation in the majority of cases, even with up to
60%−80% noise, whereas the thresholded lasso mostly fails
at 40%. We emphasise that the modular approach we propose
here allows to combine classical and deep learning-based
techniques. More advanced sparsity estimators such as SR3
(Champion et al. 2019b) can easily be included in this frame-
work.

Function approximator We show in figure 5 that a tanh-
based NN fails to converge on a data-set of the Kuramoto-
Shivashinksy (KS) equation5(panel A and B). Consequently,
the coefficient vectors are incorrect (Panel D). As our frame-
work is agnostic to the underlying function approximator,
we instead use a SIREN 6, which is able to learn very sharp
features in the underlying dynamics. In panel B we show that
a SIREN is able to learn the complex dynamics of the KS
equation and in panel C that it discovers the correct equation7.
This example shows that the choice of function approxima-
tor can be a decisive factor in the success of neural network
based model discovery. Using our framework we can also
explore using RNNs, Neural ODEs (Rackauckas et al. 2020)
or Graph Neural Networks (Seo and Liu 2019).

5We solve ∂tu + uux + uxx + uxxxx = 0 between x =
[0, 100], t = [0, 44], randomly sample 25000 points and add 5%
white noise.

6Both networks use 8 layers with 50 neurons. We train the
SIREN using ADAM with a learning rate of 2.5 · 10−4 and
β = (0.999, 0.999)

7In bold; uux: green, uxx: blue and uxxxx: orange
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Figure 4: Fraction of correct discovered Burgers equations
(averaged over 10 runs) as function of the noise level for the
thresholded lasso and PDE-find sparsity estimator.

Discussion and future work
In this paper we introduced a framework for model discovery,
combining classical sparsity estimation with deep learning
based surrogates. Building on this, we showed that replacing
the function approximator, constraint or dynamically apply-
ing the sparsity estimator during training can extend model
discovery to more complex datasets, speed up convergence
or make it more robust to noise. Each of the four components
is decoupled from the rest and can be independently changed,
making our approach a solid base for future research. Cur-
rently, the function approximator simply learns the solution
using a feed forward neural network. We suspect that adding
more structure, for example by using recurrent, convolutional
or graph neural networks, will improve the performance of
model discovery. It might also be beneficial to regularise the
constraint, for example by implementing lasso or ridge re-
gression. Updating the sparsity mask in a non-differentiable
manner works because the neural network is able to learn a
fairly accurate surrogate without imposing sparsity on the
constraint. If the network is unable to learn an accurate repre-
sentation, our approach breaks down. Updating the mask in a
differentiable manner would not suffer from this drawback,
and we intend to pursue this in future works.
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L.; Desmaison, A.; Köpf, A.; Yang, E.; DeVito, Z.; Raison,
M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. arXiv:1912.01703
[cs, stat] URL http://arxiv.org/abs/1912.01703. ArXiv:
1912.01703.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; and Cournapeau,
D. ???? Scikit-learn: Machine Learning in Python. MACHINE
LEARNING IN PYTHON 6.

Perez, F.; and Granger, B. E. 2007. IPython: A System
for Interactive Scientific Computing. Computing in Sci-
ence Engineering 9(3): 21–29. ISSN 1558-366X. doi:
10.1109/MCSE.2007.53.

Rackauckas, C.; Ma, Y.; Martensen, J.; Warner, C.; Zubov,
K.; Supekar, R.; Skinner, D.; and Ramadhan, A. 2020. Uni-
versal Differential Equations for Scientific Machine Learn-
ing. arXiv:2001.04385 [cs, math, q-bio, stat] URL http:
//arxiv.org/abs/2001.04385. ArXiv: 2001.04385.

Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2017a.
Physics Informed Deep Learning (Part I): Data-driven
Solutions of Nonlinear Partial Differential Equations.
arXiv:1711.10561 [cs, math, stat] URL http://arxiv.org/abs/
1711.10561. ArXiv: 1711.10561.

Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2017b.
Physics Informed Deep Learning (Part II): Data-driven
Discovery of Nonlinear Partial Differential Equations.
arXiv:1711.10566 [cs, math, stat] URL http://arxiv.org/abs/
1711.10566. ArXiv: 1711.10566.

Rudy, S. H.; Brunton, S. L.; Proctor, J. L.; and Kutz, J. N.
2017. Data-driven discovery of partial differential equations.
Science Advances 3(4): e1602614. ISSN 2375-2548. doi:
10.1126/sciadv.1602614. URL http://advances.sciencemag.
org/lookup/doi/10.1126/sciadv.1602614.

Rudy, S. H.; Kutz, J. N.; and Brunton, S. L. 2019. Deep learn-
ing of dynamics and signal-noise decomposition with time-
stepping constraints. Journal of Computational Physics 396:
483–506. ISSN 00219991. doi:10.1016/j.jcp.2019.06.056.
URL http://arxiv.org/abs/1808.02578. ArXiv: 1808.02578.

Sanchez-Gonzalez, A.; Heess, N.; Springenberg, J. T.; Merel,
J.; Riedmiller, M.; Hadsell, R.; and Battaglia, P. 2018. Graph
networks as learnable physics engines for inference and con-
trol. arXiv:1806.01242 [cs, stat] URL http://arxiv.org/abs/
1806.01242. ArXiv: 1806.01242.

Schaeffer, H. 2017. Learning partial differential equa-
tions via data discovery and sparse optimization. Proceed-
ings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 473(2197): 20160446. ISSN 1364-
5021, 1471-2946. doi:10.1098/rspa.2016.0446. URL https:
//royalsocietypublishing.org/doi/10.1098/rspa.2016.0446.

Seo, S.; and Liu, Y. 2019. Differentiable Physics-informed
Graph Networks. arXiv:1902.02950 [cs, stat] URL http://
arxiv.org/abs/1902.02950. ArXiv: 1902.02950.

Sitzmann, V.; Martel, J. N. P.; Bergman, A. W.; Lindell, D. B.;
and Wetzstein, G. 2020. Implicit Neural Representations with
Periodic Activation Functions. arXiv:2006.09661 [cs, eess]
URL http://arxiv.org/abs/2006.09661. ArXiv: 2006.09661.

Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland,
M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.;
Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wil-
son, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones,
E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, ; Feng, Y.; Moore,
E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman,
R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald,
A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P.; and
Contributors, S. . . 2020. SciPy 1.0–Fundamental Algorithms
for Scientific Computing in Python. Nature Methods 17(3):
261–272. ISSN 1548-7091, 1548-7105. doi:10.1038/s41592-
019-0686-2. URL http://arxiv.org/abs/1907.10121. ArXiv:
1907.10121.

Yuan, Y.; Li, J.; Li, L.; Jiang, F.; Tang, X.; Zhang, F.; Liu, S.;
Goncalves, J.; Voss, H. U.; Li, X.; Kurths, J.; and Ding, H.
2019. Machine Discovery of Partial Differential Equations
from Spatiotemporal Data. arXiv:1909.06730 [physics, stat]
URL http://arxiv.org/abs/1909.06730. ArXiv: 1909.06730.


