
Graph Networks with Physics-aware Knowledge Informed in Latent Space

Sungyong Seo and Yan Liu
{sungyons, yanliu.cs} at usc.edu

Department of Computer Science
University of Southern California

Abstract

While physics conveys knowledge of nature built from an in-
terplay between observations and theory, it has been consid-
ered less important for modeling deep neural networks. De-
spite the usefulness of physical rules, it is particularly chal-
lenging to leverage the knowledge for sparse data since most
physics equations are well defined on the continuous and
dense space. In addition, it is even harder to inform the equa-
tions into a model if the observations are not fully governed
by the given physical knowledge. In this work, we present a
novel architecture to incorporate physics or domain knowl-
edge given as a form of partial differential equations (PDEs)
on sparse observations by utilizing graph structure. Moreover,
we leverage the representation power of deep learning by in-
forming the knowledge in latent space. We demonstrate that
climate prediction tasks are significantly improved and vali-
date the effectiveness and importance of the proposed model.

Introduction
Modeling natural phenomena in the real-world, such as cli-
mate, traffic, molecule, and so on, is extremely challenging
but important. Deep learning has achieved significant suc-
cesses in prediction performance by learning latent repre-
sentations from data-rich applications such as speech recog-
nition (Hinton et al. 2012), text understanding (Wu et al.
2016), and image recognition (Krizhevsky, Sutskever, and
Hinton 2012). While the accuracy and efficiency of data-
driven deep learning models can be improved with ad-hoc
architectural changes for specific tasks, we are confronted
with many challenging learning scenarios in modeling nat-
ural phenomenon, where a limited number of labeled ex-
amples are available, there is much noise in the data, and
there could be constant changes in data distributions (e.g.
dynamic systems). Furthermore, in many domains, data are
only available on scattered collections of points (sensors or
point clouds, see Figure 1) where the majority of existing
methods are not applicable. These challenges are not easily
addressed under the purely data-driven learning models and
therefore, there is a pressing need to develop new generation
robust learning models that can address these challenging
learning scenarios.

Copyright © 2021for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

𝑡 + ∆𝑡

Known
physics

Unknown
physics

Graph
Networks

Physics
Constraint

𝑡 𝑡 + ∆𝑡

Modeling

𝑡

Figure 1: Concept of the proposed PaGN. Many sensor-
based observations are only sparsely available (See circled
regions) but there are continuous physical process (e.g., Dif-
fusion) behind the sparse observations. Some of the known
physics rules are injected into a model and the remained un-
known dynamics will be extracted from data.

Physics is one of the fundamental pillars describing
how the real-world behaves. It is imperative that physics-
informed learning models are powerful solutions to mod-
eling natural phenomena. Incorporating domain knowledge
has several benefits: first, it helps an optimized solution to
be more stable and to prevent overfitting; second, it pro-
vides theoretical guidance with which an optimized model
is supposed to follow and thus, helps training with fewer
data; lastly, since a model is driven by the desired inductive
bias, it would be more robust to unseen data, and thus it is
easier to enable accurate extrapolation.

In the meanwhile, there exist a series of challenges when
we incorporate physics principles into machine learning
models. First, a model needs to properly handle the spatial
and temporal constraints. Many physics equations demon-
strate how a set of physical quantities behaves on space and
time. For example, the wave equation describes how a sig-
nal is propagated through a medium over time. Second, the
model should capture relations between objects, such as im-
age patches (Santoro et al. 2017) or rigid bodies (Battaglia
et al. 2016; Chang et al. 2017). Third, the learning mod-
ules should be shared over all objects because physical laws
are commonly applicable to all objects. Finally, the model
should be flexible to extract unknown patterns instead of be-

ing strictly constrained to the physics knowledge. Since it
is not always possible to describe all rules governing real-
world data, data-driven learning is required to fill the gap
between the known physics and real observations.

In this paper, we address the problem of modeling dynam-
ical systems based on graph neural networks by incorpo-
rating useful knowledge described as differentiable physics
equations. We propose a generic architecture, physics-aware
graph networks (PaGN), which can leverage explicitly re-
quired physics and learn implicit patterns from data as il-
lustrated in Figure 1. The proposed model properly handles
spatially distributed objects and their relations as vertices
and edges in a graph. Moreover, temporal dependencies are
learned by recurrent computations. As Battaglia et al. (2018)
suggest, the inductive bias of a graph-based model is its in-
variance [to] node/edge permutations, and thus, all trainable
functions for the same input types are shared.

Our contributions of this work are summarized as follows:
• We develop a novel physics-aware learning architecture,

PaGN, which incorporates differentiable physics equa-
tions with a graph network framework.

• We explore the performance of PaGN on graph signal pre-
diction tasks to demonstrate that the physics knowledge is
helpful to provide a significant improvement in prediction
tasks and make a model more robust.

• We investigate the effectiveness and the importance of
PaGN from climate prediction to provide how physics
knowledge can be beneficial for prediction performance.

Related Work
Incorporating physics Among many attempts incorporat-
ing physical knowledge into data-driven models, Cressie
and Wikle (2015) covered a number of statistical models
(e.g., a hierarchical Bayesian framework) handling physi-
cal equations. Raissi, Perdikaris, and Karniadakis (2017a)
introduced a concept of physics-informed neural networks,
which utilize physics equations explicitly to train neural net-
works. By optimizing the model at initial/boundary and sam-
pled collocation points, the data-driven solutions of nonlin-
ear PDEs can be found. Based on this fundamental idea, a
number of works for simulating and discovering PDEs have
been published (Raissi and Karniadakis 2018; Raissi 2018;
Raissi, Perdikaris, and Karniadakis 2017b). Although these
works leveraged physical knowledge, they are limited be-
cause they require all physics behind given data to be ex-
plicitly known.

de Bezenac, Pajot, and Gallinari (2018) considered a sim-
ilar problem as ours. They proposed how transport physics
(advection and diffusion) could be incorporated for forecast-
ing sea surface temperature (SST). In other words, they pro-
posed how the motion flow that is helpful for the tempera-
ture flow prediction could be extracted in an unsupervised
manner from a sequence of SST images.

This work is a major milestone since it captures not only
the dominant transport physics but also unknown patterns
inferred through the neural networks. Despite of its novel
architecture, the model is specifically designed for transport
physics and it is not straightforward to extend the model to

other physics equations. Furthermore, it is restricted in a reg-
ular grid to use conventional convolutional neural networks
(CNNs) for images.

Discovering physical dynamics A class of mod-
els (Grzeszczuk, Terzopoulos, and Hinton 1998; Battaglia
et al. 2016; Chang et al. 2017; Watters et al. 2017; Sanchez-
Gonzalez et al. 2018; Kipf et al. 2018) have been proposed
based on the assumption that neural networks can learn
complex physical interactions and simulate unseen dynam-
ics based on a current state. The models along this direction
are based on common relational inductive biases (Santoro
et al. 2017; Battaglia et al. 2018), i.e., functions connect-
ing entities and relations are shared and can be learned
from a given sequence of simulated dynamics. (Chang
et al. 2017; Battaglia et al. 2016; Sanchez-Gonzalez et al.
2018) commonly assumed that the objects’ behaviors were
governed by classical kinetic physics equations. Then,
object- and relation-centric functions were proposed to
learn the transition from the current state to the next state
without explicitly injecting the equations into the model.
Discovering latent physics by data-driven learning has been
actively studied (Long et al. 2018; Brunton, Proctor, and
Kutz 2016). While the properly constrained filters enable us
to identify the governing PDEs, it is only applicable when
we are aware of the form of target PDEs. Unlike this line
of works that extracts latent patterns from data only, our
proposed model can incorporate known physics and at the
same time extract latent patterns from data which cannot be
captured by existing knowledge.

Background
In this section, we introduce how differential operators in
Euclidean domain are analogously defined on the discrete
graph domain and briefly show that the graph networks mod-
ule is able to efficiently express the differential operators.

Calculus on Graphs
Preliminary Given a graph G = (V, E) where V and E
are a set of vertices V = {1, . . . , n} and edges E ⊆

(
V
2

)
, re-

spectively, two types of real functions can be defined on the
vertices, f : V → R, and edges, F : E → R, of the graph.
It is also possible to define multiple functions on the ver-
tices or edges as multiple feature maps of a pixel in CNNs.
Since f and F can be viewed as scalar and vector fields in
differential geometry (Figure 2), the corresponding discrete
operators on graphs can be defined as follow (Bronstein et al.
2017).

Gradient on graphs The gradient on a graph is the linear
operator defined by

∇ : L2(V)→ L2(E)

(∇f)ij = (fj − fi) if {i, j} ∈ E and 0 otherwise.

where L2(V) and L2(E) denote Hilbert spaces of vertex
and edge functions, respectively, thus f ∈ L2(V) and F ∈
L2(E). As the gradient in Euclidean space measures the rate

(a) Scalar field (b) Vector field (c) Vertex func (d) Edge func

Figure 2: Scalar/vector fields on Euclidean space and ver-
tex/edge functions on a graph.

and direction of change in a scalar field, the gradient on a
graph computes differences of the values between two adja-
cent vertices and the differences are defined along the direc-
tions of the corresponding edges.

Divergence on graphs The divergence in Euclidean space
maps vector fields to scalar fields. Similarly, the divergence
on a graph is the linear operator defined by

div : L2(E)→ L2(V)

(div F)i =
∑

j:(i,j)∈E

wijFij ∀i ∈ V

where wij is a weight on the edge (i, j). It denotes a
weighted sum of incident edge functions to a vertex i, which
is interpreted as the netflow at a vertex i.

Laplacian on graphs Laplacian (∆ = ∇2) in Euclidean
space measures the difference between the values of the
scalar field with its average on infinitesimal balls. Similarly,
the graph Laplacian is defined as

∆ : L2(V)→ L2(V)

(∆f)i =
∑

j:(i,j)∈E

wij(fi − fj) ∀i ∈ V

The graph Laplacian can be represented as a matrix form,
L = D − W where D = diag(

∑
j:j 6=i wij) is a degree

matrix and W denotes a weighted adjacency matrix. Note
that L = ∆ = −div∇ and the minus sign is required to
make L positive semi-definite.

Based on the core differential operators on a graph, we
can re-write differentiable physics equations (e.g., Diffusion
equation or Wave equation) on a graph.

Graph Networks
Battaglia et al. (2018) proposed a graph networks frame-
work, which generalizes relations among vertices, edges,
and a whole graph. Graph Networks (GN) describe how
edge, node, and global attributes are updated by propagat-
ing information among themselves.

Given a set of nodes (v), edges (e), and global (u) at-
tributes, the steps of computation in a graph networks block
are as follow:

1. e′ij ← φe(eij ,vi,vj ,u) for all {i, j} ∈ E pairs.

2. v′i ← φv(vi, ē
′
i,u) for all i ∈ V .

ē′i is an aggregated edge attribute related to the node i.
3. u′ ← φu(u, ē′, v̄′)

ē′ and v̄′ are aggregated attributes of all edges and all
nodes in a graph, respectively.

Mapping Equation Physics example

node
→ edge

eij = φe(vi,vj)

= (∇v)ij

∇φ = −E
(Electric field)

edge
→ node

vi = φv(eij)

= (div e)i

∇ · E = ρ/ε0
(Maxwell’s eqn.)

node
→ node

vi = φv(vi, {vj:(i,j)∈E})
= (∆v)i

∆φ = 0
(Laplace’s eqn.)

Table 1: Examples of static equations in Graph networks

where φe, φv, φu are edge, node, and global update func-
tions, respectively, and they can be implemented by learn-
able neural networks. Note that the computation order is
flexible. The aggregators can be chosen freely once it is in-
variant to permutations of their inputs.

As φe is a mapping function from vertices to edges,
it can be replaced by the graph gradient operator to de-
scribe the known relation explicitly. Similarly, φv can learn
divergence-like mapping (edge to node) functions. For curl-
involved functions, it is required to add another updating
function, φc, which is mapping from nodes/edges/global at-
tributes to a 3-clique attribute and vice versa. In other words,
the graph networks have highly flexible modules which are
able to imitate the differential operators in a graph explicitly
or implicitly.

Physics-aware Graph Networks
As deep learning models are successful to model complex
behaviors or extract abstract features in data, it is natural to
focus on how the data-driven modeling can solve practical
problems in physics or engineering fields. In this section, we
provide how domain knowledge described in physics can be
incorporated with the graph networks framework.

Static Physics
Many fields in physics dealing with static properties, such
as Electrostatic, Magnetostatic, or Hydrostatic, describe a
number of physics phenomena at rest. Among the various
phenomena, it is easy to express differentiable physics rules
in discrete forms on a graph with the operators in previous
Section . For instances, the Poisson equation (∇2φ = − ρ

ε0
)

in Electrostatics is realized as a simple matrix multiplication
of graph Laplacian with a vertex function. Table 1 provides
some differential formulas in Electrostatic and how the up-
dating functions are defined in graph networks.

Dynamic Physics
More practical equations have been written in the dynamic
forms, which describe how a given physical quantity is
changing in a given region over time. GN can be regarded as
a module that updates a graph state including the attributes
of node, edge, and a whole graph.

G′ = GN(G) (1)

Equation Physics example

v′
i = vi + αφv(vi, {vj:(i,j)∈E})

= vi + α(∆v)i

u̇ = α∆u
(Diffusion eqn.)

v′′
i = 2v′

i − vi + c2φv(v′
i, {v′

j:(i,j)∈E})

= 2v′
i − vi + c2(∆v′)i

ü = c2∆u
(Wave eqn.)

Table 2: Examples of dynamic equations in Graph networks

where G′ is the updated graph state. Dynamic physics for-
mulas are written as a function of time and spatial deriva-
tives:

f

(
∂u

∂t
, · · · , ∂

Mu

∂tM
,
∂u

∂x
, · · · , ∂

Nu

∂xN

)
= 0 (2)

where u is a physical quantity spatiotemporally varying and
x is the direction where u is defined on.M andN denote the
highest order of time and spatial derivatives, respectively.
Under the state updating view in Equation 1, any types of
PDEs written in Equation 2 can be represented as a form
of finite differences. Table 2 provides the examples of the
dynamic physics. u̇ and ü are the first and second order time
derivatives, respectively.

Physics in Latent Space
We provide how the differential operators are implemented
in a GN module in a previous section. However, it is
hardly practical for modeling complicated real-world prob-
lems with the differential operators solely because it is only
possible when all physics equations governing the observed
phenomena are explicitly known. For example, although we
are aware that there are a number of physics equations in-
volved in climate observations, it is almost infeasible to in-
clude all required equations for modeling the observations.
Thus, it is necessary to utilize the learnable parameters in
GN to fill the missing dynamics which is not described by
given equations.

There is another advantage to utilize learnable parameters.
There are a number of unknown parameters, which need to
be pre-defined to specify the physics equations, and the pa-
rameters can be inferred by the learnable parameters. For
example, while we have knowledge that input signal has a
wave property, the speed of waves (c in Table 2) should be
given to fully describe the wave equation. It will be even
worse when multiple input signals are involved since each
signal is governed by different parameters in the same kind
of equation. While both temperature and surface pressure
are continuous and diffusive, they should have different dif-
fusion coefficients (α in Table 2) in the same diffusion equa-
tion. To address the issue we can transform the input signals
to latent space and use one equation in the latent space in-
stead of imposing multiple equations to input signals sepa-
rately. Then, the parameters in Encoder make the different
signals follow the equation differently. We formalize how
this idea is implemented as follow.

Forward/Recurrent computation Figure 3 provides how
the desired physics knowledge is integrated with the graph
networks. Given a graph G = {v, e,u}, it is fed into an
encoder which transforms a set of attributes of nodes (v),
edges (e), and a whole graph (u) into latent spaces.

ṽ, ẽ, ũ = Encoder(v, e,u) (3)

After the encoder, the encoded graph H = {ṽ, ẽ, ũ} is re-
peatedly updated within the core block as many as the re-
quired time steps T . For each step,H is updated toH′ which
denotes the next state of the encoded graph.

H′ = GN(H) (4)

Finally, the sequentially updated attributes are re-
transformed to the original spaces by a decoder.

v′, e′,u′ = Decoder(ṽ′, ẽ′, ũ′) (5)

There are two types of objective function in this architec-
ture, physics knowledge and supervised objective. First, we
define physics-informed constraint, which is a form of equa-
tions in Table 1 and 2 depending on given physics knowl-
edge and even mixed.

fsphy(H′t), fdphy(H′t, · · · ,H′t+M) (6)

Lphy =
∑
t

fsphy(H′t) + fdphy(H′t, · · · ,H′t+M) (7)

where fsphy(H′t) and fdphy(H′t, · · · ,H′t+M) are the static and
dynamic physics-informed quantity, respectively. For exam-
ple, we can impose gradient constraint or the diffusion equa-
tion between node/edge latent representations as follow:

fsphy(H′t) = ‖ẽ′t −∇ṽ′t‖2

fdphy(H′t,H′t+1) = ‖ṽ′t+1 − ṽ′t − α∇2ṽ′t‖2

Secondly, the supervised loss function between the predicted
graph, Ĝ′, and the target graph, G′. This loss function is con-
structed based on the task, such as the cross-entropy or the
mean squared error (MSE). Finally, the total objective func-
tion is a sum of the two constraints:

L = Lsup + λLphy (8)

where λ controls the importance of the physics term.

Experiment
In this section, we evaluate PaGN on a real-world climate
dataset on the Southern California region.

Climate Data
For the evaluation on real-world data, we used the hourly
simulated climate observations for 16 days on the South-
ern California region (Zhang et al. 2018). In this dataset, we
sampled small regions randomly from two area (Los Ange-
les and San Diego, Figure 4) encompassing urban and rural
meteorological features to generate spatially discrete obser-
vations. To build a graph, we connected a pair of the sampled
regions by using k-nearest neighbors algorithm (k = 3).
This data preprocessing is required to verify the proposed

𝒢 Encoder

ℋ

GN ℋ′ 𝒢$′Decoder

x T
Physics equation

Supervised Loss

𝒢′⨀

Figure 3: Recurrent architecture to incorporate physics equation on GN. The blue blocks have learnable parameters and the
orange blocks are objective functions. � is a concatenation operator and the middle core block can be repeated as many as the
required time steps (T).

idea as well as evaluate PaGN on the spatiotemporally sparse
setting, which is more common for sensor-based datasets.

The vertex attributes consist of 10 climate observations,
Air temperature, Albedo, Precipitation, Soil moisture, Rel-
ative humidity, Specific humidity, Surface pressure, Plane-
tary boundary layer height, and Wind vector (2 directions).
While the edge attributes are not given explicitly, we could
specify the type of each edge by using the type of connected
regions. There are 13 different land-usage types and each
type summarizes how the corresponding land is used. Based
on the types of connected regions, we assigned different em-
bedding vectors to edges.

PaGN Architecture
As explained in Section , PaGN consists of three modules,
graph encoder, GN block, and graph decoder (Figure 3). The
encoder contains two feed forward networks, φv and φe, ap-
plied to node and edge features, respectively. By passing the
encoder, the features are transformed to the latent space (H)
where we will impose physics equations.

In the GN block, the node/edge/graph features are updated
by the GN algorithm described in Section . The latent graph
states,H andH′, indicate the hidden states of the current and
next observations. For the physics constraint, we informed
the diffusion and wave equation in Table 2, which describe
the behavior of the continuous physical quantities. As the
most of the climate observations are varying continuously,
the diffusion equation, as a part of the continuity equation, is
one of the inductive bias that should be considered for mod-
eling. In addition, the wave equation is useful to describe
atmospheric phenomena, especially 1 solar day harmonics
(e.g., Atmospheric tide). Note that the physics equations are
not directly applied to the input observations, but rather to
the latent representations. The state-updating process is re-
peated at least as many as the order of the equations to pro-
vide the finite difference equation. For multistep predictions,
the recurrent module is repeated as many as the number of
the predictions and the physics equation will be also applied
multiple times as well. Finally, the decoder takesH′ as input
to return the next predictions. The following objective is the
total loss function of PaGN with the diffusion equation.

L =

T∑
i=1

‖ŷ′i − y′i‖2 + λ

T∑
i=1

‖ṽ′i − ṽi−1 − α∇2ṽi−1‖2

(9)

where y′ is a vector of the target observations (i.e. node vec-
tors) and α adjusts the diffusivity of the latent representa-

Figure 4: Sampled regions in Southern California area.
(Left) Los Angeles (274 nodes) and (Right) San Diego (282
nodes) area.

Model LA area SD area

MLP 0.8140±0.0651 0.7735±0.0539
LSTM 0.7855±0.0644 0.8123±0.0875

GN-only 0.5951±0.0517 0.6947±0.1859
GN-skip 0.5906±0.0620 0.6456±0.1499

PaGN (wave) 0.5366±0.0631 0.6413±0.1549
PaGN (diff) 0.5289±0.0405 0.5746 ±0.0471

Table 3: One step prediction error (MSE)

tions, which is found through cross validation. Note that the
equation term can be replaced by other equations properly.

Experimental Settings
In our experiments, we used the air temperature as a target
observation and other 9 observations were used as input. We
first evaluated our model by performing the one-step and
multistep prediction tasks on the two different area with a
mean square error metric. For both regions, we commonly
trained the model with input observations for 10 timesteps
(t − 10 : t − 1) and predicted targets from t − 9 to t. First
65% of a total length was used as a training set and remain-
ing series was split into validation (10%) and test sets (25%).

We explored several baselines: MLP, LSTM, and GN-
only ignoring the physics constraint in PaGN. We also com-
pared GN-skip which connects between H and H′ with the
skip-connection (He et al. 2016) without the physics con-
straint.

One step Prediction
Table 3 shows the prediction error of the baselines and PaGN
on different areas. MLP and LSTM are shared over all sta-
tions and their performaces are outperformed by other mod-
els leveraging a given graph structure. It implies that know-
ing neighboring information is significantly helpful to infer
its own state and it is intuitive since climate behaviors are

Model LA area SD area

LSTM 1.9022±0.2078 1.2489±0.2295
GN-only 1.6137±0.1128 1.5532±0.2023
GN-skip 1.5429±0.0932 1.4423±0.1622

PaGN(diff) 1.4656±0.0474 1.0999±0.0435

Table 4: Multistep prediction error (MSE)

spatiotemporally continuous. Among the graph-based mod-
els, PaGN(diff) provides the least MSEs. It validates that
the diffusive property provides a strong inductive bias with
the latent representation learning. Note that the standard de-
viations from PaGN(diff) are significantly smaller than
those of other baselines and it implies that the integrated
physics knowledge properly stabilizes optimization process
by introducing additional objective.

Multistep Prediction
To evaluate the effectiveness of the state-wise regularization
more carefully, we conducted the multistep prediction task
(10 forecast horizon). For the task, the recurrent modules are
modified to predict input observations as well and the pre-
dicted one is re-fed in the model for future timesteps. While
the models having a recurrent module are able to predict a
few more steps reasonably, there are a couple of things we
should pay attention. First, the results imply that utilizing
the neighboring information is important because GN-only
model shows similar or better MSEs compared to LSTM
for the multistep tasks, even though it has a simple recur-
rent module that is not as good as that of LSTM. Second,
we found that the diffusion equation in PaGN gives the sta-
ble state transition and the property provides slowly varying
latent states which are desired particularly for the climate
forecasting. Note that the skip-connection in GN-skip is also
able to restrict the rapid changes ofH. However, it is neces-
sary to more carefully optimize the parameters in GN-skip
to learn the residual term inH′ = H+ GN(H) properly.

Effectiveness of Physics Constraint
One of the benefits of physics-aware learning is data effi-
ciency. We explore how much the physics constraint is help-
ful by testing if PaGN can be well-trained when the num-
ber of data for the supervised objective is limited for the
one-step prediction task. We randomly sampled training data
which were used to optimize the total loss function (Equa-
tion 9) and the left unsampled data were only used to mini-
mize the physics constraint:

L = Lisup + λLiphy, i is a sampled step

L = λLiphy, otherwise

We found that the diffusion equation can benefit to optimize
PaGN even if the target observations are partially available
(Figure 5a). Although the overall performances of PaGN are
degraded when less number of sampled data are used, the
error are not far deviated from those of GN-only. Even the
GN-only model is outperformed by PaGN when only 70%
training data are used with the state-wise constraint.

0% 25% 50% 75%
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
SE

LA area
SD area

(a) MSE on sampled data

0.001 0.01 0.1 1.0
0.5

1.0

1.5

2.0

2.5

M
SE

LA area
SD area

(b) MSE with different λ

Figure 5: In (a) MSEs of PaGN are almost as good as GN-
only (gray lines) despite the less number of training data.
(b) provides how the prediction performance is dependent
on the physics term.

Model LA area SD area

PaGN(rand) 1.1406 0.7073
PaGN(diff+wave) 0.5624 0.6724

Table 5: One step prediction MSE with different constraints.
Importance of Physics Constraint
To study the importance of the physics term, we trained
PaGN with different λ controlling the importance of the
physics term. While we found that the physics term is sub-
stantially helpful from Table 3 and 4, the term is not sup-
posed to be dominant (See Figure 5b) but tuned properly.
This is intuitive since the term only provides partial knowl-
edge (diffusive input signals), which changes loss surface
to help parameters more stable to predict next signals, in-
stead of governing the dynamics explicitly. Scaling down the
physics term is similar to what Sabour, Frosst, and Hinton
(2017) did for reconstruction error not to dominate margin
loss but to help the optimization process.

We also present MSEs from PaGN(rand) defined by
randomly sampling (α, β) ∈ [−2.5, 2.5] in the constraint
||v′′ + αv′ + βv − c∆v||2, and PaGN(diff+wave) su-
perposing the two equations. Table 5 shows that the random
equation significantly degrades the overall prediction qual-
ity. Note that the simple superposition of two equations does
not always guarantee lower error even if each equation is
helpful separately. When the two equations are non-linearly
connected in the unknown (fully) governing equation, the
superposition cannot provide meaningful inductive bias. The
results demonstrate that the physics term is an useful induc-
tive bias when it is properly defined.

Conclusion
In this work, we introduce a new architecture PaGN based
on graph networks to incorporate prior knowledge given as
a form of PDEs over time and space. While existing works
more focus on how to discover equations in data generated
by explicit physics rules, we propose a method to leverage
weakly given inductive bias describing data. We empirically
analyze the performance of PaGN across a range of predic-
tion experiments on the climate observations.

References
Battaglia, P.; Pascanu, R.; Lai, M.; Rezende, D. J.; et al. 2016.
Interaction networks for learning about objects, relations and
physics. In Advances in neural information processing sys-
tems, 4502–4510.

Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-
Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.;
Raposo, D.; Santoro, A.; Faulkner, R.; et al. 2018. Relational
inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261 .

Bronstein, M. M.; Bruna, J.; LeCun, Y.; Szlam, A.; and Van-
dergheynst, P. 2017. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine 34(4): 18–
42.

Brunton, S. L.; Proctor, J. L.; and Kutz, J. N. 2016. Discov-
ering governing equations from data by sparse identification
of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences 113(15): 3932–3937.

Chang, M. B.; Ullman, T.; Torralba, A.; and Tenenbaum, J. B.
2017. A Compositional Object-Based Approach to Learning
Physical Dynamics. International Conference on Learning
Representations .

Cressie, N.; and Wikle, C. K. 2015. Statistics for spatio-
temporal data. John Wiley & Sons.

de Bezenac, E.; Pajot, A.; and Gallinari, P. 2018. Deep
Learning for Physical Processes: Incorporating Prior Scien-
tific Knowledge. In International Conference on Learning
Representations.

Grzeszczuk, R.; Terzopoulos, D.; and Hinton, G. 1998. Neu-
roanimator: Fast neural network emulation and control of
physics-based models. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques,
9–20. ACM.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–
778.

Hinton, G.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.-
r.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath,
T. N.; et al. 2012. Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine 29(6): 82–97.

Kipf, T.; Fetaya, E.; Wang, K.-C.; Welling, M.; and Zemel, R.
2018. Neural Relational Inference for Interacting Systems.
International Conference on Machine Learning .

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural networks.
In Advances in neural information processing systems, 1097–
1105.

Long, Z.; Lu, Y.; Ma, X.; and Dong, B. 2018. PDE-Net:
Learning PDEs from Data. In Proceedings of the 35th In-
ternational Conference on Machine Learning. URL http:
//proceedings.mlr.press/v80/long18a.html.

Raissi, M. 2018. Deep Hidden Physics Models: Deep
Learning of Nonlinear Partial Differential Equations. arXiv
preprint arXiv:1801.06637 .

Raissi, M.; and Karniadakis, G. E. 2018. Hidden physics
models: Machine learning of nonlinear partial differential
equations. Journal of Computational Physics 357: 125–141.

Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2017a.
Physics Informed Deep Learning (Part I): Data-driven So-
lutions of Nonlinear Partial Differential Equations. arXiv
preprint arXiv:1711.10561 .

Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2017b.
Physics Informed Deep Learning (Part II): Data-driven Dis-
covery of Nonlinear Partial Differential Equations. arXiv
preprint arXiv:1711.10566 .

Sabour, S.; Frosst, N.; and Hinton, G. E. 2017. Dynamic rout-
ing between capsules. In Advances in neural information pro-
cessing systems, 3856–3866.

Sanchez-Gonzalez, A.; Heess, N.; Springenberg, J. T.; Merel,
J.; Riedmiller, M.; Hadsell, R.; and Battaglia, P. 2018. Graph
Networks as Learnable Physics Engines for Inference and
Control. In Proceedings of the 35th International Conference
on Machine Learning.

Santoro, A.; Raposo, D.; Barrett, D. G.; Malinowski, M.; Pas-
canu, R.; Battaglia, P.; and Lillicrap, T. 2017. A simple neural
network module for relational reasoning. In Advances in neu-
ral information processing systems, 4967–4976.

Watters, N.; Tacchetti, A.; Weber, T.; Pascanu, R.; Battaglia,
P.; and Zoran, D. 2017. Visual interaction networks. NIPS .

Wu, Y.; Schuster, M.; Chen, Z.; Le, Q. V.; Norouzi, M.;
Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.;
et al. 2016. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144 .

Zhang, J.; Mohegh, A.; Li, Y.; Levinson, R.; and Ban-Weiss,
G. 2018. Systematic Comparison of the Influence of Cool
Wall versus Cool Roof Adoption on Urban Climate in the Los
Angeles Basin. Environmental science & technology 52(19):
11188–11197.

