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Abstract

We develop data-driven methods for incorporating physical
information for priors to learn parsimonious representations
of nonlinear systems arising from parameterized PDEs and
mechanics. Our approach is based on Variational Autoen-
coders (VAEs) for learning nonlinear state space models from
observations. We develop ways to incorporate geometric and
topological priors through general manifold latent space rep-
resentations. We investigate the performance of our methods
for learning low dimensional representations for the nonlin-
ear Burgers equation and constrained mechanical systems.

Introduction
The general problem of learning dynamical models from a
time series of observations has a long history spanning many
fields [51, 67, 15, 35] including in dynamical systems [8, 67,
68, 47, 50, 52, 32, 19, 23], control [9, 51, 60, 63], statistics
[1, 48, 26], and machine learning [15, 35, 46, 58, 3, 73]. Re-
ferred to as system identification in control and engineering,
many approaches have been developed starting with linear
dynamical systems (LDS). These includes the Kalman Fil-
ter and extensions [39, 22, 28, 70, 71], Principle Orthogo-
nal Decomposition (POD) [12, 49], and more recently Dy-
namic Mode Decomposition (DMD) [63, 45, 69] and Koop-
man Operator approaches [50, 20, 42]. These successful and
widely-used approaches rely on assumptions on the model
structure, most commonly, that a time-invariant LDS pro-
vides a good local approximation or that noise is Gaussian.

There also has been research on more general nonlinear
system identification [1, 65, 15, 35, 66, 47, 48, 51]. Non-
linear systems pose many open challenges and fewer uni-
fied approaches given the rich behaviors of nonlinear dy-
namics. For classes of systems and specific application do-
mains, methods have been developed which make differ-
ent levels of assumptions about the underlying structure of
the dynamics. Methods for learning nonlinear dynamics in-
clude the NARAX and NOE approaches with function ap-
proximators based on neural networks and other models
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classes [51, 67], sparse symbolic dictionary methods that are
linear-in-parameters such as SINDy [9, 64, 67], and dynamic
Bayesian networks (DBNs), such as Hidden Markov Chains
(HMMs) and Hidden-Physics Models [58, 54, 62, 5, 43, 26].

A central challenge in learning non-linear dynamics is to
obtain representations not only capable of reproducing sim-
ilar outputs as observed directly in the training dataset but to
infer structures that can provide stable more long-term ex-
trapolation capabilities over multiple future steps and input
states. In this work, we develop learning methods aiming to
obtain robust non-linear models by providing ways to in-
corporate more structure and information about the underly-
ing system related to smoothness, periodicity, topology, and
other constraints. We focus particularly on developing Prob-
abilistic Autoencoders (PAE) that incorporate noise-based
regularization and priors to learn lower dimensional repre-
sentations from observations. This provides the basis of non-
linear state space models for prediction. We develop meth-
ods for incorporating into such representations geometric
and topological information about the system. This facili-
tates capturing qualitative features of the dynamics to en-
hance robustness and to aid in interpretability of results. We
demonstrate and perform investigations of our methods to
obtain models for reductions of parameterized PDEs and for
constrained mechanical systems.

Learning Nonlinear Dynamics with
Variational Autoencoders (VAEs)

We develop data-driven approaches based on a Variational
Autoencoder (VAE) framework [40]. We learn from obser-
vation data a set of lower dimensional representations that
are used to make predictions for the dynamics. In prac-
tice, data can include experimental measurements, large-
scale computational simulations, or solutions of complicated
dynamical systems for which we seek reduced models. Re-
ductions aid in gaining insights for a class of inputs or phys-
ical regimes into the underlying mechanisms generating the
observed behaviors. Reduced descriptions are also helpful in
many optimization problems in design and in development
of controllers [51].

Standard autoencoders can result in encodings that yield
unstructured scattered disconnected coding points for sys-
tem features z. VAEs provide probabilistic encoders and de-



coders where noise provides regularizations that promote
more connected encodings, smoother dependence on inputs,
and more disentangled feature components [40]. As we shall
discuss, we also introduce other regularizations into our
methods to help aid in interpretation of the learned latent
representations.

Figure 1: Learning Nonlinear Dynamics. Data-driven
methods are developed for learning robust models to predict
from u(x, t) the non-linear evolution to u(x, t+τ) for PDEs
and other dynamical systems. Probabilistic Autoencoders
(PAEs) are utilized to learn representations z of u(x, t) in
low dimensional latent spaces with prescribed geometric
and topological properties. The model makes predictions us-
ing learnable maps that (i) encode an input u(x, t) ∈ U
as z(t) in latent space (top), (ii) evolve the representation
z(t) → z(t + τ) (top-right), (iii) decode the representation
z(t+ τ) to predict û(x, t+ τ) (bottom-right).

We learn VAE predictors using a Maximum Likelihood
Estimation (MLE) approach for the Log Likelihood (LL)
LLL = log(pθ(X,x)). For dynamics of u(s), let X = u(t)
and x = u(t+τ). We base pθ on the autoencoder framework
in Figure 1 and 2. We use variational inference to approxi-
mate the LL by the Evidence Lower Bound (ELBO) [7] to
train a model with parameters θ using encoders and decoders
based on minimizing the loss function

θ∗ = arg min
θe,θd
−LB(θe, θd, θ`;X

(i),x(i)),

LB = LRE + LKL + LRR, (1)

LRE = Eqθe (z|X(i))

[
log pθd(x(i)|z′)

]
LKL = −βDKL

(
qθe(z|X(i)) ‖ p̃θd(z)

)
LRR = γEqθe (z

′|x(i))

[
log pθd(x(i)|z′)

]
.

The qθe denotes the encoding probability distribution and
pθd the decoding probability distribution. The loss ` = −LB
provides a regularized form of MLE.

The termsLRE andLKL arise from the ELBO variational
bound LLL ≥ LRE+LKL when β = 1, [7]. This provides a

Figure 2: Variational Autoencoder (VAE). VAEs [40] are
used to learn representations of the nonlinear dynamics.
Deep Neural Networks (DNNs) are trained (i) to serve as
feature extractors to represent functions u(x, t) and their
evolution in a low dimensional latent space as z(t) (encoder
∼ qθe ), and (ii) to serve as approximators that can con-
struct predictions u(x, t+τ) using features z(t+τ) (decoder
∼ pθd ).

way to estimate the log likelihood that the encoder-decoder
reproduce the observed data sample pairs (X(i),x(i)) using
the codes z′ and z. Here, we include a latent-space map-
ping z′ = fθ`(z) parameterized by θ`, which we can use
to characterize the evolution of the system or further pro-
cessing of features. The X(i) is the input and x(i) is the
output prediction. For the case of dynamical systems, we
take X(i) ∼ ui(t) a sample of the initial state function ui(t)
and the output x(i) ∼ ui(t+ τ) the predicted state function
ui(t+ τ). We discuss the specific distributions used in more
detail below.

The LKL term involves the Kullback-Leibler Divergence
[44, 18] acting similar to a Bayesian prior on latent space
to regularize the encoder conditional probability distribu-
tion so that for each sample this distribution is similar to
pθd . We take pθd = η(0, σ2

0) a multi-variate Gaussian with
independent components. This serves (i) to disentangle the
features from each other to promote independence, (ii) pro-
vide a reference scale and localization for the encodings z,
and (iii) promote parsimonious codes utilizing smaller di-
mensions than d when possible.

The LRR term gives a regularization that promotes retain-
ing information in z so the encoder-decoder pair can recon-
struct functions. As we shall discuss, this also promotes or-
ganization of the latent space for consistency over multi-step
predictions and aids in model interpretability.

We use for the specific encoder probability distributions
conditional Gaussians z ∼ qθe(z|x(i)) = a(X(i),x(i)) +
η(0, σ2

e) where η is a Gaussian with variance σ2
e , (i.e.

EXi

[z] = a, VarX
i

[z] = σ2
e ). One can think of the learned

mean function a in the VAE as corresponding to a typi-
cal encoder a(X(i),x(i); θe) = a(X(i); θe) = z(i) and the
variance function σ2

e = σ2
e(θe) as providing control of a



noise source to further regularize the encoding. Among other
properties, this promotes connectedness of the ensemble of
latent space codes. For the VAE decoder distribution, we
take x ∼ pθd(x|z(i)) = b(z(i)) + η(0, σ2

d). The learned
mean function b(z(i); θe) corresponds to a typical decoder
and the variance function σ2

e = σ2
e(θd) controls the source

of regularizing noise.
The terms to be learned in the VAE framework

are (a, σe, fθ` , b, σd) which are parameterized by θ =
(θe, θd, θ`). In practice, it is useful to treat variances
σ(·) initially as hyper-parameters. We learn predictors for
the dynamics by training over samples of evolution pairs
{(uin, uin+1)}mi=1, where i denotes the sample index and
uin = ui(tn) with tn = t0 + nτ for a time-scale τ .

To make predictions, the learned models use the follow-
ing stages: (i) extract from u(t) the features z(t), (ii) evolve
z(t) → z(t + τ), (iii) predict using z(t + τ) the û(t + τ),
summarized in Figure 1. By composition of the latent evo-
lution map the model makes multi-step predictions of the
dynamics.

Learning with Manifold Latent Spaces
Roles of Non-Euclidean Geometry and

Topology
For many systems, parsimonious representations can be
obtained by working with non-euclidean manifold latent
spaces, such as a torus for doubly periodic systems or even
non-orientable manifolds, such as a klein bottle as arises in
imaging and perception studies [10]. For this purpose, we
learn encoders E over a family of mappings to a prescribed
manifoldM of the form

z = Eφ(x) = Λ(Ẽφ(x)) = Λ(w), w = Ẽφ(x).

We take the map Ẽφ(x) : x → w, where we represent
a smooth closed manifold M of dimension m in R2m, as
supported by the Whitney Embedding Theorem [72]. The Λ
maps (projects) points w ∈ R2m to the manifold represen-
tation z ∈ M ⊂ R2m. In practice, we accomplish this two
ways: (i) we provide an analytic mapping Λ to M, (ii) we
provide a high resolution point-cloud representation of the
target manifold along with local gradients and use for Λ a
quantized mapping to the nearest point on M. We provide
more details in Appendix A.

This allows us to learn VAEs with latent spaces for z
with general specified topologies and controllable geomet-
ric structures. The topologies of sphere, torus, klein bottle
are intrinsically different than Rn. This allows for new types
of priors such as uniform on compact manifolds or distribu-
tions with more symmetry. As we shall discuss, additional
latent space structure also helps in learning more robust rep-
resentations less sensitive to noise since we can unburden
the encoder and decoder from having to learn the embedding
geometry and avoid the potential for them making erroneous
use of extra latent space dimensions. We also have statistical
gains since the decoder now only needs to learn a mapping
from the manifoldM for reconstructions of x. These more
parsimonious representations also aid identifiability and in-
terpretability of models.

Related Work

Many variants of autoencoders have been developed for
making predictions of sequential data, including those based
on Recurrent Neural Networks (RNNs) with LSTMs and
GRUs [34, 29, 16]. While RNNs provide a rich approxima-
tion class for sequential data, they pose for dynamical sys-
tems challenges for interpretability and for training to obtain
predictions stable over many steps with robustness against
noise in the training dataset. Autoencoders have also been
combined with symbolic dictionary learning for latent dy-
namics in [11] providing some advantages for interpretabil-
ity and robustness, but require specification in advance of
a sufficiently expressive dictionary. Neural networks incor-
porating physical information have also been developed that
impose stability conditions during training [53, 46, 24]. The
work of [17] investigates combining RNNs with VAEs to ob-
tain more robust models for sequential data and considered
tasks related to processing speech and handwriting.

In our work we learn dynamical models making use of
VAEs to obtain probabilistic encoders and decoders between
euclidean and non-euclidean latent spaces to provide ad-
ditional regularizations to help promote parsimoniousness,
disentanglement of features, robustness, and interpretabil-
ity. Prior VAE methods used for dynamical systems in-
clude [31, 55, 27, 13, 55, 59]. These works use primar-
ily euclidean latent spaces and consider applications includ-
ing human motion capture and ODE systems. Approaches
for incorporating topological information into latent vari-
able representations include the early works by Kohonen
on Self-Organizing Maps (SOMs) [41] and Bishop on Gen-
erative Topographical Maps (GTMs) based on density net-
works providing a generative approach [6]. More recently,
VAE methods using non-euclidean latent spaces include
[37, 38, 25, 14, 21, 2]. These incorporate the role of geom-
etry by augmenting the prior distribution p̃θd(z) on latent
space to bias toward a manifold. In the recent work [57], an
explicit projection procedure is introduced, but in the special
case of a few manifolds having an analytic projection map.

In our work we develop further methods for more gen-
eral latent space representations, including non-orientable
manifolds, and applications to parameterized PDEs and con-
strained mechanical systems. We introduce more general
methods for non-euclidean latent spaces in terms of point-
cloud representations of the manifold along with local gra-
dient information that can be utilized within general back-
propogation frameworks, see Appendix A. This also allows
for the case of manifolds that are non-orientable and hav-
ing complex shapes. Our methods provide flexible ways to
design and control both the topology and the geometry of
the latent space by merging or subtracting shapes or stretch-
ing and contracting regions. We also consider additional
types of regularizations for learning dynamical models fa-
cilitating multi-step predictions and more interpretable state
space models. In our work, we also consider reduced models
for non-linear PDEs, such as Burgers Equations, and learn-
ing representations for more general constrained mechanical
systems. We also investigate the role of non-linearities mak-
ing comparisons with other data-driven models.



Results
Burgers’ Equation of Fluid Mechanics: Learning
Nonlinear PDE Dynamics
We consider the nonlinear viscous Burgers’ equation

ut = −uux + νuxx, (2)

where ν is the viscosity [4, 36]. We consider periodic bound-
ary conditions on Ω = [0, 1]. Burgers equation is motivated
as a mechanistic model for the fluid mechanics of advective
transport and shocks, and serves as a widely used benchmark
for analysis and computational methods.

The nonlinear Cole-Hopf Transform CH can be used to
relate Burgers equation to the linear Diffusion equation φt =
νφxx [36]. This provides a representation of the solution u

φ(x, t) = CH[u] = exp

(
− 1

2ν

∫ x

0

u(x′, t)dx′
)

u(x, t) = CH−1[φ] = −2ν
∂

∂x
lnφ(x, t). (3)

This can be represented by the Fourier expansion

φ(x, t) =

∞∑
k=−∞

φ̂k(0) exp(−4π2k2νt) · exp(i2πkx).

The φ̂k(0) = Fk[φ(x, 0)] and φ(x, t) =

F−1[{φ̂k(0) exp(−4π2k2νt)}] with F the Fourier
transform. This provides an analytic representa-
tion of the solution of the viscous Burgers equation
u(x, t) = CH−1[φ(x, t)] where φ̂(0) = F [CH[u(x, 0)]]. In
general, for nonlinear PDEs with initial conditions within a
class of functions U , we aim to learn models that provide
predictions u(t+ τ) = Sτu(t) approximating the evolution
operator Sτ over time-scale τ . For the Burgers equation,
the CH provides an analytic way to obtain a reduced order
model by truncating the Fourier expansion to |k| ≤ nf/2.
This provides for the Burgers equation a benchmark
model against which to compare our learned models. For
general PDEs comparable analytic representations are not
usually available, motivating development of data-driven
approaches.

We develop VAE methods for learning reduced order
models for the responses of nonlinear Burgers Equation
when the initial conditions are from a collection of func-
tions U . We learn VAE models that extract from u(x, t) la-
tent variables z(t) to predict u(x, t + τ). Given the non-
uniqueness of representations and to promote interpretabil-
ity of the model, we introduce the inductive bias that the
evolution dynamics in latent space for z is linear of the
form ż = −λ0z, giving exponential decay rate λ0. For dis-
crete times, we take zn+1 = fθ`(zn) = exp(−λ0τ) · zn,
where θ` = (λ0). We still consider general nonlinear map-
pings for the encoders and decoders which are represented
by deep neural networks. We train the model on the pairs
(u(x, t), u(x, t + τ)) by drawing m samples of ui(x, ti) ∈
StiU which generates the evolved state under Burgers equa-
tion ui(x, ti+τ) over time-scale τ . We perform VAE studies
with parameters ν = 2 × 10−2, τ = 2.5 × 10−1 with VAE

Deep Neural Networks (DNNs) with layer sizes (in)-400-
400-(out), ReLU activations, and γ = 0.5, β = 1, and initial
standard deviations σd = σe = 4 × 10−3. We show results
of our VAE model predictions in Figure 3 and Table 1.

Figure 3: Burgers’ Equation: Prediction of Dynamics. We
consider responses for U1 = {u |u(x, t;α) = α sin(2πx) +
(1−α) cos3(2πx)}. Predictions are made for the evolution u
over the time-scale τ satisfying equation 2 with initial con-
ditions in U1. We find our nonlinear VAE methods are able
to learn with 2 latent dimensions the dynamics with errors
< 1%. Methods such as DMD [63, 69] with 3 modes which
are only able to use a single linear space to approximate the
initial conditions and prediction encounter challenges in ap-
proximating the nonlinear evolution. We find our linear VAE
method with 2 modes provides some improvements, by al-
lowing for using different linear spaces for representing the
input and output functions, but at the cost of additional com-
putations. Results are summarized in Table 1.

We show the importance of the non-linear approximation
properties of our VAE methods in capturing system behav-
iors by making comparisons with Dynamic Mode Decompo-
sition (DMD) [63, 69], Principle Orthogonal Decomposition
(POD) [12], and a linear variant of our VAE approach. Re-
cent CNN-AEs have also studied related advantages of non-
linear approximations [46]. Some distinctions in our work is
the use of VAEs to further regularize AEs and using topo-
logical latent spaces to facilitate further capturing of struc-
ture. The DMD and POD are widely used and successful ap-
proaches that aim to find an optimal linear space on which
to project the dynamics and learn a linear evolution law for
system behaviors. DMD and POD have been successful in
obtaining models for many applications, including steady-
state fluid mechanics and transport problems [69, 63]. How-
ever, given their inherent linear approximations they can en-
counter well-known challenges related to translational and
rotational invariances, as arise in advective phenomena and
other settings [8]. Our comparison studies can be found in



Figure 4: Burgers’ Equation: Latent Space Represen-
tations and Extrapolation Predictions. We show the la-
tent space representation z of the dynamics for the in-
put functions u(·, t;α) ∈ U1. VAE organizes for u the
learned representations z(α, t) in parameter α (blue-green)
into circular arcs that are concentric in the time parameter
t, (yellow-orange) (left). The reconstruction regularization
with γ aligns subsequent time-steps of the dynamics in latent
space facilitating multi-step predictions. The learned VAE
model exhibits a level of extrapolation to predict dynamics
even for some inputs u 6∈ U1 beyond the training dataset
(right).

Table 1.
We also considered how our VAE methods performed

when adjusting the parameters β for the strength of the prior
p̃ as in β-VAEs [33] and γ for the strength of the reconstruc-
tion regularization. The reconstruction regularization has a
significant influence on how the VAE organizes representa-
tions in latent space and the accuracy of predictions of the
dynamics, especially over multiple steps, see Figure 4 and
Table 1. The regularization serves to align representations
consistently in latent space facilitating multi-step composi-
tions. We also found our VAE learned representions capable
of some level of extrapolation beyond the training dataset.
When varying β, we found that larger values improved the
multiple step accuracy whereas small values improved the
single step accuracy, see Table 1.

Constrained Mechanics: Learning with
Non-Euclidean Latent Spaces
To learn more parsimonous and robust representations of
physical systems, we develop methods for latent spaces hav-
ing geometries and topologies more general than euclidean
space. This is helpful in capturing inherent structure such
as periodicities or other symmetries. We consider physical
systems with constrained mechanics, such as the arm mech-
anism for reaching for objects in figure 5. The observa-

Method Dim 0.25s 0.50s 0.75s 1.00s
VAE Nonlinear 2 4.44e-3 5.54e-3 6.30e-3 7.26e-3
VAE Linear 2 9.79e-2 1.21e-1 1.17e-1 1.23e-1
DMD 3 2.21e-1 1.79e-1 1.56e-1 1.49e-1
POD 3 3.24e-1 4.28e-1 4.87e-1 5.41e-1
Cole-Hopf-2 2 5.18e-1 4.17e-1 3.40e-1 1.33e-1
Cole-Hopf-4 4 5.78e-1 6.33e-2 9.14e-3 1.58e-3
Cole-Hopf-6 6 1.48e-1 2.55e-3 9.25e-5 7.47e-6

γ 0.00s 0.25s 0.50s 0.75s 1.00s
0.00 1.600e-01 6.906e-03 1.715e-01 3.566e-01 5.551e-01
0.50 1.383e-02 1.209e-02 1.013e-02 9.756e-03 1.070e-02
2.00 1.337e-02 1.303e-02 9.202e-03 8.878e-03 1.118e-02

β 0.00s 0.25s 0.50s 0.75s 1.00s
0.00 1.292e-02 1.173e-02 1.073e-02 1.062e-02 1.114e-02
0.50 1.190e-02 1.126e-02 1.072e-02 1.153e-02 1.274e-02
1.00 1.289e-02 1.193e-02 7.903e-03 7.883e-03 9.705e-03
4.00 1.836e-02 1.677e-02 8.987e-03 8.395e-03 8.894e-03

Table 1: Burgers’ Equation: Prediction Accuracy. The
reconstruction L1-relative errors in predicting u(x, t) for
our VAE methods, Dynamic Model Decomposition (DMD),
and Principle Orthogonal Decomposition (POD), and reduc-
tion by Cole-Hopf (CH), over multiple-steps and number
of latent dimensions (Dim) (top). Results when varying the
strength of the reconstruction regularization γ and prior β
(bottom).

tions are taken to be the two locations x1,x2 ∈ R2 giving
x = (x1,x2) ∈ R4. When the segments are rigidly con-
strained these configurations lie on a manifold (torus). We
can also allow the segments to extend and consider more ex-
otic constraints such as the two points x1,x2 must be on
a klein bottle in R4. Related situations arise in other ar-
eas of imaging and mechanics, such as in pose estimation
and in studies of visual perception [56, 10, 61]. For the
arm mechanics, we can use this prior knowledge to con-
struct a torus latent space represented by the product space
of two circles S1 × S1. To obtain a learnable class of mani-
fold encoders, we use the family of maps Eθ = Λ(Ẽθ(x)),
with Ẽθ(x) into R4 and Λ(w) = Λ(w1, w2, w3, w4) =
(z1, z2, z3, z4) = z, where (z1, z2) = (w1, w2)/‖(w1, w2)‖,
(z3, z4) = (w3, w4)/‖(w3, w4)‖, see VAE Section and Ap-
pendix A. For the case of klein bottle constraints, we use
our point-cloud representation of the non-orientable mani-
fold with the parameterized embedding in R4

z1 = (a+ b cos(u2)) cos(u1) z2 = (a+ b cos(u2)) sin(u1)
z3 = b sin(u2) cos

(
u1

2

)
z4 = b sin(u2) sin

(
u1

2

)
,

with u1, u2 ∈ [0, 2π]. The Λ(w) is taken to be the map to the
nearest point of the manifoldM, which we compute numer-
ically along with the needed gradients for backpropogation
as discussed in Appendix A.

Our VAE methods are trained with encoder and decoder
DNN’s having layers of sizes (in)-100-500-100-(out) with
Leaky-ReLU activations with s = 1e-6 with results reported
in Figure 5 and Table 2. We find learning representations is
improved by use of the manifold latent spaces, in these tri-
als even showing a slight edge over R4. When the wrong



Figure 5: VAE Representations of Motions using Mani-
fold Latent Spaces. We learn from observations represen-
tations for constrained mechanical systems using general
non-euclidean manifolds latent spaces M. The arm mech-
anism has configurations x = (x1,x2) ∈ R4. For rigid
segments, the motions are constrained to be on a manifold
(torus) M ⊂ R4. For extendable segments, we can also
consider more exotic constraints, such as requiring x1,x2

to be on a klein bottle in R4 (top). Results of our VAE meth-
ods for learned representations for motions under these con-
straints are shown. VAE learns the segment length constraint
and two nearly decoupled coordinates for the torus dataset
that mimic the roles of angles. VAE learns for the klein bot-
tle dataset two segment motions to generate configurations
(middle and bottom).

topology is used, such as in R2, we find in both cases a sig-
nificant deterioration in the reconstruction accuracy, see Ta-
ble 2. This arises since the encoder must be continuous and
hedge against the noise regularizations. This results in an in-
curred penalty for a subset of configurations. The encoder
exhibits non-injectivity and a rapid doubling back over the
space to accommodate the decoder by lining up nearby con-
figurations in the topology of the input space manifold to
handle noise perturbations in z from the probabilistic na-
ture of the encoding. We also studied robustness when train-
ing with noise for X̃ = X + ση(0, 1) and measuring ac-
curacy for reconstruction relative to target X . As the noise
increases, we see that the manifold latent spaces improve
reconstruction accuracy acting as a filter through restrict-
ing the representation. The probabilistic decoder will tend
to learn to estimate the mean over samples of a common
underlying configuration and with the manifold latent space

Torus epoch
method 1000 2000 3000 final
VAE 2-Manifold 6.6087e-02 6.6564e-02 6.6465e-02 6.6015e-02
VAE R2 1.6540e-01 1.2931e-01 9.9903e-02 8.0648e-02
VAE R4 8.0006e-02 7.6302e-02 7.5875e-02 7.5626e-02
VAE R10 8.3411e-02 8.4569e-02 8.4673e-02 8.4143e-02
with noise σ 0.01 0.05 0.1 0.5
VAE 2-Manifold 6.7099e-02 8.0608e-02 1.1198e-01 4.1988e-01
VAE R2 8.5879e-02 9.7220e-02 1.2867e-01 4.5063e-01
VAE R4 7.6347e-02 9.0536e-02 1.2649e-01 4.9187e-01
VAE R10 8.4780e-02 1.0094e-01 1.3946e-01 5.2050e-01
Klein Bottle epoch
method 1000 2000 3000 final
VAE 2-Manifold 5.7734e-02 5.7559e-02 5.7469e-02 5.7435e-02
VAE R2 1.1802e-01 9.0728e-02 8.0578e-02 7.1026e-02
VAE R4 6.9057e-02 6.5593e-02 6.4047e-02 6.3771e-02
VAE R10 6.8899e-02 6.9802e-02 7.0953e-02 6.8871e-02
with noise σ 0.01 0.05 0.1 0.5
VAE 2-Manifold 5.9816e-02 6.9934e-02 9.6493e-02 4.0121e-01
VAE R2 1.0120e-01 1.0932e-01 1.3154e-01 4.8837e-01
VAE R4 6.3885e-02 7.6096e-02 1.0354e-01 4.5769e-01
VAE R10 7.4587e-02 8.8233e-02 1.2082e-01 4.8182e-01

Table 2: Manifold Latent Variable Model: VAE Recon-
struction Errors The L2-relative errors of reconstruction
for our VAE methods. The final is the lowest value during
training. The manifold latent spaces show improved learn-
ing. When an incompatible topology is used, such as R2, this
can result in deterioration in learned representations. With
noise in the input X̃ = X + ση(0, 1) and reconstructing
the target X , the manifold latent spaces also show improve-
ments for learning.

restrictions is more likely to use a common latent represen-
tation. For Rd with d > 2, the extraneous dimensions in the
latent space can result in overfitting of the encoder to the
noise. We see as d becomes larger the reconstruction accu-
racy decreases, see Table 2. These results demonstrate how
geometric priors can aid learning in constrained mechanical
systems.

Conclusions
We developed VAE’s for learning robustly nonlinear dynam-
ics of physical systems by introducing methods for latent
representations utilizing general geometric and topological
structures. We demonstrated our methods for learning the
non-linear dynamics of PDEs and constrained mechanical
systems. We expect our methods can also be used in other
physics-related tasks and problems to leverage prior geo-
metric and topological knowledge for improving learning
for nonlinear systems.
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Appendix A: Backpropogation of Encoders for
Non-Euclidean Latent Spaces given by

General Manifolds
We develop methods for using backpropogation to learn en-
coder maps from Rd to general manifoldsM. We perform
learning using the family of manifold encoder maps of the
form Eθ = Λ(Ẽθ(x)). This allows for use of latent spaces
having general topologies and geometries. We represent the
manifold as an embeddingM ⊂ R2m and computationally
use point-cloud representations along with local gradient in-
formation, see Figure 6. To allow for Eθ to be learnable, we
develop approaches for incorporating our maps into general
backpropogation frameworks.

Figure 6: Learnable Mappings to Manifold Surfaces We
develop methods based on point cloud representations em-
bedded in Rn for learning latent manifold representations
having general geometries and topologies.

For a manifold M of dimension m, we can represent it
by an embedding within R2m, as supported by the Whitney
Embedding Theorem [72]. We let z = Λ(w) be a mapping
w ∈ R2m to points on the manifold z ∈M. This allows for
learning within the family of manifold encoders w = Ẽθ(x)
any function from Rd to R2m. This facilitates use of deep
neural networks and other function classes. In practice, we
shall take z = Λ(w) to map to the nearest location on the
manifold. We can express this as the optimization problem

z∗ = arg min
z∈M

1

2
‖w − z‖22.

We can always express a smooth manifold using local coor-
dinate charts σk(u), for example, by using a local Monge-
Gauge quadratic fit to the point cloud [30]. We can express
z∗ = σk(u∗) for some chart k∗. In terms of the coordinate
charts {Uk} and local parameterizations {σk(u)}we can ex-
press this as

u∗, k∗ = arg min
k,u∈Uk

1

2
‖w − σk(u)‖22,

where Φk(u,w) = 1
2‖w − σ

k(u)‖22. The w is the input and
u∗, k∗ is the solution sought. For smooth parameterizations,
the optimal solution satisfies

G = ∇zΦk∗(u∗, w) = 0.

During learning we need gradients ∇wΛ(w) = ∇wz when
w is varied characterizing variations of points on the mani-
fold z = Λ(w). We derive these expressions by considering
variations w = w(γ) for a scalar parameter γ. We can ob-
tain the needed gradients by determining the variations of
u∗ = u∗(γ). We can express these gradients using the Im-
plicit Function Theorem as

0 =
d

dγ
G(u∗(γ), w(γ)) = ∇uG

du∗

dγ
+∇wG

dw

dγ
.

This implies
du∗

dγ
= − [∇uG]

−1∇wG
dw

dγ
.

As long as we can evaluate at u these local gradients ∇uG,
∇wG, dw/dγ, we only need to determine computationally
the solution u∗. For the backpropogation framework, we use
these to assemble the needed gradients for our manifold en-
coder maps Eθ = Λ(Ẽθ(x)) as follows.

We first find numerically the closest point in the manifold
z∗ ∈ M and represent it as z∗ = σ(u∗) = σk

∗
(u∗) for

some chart k∗. In this chart, the gradients can be expressed
as

G = ∇uΦ(u,w) = −(w − σ(u))T∇uσ(u).

We take here a column vector convention with ∇uσ(u) =
[σu1 | . . . |σuk ]. We next compute

∇uG = ∇uuΦ = ∇uσT∇uσ − (w − σ(u))T∇uuσ(u)

and
∇wG = ∇w,uΦ = −I∇uσ(u).

For implementation it is useful to express this in more detail
component-wise as

[G]i = −
∑
k

(wk − σk(u))∂uiσk(u),

with

[∇uG]i,j = [∇uuΦ]i,j =
∑
k

∂ujσk(u)∂uiσk(u)

−
∑
k

(wk − σk(u))∂2ui,ujσk(u)

[∇wG]i,j = [∇w,uΦ]i,j

= −
∑
k

∂wjwk∂uiσk(u) = −∂uiσj(u).

The final gradient is given by

dΛ(w)

dγ
=
dz∗

dγ
= ∇uσ

du∗

dγ
= −∇uσ [∇uG]

−1∇wG
dw

dγ
.

In summary, once we determine the point z∗ = Λ(w)
we need only evaluate the above expressions to obtain the
needed gradient for learning via backpropogation

∇θEθ(x) = ∇wΛ(w)∇θẼθ(x), w = Ẽθ(x).



The ∇wΛ is determined by dΛ(w)/dγ using γ =

w1, . . . wn. In practice, the Ẽθ(x) is represented by a deep
neural network from Rd to R2m. In this way, we can learn
general encoder mappings Eθ(x) from x ∈ Rd to general
manifoldsM.


