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Abstract

Existing work in Physics-guided Neural Networks (PGNNs)
have demonstrated the efficacy of adding single PG loss
functions in the neural network objectives, using constant
trade-off parameters, to ensure better generalizability. How-
ever, in the presence of multiple physics loss functions with
competing gradient directions, there is a need to adaptively
tune the contribution of competing PG loss functions dur-
ing the course of training to arrive at generalizable solutions.
We demonstrate the presence of competing PG losses in the
generic neural network problem of solving for the lowest (or
highest) eigenvector of a physics-based eigenvalue equation,
common to many scientific problems. We present a novel ap-
proach to handle competing PG losses and demonstrate its
efficacy in learning generalizable solutions in two motivat-
ing applications of quantum mechanics and electromagnetic
propagation.

1 Introduction

With the increasing impact of deep learning methods in
diverse scientific disciplines (Appenzeller 2017; Graham-
Rowe et al. 2008), there is a growing realization in the sci-
entific community to harness the power of artificial neu-
ral networks (ANNs) without ignoring the rich supervision
available in the form of physics knowledge in several scien-
tific problems (Karpatne et al. 2017a; Willard et al. 2020).
One of the promising lines of research in this direction is to
modify the objective function of neural networks by adding
loss functions that measure the violations of ANN outputs
with physical equations, termed as physics-guided (PG) loss
functions (Karpatne et al. 2017b; Stewart and Ermon 2017).
By anchoring ANN models to be consistent with physics,
PG loss functions have been shown to impart generalizabil-
ity even in the paucity of training data across several scien-
tific problems (Jia et al. 2019; Karpatne et al. 2017c; Raissi,
Perdikaris, and Karniadakis 2019; de Bezenac, Pajot, and
Gallinari 2019). We refer to the class of neural networks that
are trained using PG loss functions as physics-guided neural
networks (PGNNs).
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While some existing work in PGNN have attempted to
learn neural networks by solely minimizing PG loss (and
thus being label-free) (Raissi, Perdikaris, and Karniadakis
2019; Stewart and Ermon 2017), others have used both PG
loss and data label loss using appropriate trade-off hyper-
parameters (Karpatne et al. 2017c; Jia et al. 2019). How-
ever, what is even more challenging is when there are mul-
tiple physics equations with competing PG loss functions
that need to be minimized together, where each PG loss
may show multiple local minima. In such situations, sim-
ple addition of PG losses in the objective function with
constant trade-off hyper-parameters may result in the learn-
ing of non-generalizable solutions. This may seem counter-
intuitive since the addition of PG loss is generally assumed
to offer generalizability in the PGNN literature (Karpatne
et al. 2017c¢; de Bezenac, Pajot, and Gallinari 2019; Shin,
Darbon, and Karniadakis 2020). This motivates us to ask the
question: is it possible to adaptively balance the importance
of competing PG loss functions at different stages of neural
network learning to arrive at generalizable solutions?

In this work, we introduce a novel framework of Co-
Phy-PGNN, which is an abbreviation for Competing Physics
Physics-Guided Neural Networks, to handle competing PG
loss functions in neural network training. We specifically
consider the domain of scientific problems where physics
knowledge are represented as eigenvalue equations and we
are required to solve for the highest or lowest eigen-solution.
This representation is common to many types of physics
such as the Schrodinger equation in the domain of quan-
tum mechanics and Maxwell’s equations in the domain of
electromagnetic propagation. In these applications, solving
eigenvalue equations using exact numerical techniques (e.g.,
diagonalization methods) can be computationally expensive
especially for large physical systems. On the other hand,
PGNN models, once trained, can be applied on testing sce-
narios to predict their eigen-solutions in drastically smaller
running times. We empirically demonstrate the efficacy of
our CoPhy-PGNN solution on two diverse applications in
quantum mechanics and electromagnetic propagation, high-
lighting the generalizability of our proposed approach to
many physics problems.



2 Background
2.1 Opverview of Physics Problems:

The physics of the problem is available in the form of an
eigen-value equation of the form: Ay = by, where, for a
given input matrix A, bis an eigenvalue and y is the corre-
sponding eigenvector. We are interested in solving the low-
est or highest eigen-solution of this equation in our target
problems. Here, we provide a brief overview of the two tar-
get applications.

Quantum Mechanics: In this application, the goal is to
predict the ground-state wave function of an Ising chain
model with n = 4 particles. This problem can be described
by the Schrodinger equation HU = EU, where E, the en-

ergy level, is the eigenvalue; \il the wave function, is the
eigenvector, and H, the Hamiltonian, is the matrix. Since the
ground-state wave function corresponds to the lowest energy
level, we are interested in finding the lowest eigen-solution
of this eigen-value equation. To be able to execute a detailed
analysis, we choose a small problem scale (n = 4) for this
application.

Electromagnetic Propagation: To illustrate our model’s
scalability to large systems, we consider another applica-
tion involving the propagation of the electromagnetic waves
in periodically stratified layer stacks. The description of
this propagation can be reduced to the eigenvalue problem

flf_im = k:;”Q l_im where k:;”z, the propagation constant of the
electromagnetic modes along the layers, is the eigenvalue;

and i_im, the coefficients of the Fourier transform of the spa-
tial profile of the electromagnetic field, is the eigenvector. It
is important to note for this application that these quantities
are complex valued, and that we are interested in the largest
eigenvalue rather than the smallest.

2.2 Related work in PGNN:

PGNN has found successful applications in several disci-
plines including fluid dynamics (Wang, Wu, and Xiao 2017,
2016; Wang et al. 2017), climate science (de Bezenac, Pa-
jot, and Gallinari 2019), and lake modeling (Karpatne et al.
2017c; Jia et al. 2019; Daw et al. 2020). However, to the
best of our knowledge, PGNN formulations have not been
explored yet for our target applications of solving eigen-
value equations in the field of quantum mechanics and elec-
tromagnetic propagation. Existing work in PGNN can be
broadly divided into two categories. The first category in-
volves label-free learning by only minimizing PG loss with-
out using any labeled data. For example, Physics-informed
neural networks (PINNs) and its variants (Raissi, Perdikaris,
and Karniadakis 2019, 2017a,b) have been recently devel-
oped to solve PDEs by solely minimizing PG loss functions,
for simple canonical problems such as Burger’s equation.
Since these methods are label-free, they do not explore the
interplay between PG loss and label loss. We consider an
analogue of PINN for our target application as a baseline in
our experiments.

The second category of methods incorporate PG loss as
additional terms in the objective function along with la-
bel loss, using constant trade-off hyper-parameters. This
includes work in basic Physics-guided Neural Networks
(PGNNs) (Karpatne et al. 2017c; Jia et al. 2019) for the
target application of lake temperature modeling. We use an
analogue of this basic PGNN as a baseline in our experi-
ments.

While some recent works have investigated the effects of
PG loss on generalization performance (Shin, Darbon, and
Karniadakis 2020) and the importance of normalizing the
scale of hyper-parameters corresponding to PG loss terms
(Wang, Teng, and Perdikaris 2020), they do not study the ef-
fects of competing physics losses which is the focus of this
paper. Our work is related to the field of multi-task learn-
ing (MTL) (Caruana 1993), as the minimization of physics
losses and label loss can be viewed as multiple shared tasks.
For example, alternating minimization techniques in MTL
(Kang, Grauman, and Sha 2011) in MTL can be used to
alternate between minimizing different PG loss and label
loss terms over different mini-batches. We consider this as
a baseline approach in our experiments.

3 Methodology

3.1 Problem statement:

From an ML perspective, we are given a collection of train-
ing pairs, Dr,. := {Al, (yi, i)}, where (y;, b;) is gener-
ated by diagonalization solvers. We consider the problem of
learning an ANN model, (§,b) = fnn (A, 0), that can pre-
dict (y, b) for any input matrix, A, where 6 are the learnable
parameters of ANN. We are also given a set of unlabeled
examples, Dy := {A;}M,, which will be used for testing.
We consider a simple feed-forward architecture of fyy in
all our formulations.

3.2 Designing physics-guided loss functions:

A naive approach for learning f is to minimize the mean
sum of squared errors (MSE) of predictions on the training
set, referred to as the Train-MSE. However, instead of solely
relying on Train-MSE, we consider the following PG loss
terms to guide the learning of fxyn to generalizable solu-
tions:

Characteristic Loss: A fundamental equation we want to
satisfy in our predictions, (¢, b), for any input A is the eigen-
value equation, fly = i)y Hence, we consider minimizing
the following equation:
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where the denominator term ensures that ¢ resides on a unit
hyper-sphere with ||g|| = 1, thus avoiding scaling issues.
Note that by construction, C-Loss only depends on the pre-
dictions of fyn and does not rely on true labels, (y,b).
Hence, C-Loss can be evaluated even on the unlabeled test
data, Dy.



Spectrum Loss: Note that there are many non-interesting
solutions of /lg} = 51,7 that can appear as “local minima”
in the optimization landscape of C'-Loss. For example, for
every input A; € Dy, there are d possible eigen-solutions
(where d is the length of y), each of which will result in
a perfectly low value of C-Loss = 0, thus acting as a lo-
cal minima. However, we are only interested in a specific
eigenvalue—usually the smallest or the largest—for every
Ai. Therefore, we consider minimizing another PG loss term
that ensures the predicted b at every sample is the desired
one. In the case of the quantum mechanics application, we
use the following loss to find the smallest eigen-solution:

S-Loss(0) := Z exp (l;z) 2)

The use of exp function ensures that E-Loss is always posi-
tive, even when predicted eigenvalues are negative (which is
the case for all energy states, especially the ground-state). As
for the electromagnetic propagation application, we simply
direct the optimization towards the largest eigenvalue by re-

placing b; with — Re(l;i), where Re extracts the real part of
the complex eigenvalue. Since in both cases, the exp func-
tion is being applied over negative quantities, S-Loss has
smoothly varying gradients.

3.3 Adaptive tuning of PG loss weights:

A simple strategy for incorporating PG loss terms in the
learning objective of fn v is to add them to Train-MSE us-
ing trade-off weight parameters, A and Ag, for C-Loss and
S-Loss, respectively. Conventionally, such trade-off weights
are kept constant to a certain value across all epochs of gradi-
ent descent. This inherently assumes that the importance of
PG loss terms in guiding the learning of fy  towards a gen-
eralizable solution is constant across all stages (or epochs)
of gradient descent, and they are in agreement with each
other. However, in practice, we empirically find that C-Loss,
S-Loss, and Train-MSE compete with each other and have
varying importance at different stages (or epochs) of ANN
learning. Hence, we consider the following ways of adap-
tively tuning the trade-off weights of C-Loss and S-Loss,
Ac and Ag as a function of the epoch number ¢.

Annealing A\g: The first observation we make is that S-
Loss plays a critical role in the initial stages of learning.
Having a large value of Ag in the beginning few epochs is
thus helpful to avoid the selection of local minima and in-
stead converge towards a generalizable solution. Hence, we
consider performing a simulated annealing of Ag that takes
on a high value in the beginning epochs, that slowly decays
to 0 after sufficiently many epochs. Specifically, we consider
the following annealing procedure for Ag:

As(t) = Aso x (1 — ag) /T 3

where, Agg is a hyper-parameter denoting the starting value
of A\g at epoch 0, ag < 1 is a hyper-parameter that controls
the rate of annealing, and 7' is a scaling hyper-parameter.

Cold Starting A\c: The second observation we make is on
the effect of C'-Loss on the convergence of gradient descent
towards a generalizable solution. Note that C-Loss suffers
from a large number of local minima and hence is suscepti-
ble to favoring the learning of non-generalizable solutions.
Hence, in the beginning epochs, it is important to keep C-
Loss turned off. Once we have crossed a sufficient number
of epochs and have already zoomed into a region in the pa-
rameter space in close vicinity to a generalizable solution,
we can safely turn on C-Loss so that it can help refine 6 to
converge to the generalizable solution. Essentially, we “cold
starting” A\¢ as given by the following procedure:

Ac(t) = Aeo X sigmoid(ac X (t —Ty)), 4

where, A\ is a hyper-parameter denoting the constant value
of A\¢ after a sufficient number of epochs, a is a hyper-
parameter that dictates the rate of growth of the sigmoid
function, and 7}, is a hyper-parameter that controls the cut-
off number of epochs after which ¢ is activated from a cold
start of 0.

Overall Learning Objective: Combining all of the inno-
vations described above in designing and incorporating PG
loss functions, we consider the following overall learning
objective:

E(t) = Train-Loss + Ac(t) C-Loss + Ag(t) S-Loss

Note that Train-Loss is only computed over Dr,., whereas
the PG loss terms, C-Loss and S-Loss, are computed over
Dr, as well as the set of unlabeled samples, Dy;. We re-
fer to our proposed model trained using the above learn-
ing objective as CoPhy-PGNN, which is an abbreviation for
Competing Physics PGNN.

4 Evaluation setup

Data in Quantum Physics: We considered n = 4 spin
systems of Ising chain models for predicting their ground-
state wave-function under varying influences of two control-
ling parameters: B, and B,, which represent the strength
of external magnetic field along the X axis (parallel to the
direction of Ising chain), and Z axis (perpendicular to the
direction of the Ising chain), respectively. The Hamiltonian
matrix H for these systems is then given as:

n—1 n—1 n—1
z __zZ x z
H:—g aiai+1—BxE Ui—BzE o7, ()
i=0 =0 1=0

where 0”+¥* are Pauli operators and ring boundary con-
ditions are imposed. Note that the size of H is d = 2" = 16.
We set B, to be equal to 0.01 to break the ground state de-
generacy, while B, was sampled from a uniform distribution
from the interval [0, 2].

Note that when B, < 1, the system is said to be in a fer-
romagnetic phase, since all the spins prefer to either point
upward or downward collectively. However, when B, > 1,
the system transitions to paramagnetic phase, where both up-
ward and downward spins are equally possible. Because the
ground-state wave-function behaves differently in the two



regions, the system actually exhibits different physical prop-
erties. Hence, in order to test for the generalizability of ANN
models when training and test distributions are different, we
generate training data only from the region deep inside the
ferromagnetic phase for B, < 0.5, while the test data is
generated from a much wider range 0 < B, < 2, covering
both ferromagnetic and paramagnetic phases. In particular,
the training set comprises of N = 100, 000 points with B,
uniformly sampled from O to 0.5, while the test set com-
prises of M = 20,000 points with B, uniformly sampled
from 0 to 2. For validation, we used sub-sampling on the
training set to obtain a validation set of 2000 samples. We
performed 10 random runs of uniform sampling over N, to
show the mean and variance of the performance metrics of
comparative ANN models, where at every run, a different
random initializtion of the ANN models is also used. Unless
otherwise stated, the results in any experiment are presented
over training size N = 2000.

Data in Electromagnetic Propagation: We considered a
periodically stratified layer stack of 10 layers of equal length
per period. The refractive index n of each layer was ran-
domly assigned an integer value between 1 and 4. Hence, the
permittivity € = n? can take values from {1,4,9,16}. Note
that the majority of eigenvalue solvers rely on iterative al-
gorithms and are therefore not easily deployable in GPU en-
vironments. To demonstrate the scalability of our approach
we generate N = 2000 realizations of the layered structure.
For each example, we also generate the associated A of size
401 x 401 complex values, making the scale of this problem
about 2500 times larger than that of the quantum mecanics
problem. The combination of the challenging scale of this
eigen-decompostion and the scarcity of training data makes
this problem interesting from scalability and generalizaility
perspective. To demonstrate extrapolation ability, we take a
training size |Dr,.| = 370 realizations that has a refractive
index of only 1 in its first layer. On the other hand, we take a
test set of size |Dy| = 1630 with the first layer’s refractive
index unconstrained (i.e. any value from the set {1,2,3,4}).

Baseline Methods: Since there does not exist any re-
lated work in PGNN that has been explored for our tar-
get applications, we construct analogue versions of PINN-
analogue (Raissi, Perdikaris, and Karniadakis 2019) and
PGNN-analogue (Karpatne et al. 2017¢) adapted to our
problem using their major features. We describe these base-
lines along with others in the following:

1. Black-box NN (or NN): This refers to the “black-box”
ANN model trained just using Train-Loss without any PG
loss terms.

2. PGNN-analogue: The analogue version of PGNN
(Karpatne et al. 2017c) for our problem where the hyper-
parameters corresponding to S-Loss and C'-Loss are set
to a constant value.

3. PINN-analogue: The analogue version of PINN (Raissi,
Perdikaris, and Karniadakis 2019) for our problem that
performs label-free learning only using PG loss terms

Models MSE (x10%) Cosine Similarity
CoPhy-PGNN (proposed) 0.35+0.12 99.50+0.12%
Black-box NN 1.06 £ 0.16 95.32 £ 0.58%
PINN-analogue 6.27+6.94 87.37£12.87%
PGNN-analogue 0.91+1.90 97.97 £ 4.89%
MTL-PGNN 6.33 + 2.69 84.26 £ 6.33%
CoPhy-PGNN (only-Dr,.) 1.82 £0.36 93.61 £0.91%
CoPhy-PGNN (w/o S-Loss) | 10.97 £0.71 76.27 £ 0.80%
CoPhy-PGNN (Label-free) 9.97+4.42  63.97£16.20%

Table 1: Test-MSE and Cosine Similarity of comparative ANN
models on training size¢ N = 1000 on the quantum physics
application.

with constant weights. Note that the PG loss terms are
not defined as PDEs in our problem.

4. MTL-PGNN: Multi-task Learning (MTL) variant of
PGNN where PG loss terms are optimized alternatively
(Kang, Grauman, and Sha 2011) by randomly selecting
one from all the loss terms for each mini-batch in every
epoch.

We also consider the following ablation models:

1. CoPhy-PGNN (only-Dyp;.): This is an ablation model
where the PG loss terms are only trained over the training
set, Dr,.. Comparing our results with this model will help
in evaluating the importance of using unlabeled samples
Dy in the computation of PG loss.

2. CoPhy-PGNN (w/o S-Loss): This is another ablation
model where we only consider C-Loss in the learning ob-
jective, while discarding S-Loss.

3. CoPhy-PGNN (Label-free): This ablation model drops
Train-MSE from the learning objective and hence per-
forms label-free (LF) learning only using PG loss terms.

Evaluation Metrics: We use two evaluation metrics: (a)
Test MSE, and (b) Cosine Similarity between our predicted
eigenvector, ¥, and the ground-truth, y, averaged across all
test samples. We particularly chose the cosine similarity
for multiple reasons. First, Euclidean distances are not very
meaningful in high-dimensional spaces of wave-functions,
such as the ones we are considering in our analyses. Sec-
ond, an ideal cosine similarity of 1 provides an intuitive
baseline to evaluate goodness of results. But most impor-
tantly, in the electromagnetic propagation application, it is
crucial to compare not just Fourier coefficients of the ex-
pansion (which is what the neural net produces) but rather
the actual profile of the magnetic field in the real space. The
accuracy of this prediction can be tested by calculating the
overlap integral between the exact and the predicted profiles.
That integral, due to orthogonality of Fourier expansion, re-
duces to the cosine similarity. This facilitates testing whether
our predicted vectors are valid eigenvectors from a physical
standpoint.

5 Results and analysis
5.1 Quantum Physics Application:

Table 1 provides a summary of the comparison of CoPhy-
PGNN with baseline methods on the quantum physics ap-
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Figure 1: Cosine Similarity on test samples as a function of B,.
The dashed line represents the boundary between the interval used
for training (left) and testing (right).

plication. We can see that our proposed model shows signif-
icantly better performance in terms of both Test-MSE and
Cosine Similarity. In fact, the cosine similarity of our pro-
posed model is almost 1, indicating almost perfect fit with
test labels. (Note that even a small drop in cosine similar-
ity can lead to cascading errors in the estimation of other
physical properties derived from the ground-state wave-
function.) An interesting observation from Table 1 is that
CoPhy-PGNN (Label-free) actually performs even worse
than black-box NN. This shows that solely relying on PG
loss without considering Train-MSE is fraught with chal-
lenges in arriving at a generalizable solution. Indeed, using
a small number of labeled examples to compute Train-MSE
provides a significant nudge to ANN learning to arrive at
more accurate solutions. Another interesting observation is
that CoPhy-PGNN (only-Dr,.) again performs even worse
than Black-box NN. This demonstrates that it is important
to use unlabeled samples in Dy, which are representative of
the test set, to compute the PG loss. Furthermore, notice that
CoPhy-PGNN (w/o S-Loss) actually performs worst across
all models, possibly due to the highly non-convex nature of
C-Loss function that can easily lead to local minima when
used without S-Loss. This sheds light on another important
aspect of PGNN that is often over-looked, which is that it
does not suffice to simply add a PG-Loss term in the objec-
tive function in order to achieve generalizable solutions. In
fact, an improper use of PG Loss can result in worse perfor-
mance than a black-box model.

Evaluating generalization power: Instead of computing
the average cosine similarity across all test samples, Figure
1 analyzes the trends in cosine similarity over test samples
with different values of B,, for four comparative models.
Note that none of these models have observed any labeled
data during training outside the interval of B, € [0,0.5].
Hence, by testing for the cosine similarity over test sam-
ples with B, > 0.5, we are directly testing for the ability
of ANN models to generalize outside the data distributions
it has been trained upon. Evidently, all label-aware models
perform well on the interval of B, € [0,0.5]. However,
except for CoPhy-PGNN, all baseline models degrade sig-
nificantly outside that interval, proving their lack of gener-
alizability. Moreover, the label-free, CoPhy-PGNN (Label-
free), model is highly erratic, and performs poorly across the

board.

Analysis of loss landscapes: We visualize the landscape
of different loss functions w.r.t. ANN model parameters. In
particular, we use the code in (Bernardi 2019) to plot a 2D
view of the landscape of different loss functions, namely
Train-MSE, Test-MSE, and PG-Loss (sum of C-Loss and
S-Loss), in the neighborhood of a model solution, as shown
in Figure 2. The model’s parameters are treated with filter
normalization as described in (Li et al. 2018), and hence, the
coordinate values of the axes are unit-less. Also, the model
solutions are represented by blue dots. As can be seen, all
label-aware models have found a minimum in Train-MSE
landscape. However, when the test-MSE loss surface is plot-
ted, it is clear that while the CoPhy-PGNN model is still at a
minimum, the other baseline models are not. This is a strong
indication that using the PG loss with unlabeled data can
lead to better extrapolation; it allows the model to general-
ize beyond in-distribution data. We can see that without us-
ing labels, CoPhy-PGNN (Label-free) fails to reach a good
minimum of Test-MSE, even though it arrives at a minimum
of PG Loss.

5.2 Electromagnetic Propagation Application:

For this application, the size of A is 401 x 401, making it
a daunting task for an eigensolver in terms of computation
time. As a result, a grid search hyper-parameter tuning of
ANN models is prohibitively expensive. This is due to the
large number of epochs needed to optimize a model for a
problem of this scale. Nonetheless, we were still able to op-
timize a model to do fairly well by manually adjusting the
hyper-parameters and architecture of CoPhy-PGNN to yield
acceptable results on the validation set. We emphasize, how-
ever, that a more exhaustive tuning could lead to better re-
sults that surpass the ones we obtained. Figure 3 shows that
CoPhy-PGNN is still able to better extrapolate than a Black-
box NN on testing scenarios with permittivity greater than
1. In fact, we have observed that as Black-box NN solely
optimizes Train-MSE, its cosine similarity measure deteri-
orates on the test set. This is in contrast to CoPhy-PGNN’s
ability to maintain a cosine similarity close to 1 even though
its validation loss is comparable to Black-box NN’s.

While training our model still takes a significant amount
of time (about 12 hours), its effectiveness with respect to
testing speed is demonstrated in Table 2. We can see that
our approach is at least an order of magnitude faster dur-
ing testing than any numerical eigensolver. This highlights
the promise in using neural networks to solve physics-based
eigen-value problems, since, once trained, they can be used
to produce eigen-solutions on test points much faster than
numerical methods. Further, while CoPhy-PGNN shows
higher error than numerical solvers, note that the cosine sim-
ilarity of our model’s predictions with ground-truth is close
to 0.8, thus admitting physical usability.

6 Conclusions and future work
This work proposed novel strategies to address the problem
of competing physics loss functions in PGNN. For the gen-
eral problem of solving eigen-value equations, we designed
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Figure 3: Cosine similarity of CoPhy-PGNN compared to Black-
box NN for the electromagnetic propagation application. The
dashed line represents the boundary between the interval used for
training (left) and testing (right).

Solver average time (seconds) average |Ay — by|
CoPhy-PGNN 0.0430 1.878 x 107
numpy.linalg.eig 03.743 7.714 x 1076
Matlab 0.196 8.747 x 10712
torch.eig 16.565 6.821 x 10713
scipy.linalg.eig 106.223 7.538 x 1074
scipy.sparse.linalg.eigs 8.893 4.418 x 1073

Table 2: Comparison of speed and accuracy between CoPhy-PGNN
and other numerical eigensolvers. Note that Matlab calculates the
eigenvalue of interest (i.e. the largest), while the other eigensolvers,
except for our proposed method, calculate all the eigenvalues of the
given matrix. This explains why Matlab has relatively faster execution
time.

a PGNN model CoPhy-PGNN and demonstrated its efficacy
in two target applications in quantum mechanics and elec-
tromagnetic propagation. From our results, we found that: 1)
PG loss helps to extrapolate and gives the model better gen-
eralizablity; and 2) Using labeled data along with PG loss
results in more stable PGNN models. Moreover, we visual-
ized the loss landscape to give a better understanding of how
the combination of both labeled data loss and PG loss leads
to better generalization performance. We have also demon-
strated the generalizability of our CoPhy-PGNN to multiple
application domains with varying types of physics loss func-
tions, as well as its scalability to large systems. Future work
can focus on reducing the training time of our model so as to
perform extensive hyper-parameter tuning to reach a better
global minima. Finally, while this work empirically demon-
strated the value of CoPhy-PGNN in combating with com-
peting PG loss terms, future work can focus on theoretical
analyses of our approach.
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