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Abstract

Force field methods can be used in molecular dynamics simu-
lations to compute and infer macro-level properties of chem-
ical or material systems. However, these force fields can of-
ten predict erroneous values due to not being accurate at the 
quantum level. The ideal would be able to simulate the sys-
tem from first principles (quantum-level) and scale up to get 
the material properties. However, this is computationally in-
feasible. In this paper, we develop a Programmable Potentials 
methodology that utilizes high-fidelity QM/MM data sets to 
inform a molecular dynamics (MD) potential. This method-
ology uses encoding functions containing small neural net-
works that automatically learn the quantum-level interaction 
logic of the system from the data and uses these encoding 
functions to modify standard MD potentials, like Lennard-
Jones, which capture the correct long range behavior, but do 
poorly in the near range. We test the method on the adsorp-
tion of hydrocarbons in a zeolite framework. We show that the 
encoding functions, and the resulting model, generalize well 
outside their training set and that encoding functions trained 
with data from a simpler hydrocarbon such as CH4 can build 
good models for more complex hydrocarbons such as C2H6 
and C3H8.

Introduction
We seek to use data from small quantum mechanical simu-

lations to build generative models at the molecular scale in 
order to predict bulk material properties. This is not achiev-
able with current methods. Modeling and solving a system 
on the level of the Schrodinger equation scales exponen-
tially with the number of electrons in the system, making 
it infeasible for any system of reasonable size. Density func-
tional theory and periodicity assumptions on the system (so-
called QM/MM methods) mitigate this problem somewhat, 
but are still infeasible for many systems (Jensen 2007). For 
example, using QM/MM methods for direct simulation of 
molecular dynamics (MD) for zeolite-catalyzed reactions on
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the nanosecond time scale requires the sequential evalua-
tion of roughly a million energy and force evaluations, each
of which requires about 100 seconds using 8 cores. This
equates to approximately 0.1 billion seconds for a simula-
tion, or over 3 years.

Our approach constructs a generative model by taking
classical molecular dynamics potentials (such as Lennard-
Jones potentials) which capture the correct long-range be-
havior and combines them with small neural networks which
encode the quantum level logic and correct the near-range
behavior. The encoding functions multiplicatively modify
the classical molecular potentials. Our approach is termed
Programmable Potentials with neural networks (PP-NN).

The formulation of Programmable Potentials (Thakur,
Mohr, and Mezić 2016) prior to this work relied on the re-
searcher to manually determine and specify the interaction
logic and encode this in a boolean algebra. This was a time
consuming process and possible only for simple reactions.
The idea we present here is to learn this logic automat-
ically by leveraging neural networks and tunable proxim-
ity functions, thereby replacing the “hand-tuned” encoding
functions. An additional advantage of using neural networks
as the encoding functions, and implementing them in pack-
ages such as TensorFlow or PyTorch, allows one to leverage
the auto-differentiation routines of those frameworks, so that
moving from training to deployment in a molecular dynam-
ics simulation bypasses an error-prone, manual differentia-
tion step to get the force fields.

We applied our methods to the materials science prob-
lem of hydrocarbons binding in a zeolite framework, both
undoped (MFI) and doped (HMFI). Doped zeolites are
nano-porous doped silica catalysts that are the world’s most
widely used catalytic framework for cracking, dehydrogena-
tion, and oligomerization of hydrocarbons (Primo and Gar-
cia 2014). The classic example of doping is replacement
of a small fraction Si by Al and an accompanying proton
to create a solid acid catalyst (Corma 1995). An illustra-
tion is shown in Figure 1. Doping a zeolite turns a non-
functional material into a functional material, where cata-
lyst function is controlled by short-range electronic effects
from doping, as well as shape-selective effects (pore size and



Figure 1: An illustration of the 3-d pore structure of the ze-
olite, MFI, showing 437 T sites (Si atoms). Doping is the
replacement of one or more Si atoms by other elements such
as Al, Sn, etc, or, as illustrated here, extra-framework atoms
that attach to the side of pores, often at sites that are already
doped. The properties of the doped site are fundamentally
different than Si, and, in favorable cases, make functional
materials with unique properties, controlled by the combi-
nation of short-range electronic and steric/shape effects, and
long-range electrostatic and dispersion interactions.

geometry) (Smit and Maesen 2008), and long-range effects
(remote charges, and polarization) from the extended frame-
work (Mansoor et al. 2018).

Methods
Pure force field methods often do not capture a potential
field correctly. While giving the correct form at long range,
the short range energies can be incorrect. Ideally, one would
like to use a full quantum mechanics simulation, but this
is intractable except for small systems. QM/MM hybrid ap-
proaches are introduced to relax these limitations. As men-
tioned above however, these methods still suffer from com-
putation intractability if one would like to simulate them
over a reasonable time scale, which would be needed to ex-
tract macroscale properties of the material.

Programmable Potentials is a force field methods that
takes into account the reaction logic of the system, quantum
or otherwise, given a data set. Since it is a force field method,
this makes it amenable for molecular dynamics simulations.
Using small, high-fidelity QM/MM data sets gives a force
field model that can be evaluated outside its training set, set-
ting the stage for long time-scale simulations that are still
informed by quantum level information.

The Programmable Potential model takes the form of

EPP =
∑
j

∑
k>j

VjkSjk (1)

where Vkj is a pairwise potential between atoms j and k,
such as the Lennard-Jones potential in Eq. (3), and Sjk is

an encoding function that encodes the interaction logic of
the system. In bond-breaking reaction systems, the encoding
functions are usually restricted to have values between 0 and
1 and act as a switch that turns individual bonds on or off. In
static systems, like binding of guest molecules such as CH4
in a host zeolite framework, the encoding function values are
not squashed in this way.

In original formulation of Programmable Potentials
(Thakur, Mohr, and Mezić 2016), the coarse-level logic of
the system was encapsulated in the encoding functions. This
logic was first constructed using a Boolean algebra gener-
ated by indicator functions on intervals [0, α). Once the logic
was constructed, the indicator functions were replaced with
smooth variants (see Eq.(2)) whose parameters were then
optimized over a training data set. This process could be
quite complicated as the system moved past very simple re-
actions and would require a lot of man-hours and ingenu-
ity. The formation in this paper replaces these hand-tuned
encoding functions with encoding functions utilizing small
neural networks to automatically learn the interaction logic.
The neural networks used were densely connected networks
with, generally, no more 8 layers with neurons ranging be-
tween 8 and 64 neurons for a layer.

For reactions between a small number of atoms, we can
apply an encoding function for each interaction. However,
for the zeolite problem, using an encoding function for ev-
ery interaction is infeasible. This would require optimiz-
ing thousands of neural networks simultaneously due to the
number of atoms in the zeolite framework. Therefore, we
learned an encoding function for each unique interaction-
type and limited them to zeolite atoms close to the hydrocar-
bon. For example, every silicon-carbon interaction used the
same encoding function. This reduced the number of encod-
ing functions that needed to be trained from thousands to 4
(for the undoped zeolite). This also enabled transfer learning
to other systems by learning a “universal” encoding function
for each interaction type.

For each unique atom pair type interaction, we use one
neural network to learn the corresponding encoding func-
tion. For example, in the undoped zeolite problem, we have
four separate neural networks in total, encoding SSiC, SSiH,
SOC, SOH respectively. The networks take the pairwise dis-
tance as input, and outputs the modified Lennard-Jones po-
tential. Recall that the modification for a pairwise potential
only happens for atoms in the QM region. For those atoms
outside QM region, we keep the original LJ pairwise poten-
tial for the energy calculation. The overall process is sum-
marized in Algorithm 1.

An additional advantage of using neural networks as the
encoding functions, and implementing them in frameworks
such as TensorFlow or PyTorch, allows one leverage the
auto-differentiation methods of those framework so that
moving from training to deployment in a molecular dynam-
ics simulation bypasses an error-prone, manual differentia-
tion step to get the force fields.

Finally, the choice of the functional form (1), rather than
a pure neural network, gives a generative model. Neural net-
works interpolate well, but often have difficulty extrapolat-
ing outside the data sets they were trained on. Our methods



Algorithm 1 Programmable Potentials with Neural Net-
works

/* Add pairwise potentials for atoms in QM region */
for atom j in hydrocarbon do

for zeolite atom k in QM region do
Epp ← Epp + Vkj(rkj) · Skj(rkj)

end for
end for

/* Modify pairwise potentials for atoms outside QM re-
gion */
for atom j in hydrocarbon do

for zeolite atom k not in QM region do
Epp ← Epp + Vkj(rkj)

end for
end for
return Epp
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Figure 2: Proximity function with cutoff distance α = 1.

extrapolate well outside the training set.
The encoding functions Sjk are structured as follows.

Pairwise distances between atoms are the inputs. For each
pairwise distance input, a proximity function is formed. The
proximity function has the form

h(r;α, n) =
1

1 + ( rα )
n
, (2)

where the parameter α controls the cutoff distance and the
parameter n controls how fast the cutoff is. These are both
tunable parameters allowing the model to determine the cor-
rect scales during optimization. Figure 2 shows proximity
functions at different parameter values n with a fixed cutoff
distance α = 1. The proximity functions and their negations
(1 − h) are then fed into a neural network which combines
them to learn the interaction logic from the data set. Figure 3
sketches the basic architecture of the encoding function. We
call this architecture Programmable Potentials with Neural
Networks (PP-NN). We compare this new architecture with
the baseline model consisting of pure Lennard-Jones inter-
actions.

In addition to comparing the new PP-NN architecture with
the baseline LJ model, we also compare this with a variety
of Programmable Potentials with manually specified encod-
ing functions. As an example, consider developing a pro-
grammable potential for CH4 in the zeolite framework with

Figure 3: Basic encoding function architecture.

manually specified interaction logic. The molecular dynam-
ics (MD) baseline potential that we are utilizing is a 12-6
Lennard-Jones (LJ) potentials, shown below in equation (3)

VLJ(rij) =
√
εiεj

[(
Ri +Rj
rij

)12

− 2

(
Ri +Rj
rij

)6
]
,

(3)
where rij is the interatomic distance between atom i and j,√
εiεj is the minimum of the potential energy and Ri + Rj

yield the distance at which the potential is minimal.
The baseline LJ potential is modified with encoding func-

tions according to unique atom pair types. Therefore, we
only develop encoding functions for Si-C, Si-H, O-C, O-H,
Al-C, and Al-H interactions. We have selected an encoding
function which only modifies the potentials of atoms whose
interatomic distance is within a cut off radius. Furthermore,
the encoding function depends only the interatomic distance
between the zeolite and methane atom of interest. For ex-
ample the LJ potential between a carbon and a zeolite atom
will be modified by an encoding function that depends only
on the interatomic distance between the carbon and zeolite
atom. The analytic form of the resulting “hand-tuned” po-
tential for a Si-C and O-H interaction below.

V (rSiC) = VLJ(rSiC) ∗ S(rSiC)
= VLJ(rSiC) ∗ (1− h(rSiC))

V (rOH1
) = VLJ(rOH1) ∗ S(rOH1)

= VLJ(rOH1
) ∗ (1− h(rOH1

)),

(4)

where in the above equations h(r;α, n) is the standard prox-
imity function that is used within the programmable poten-
tials methodology.

As mentioned above, the programmable potential seeks
to modify the LJ potentials of zeolite atoms that fall within
a cut off radius of the hydrocarbon. This procedure essen-
tially divides the entire system into two parts, where one is
governed by the molecular dynamics interactions and the
other is governed by the quantum mechanic interactions.
However, the QM/MM data provided by Q-Chem was gen-
erated in a slightly different manner. Specifically, the QM
region was defined by Q-chem to be composed of the clos-
est silicon atom to the hydrocarbon along with eight addi-
tional neighbors of that silicon atom (4 oxygen and 4 sili-
con atoms). Therefore, the Q-Chem data was generated via
a connectivity based QM region whereas our (hand-tuned)
programmable potentials were generated via a radial cut off



QM region. The neural network programmable potential that
we have developed is also a connectivity based potential.
Therefore, we have also focused on developing connectiv-
ity based programmable potentials with hand-tuned logic
to serve as additional baseline for the neural network pro-
grammable potentials.

We list the models tested for the undoped zeolite problem
below.
• Case 1: Pure Lennard-Jones (LJ) potential using Q-

Chem provided LJ parameters. No optimization. This case
serves as the baseline.

• Case 2: Pure Lennard-Jones potential with optimization
of LJ parameters for carbon-hydrogen interactions.

• Case 3: Radial distance based programmable potential us-
ing Q-chem provided LJ parameters and optimization of
carbon-hydrogen encoding functions.

• Case 4: Radial distance based programmable potentials
with optimization of the LJ and encoding functions for
carbon-hydrogen.

• Case 5: Connectivity based programmable potential us-
ing Q-chem provided LJ parameters and optimization of
carbon-hydrogen encoding functions.

• Case 6: Connectivity based programmable potentials with
optimization of the LJ parameters and encoding functions
for C/H interactions.

• Case 7 (NN in plots): Connectivity based programmable
potential with neural network using Q-chem provided LJ
parameters. This architecture is the focus of this paper.

Results
We found that our models generalize well outside the train-
ing set. For example, undoped MFI has 12 chemically dis-
tinguishable silicon atoms, called symmetry regions and la-
beled T1 to T12. For all models, only the T1 symmetry data
was used for training. The 11 other symmetry regions were
used for testing. Despite being trained on less than 10% of
the data, the model beat a pure Lennard-Jones baseline on
the T1 symmetry and also generalized well to the other sym-
metry regions. We compare the results with the true data us-
ing the mean relative error

MRE =
1

n

n∑
i=1

|Ti − Fi|
maxi(T )−mini(T )

, (5)

where Ti is the true energy of the system (from high-fidelity
QM/MM computations) at sample location i and Fi is the
energy of the model at sample location i.

We also tested how well our trained models generalized
to other hydrocarbons. For example, we trained encoding
functions using the CH4, undoped zeolite (MFI), T1 sym-
metry data. These trained encoding functions were then used
to build a model for C2H6 in MFI. This new model beat a
pure Lennard-Jones potential for C2H6+MFI on almost all
the symmetry regions. With a small amount of retraining of
the CH4-learned encoding functions using C2H6+MFI T1
symmetry data, the model beat a pure Lennard-Jones poten-
tial on all symmetry regions and was comparable or beat

Figure 4: CH4+MFI train set error. The T1 data was used for
training the models. Case 1 is the pure LJ baseline. Cases
5 and NN (case 7) are the most directly comparable. Both
use connectivity-based definitions of the QM region and nei-
ther optimizes any LJ parameters. The main difference is in
whether they use hand-tuned logic (case 5) or use neural net-
works (NN).

a Programmable Potentials model trained directly on the
C2H6+MFI T1 symmetry data (see Figure 6). We also tested
transferring the CH4 encoding functions to C3H8 (Figure 7).
One lesson learned here was that the capacity of the neu-
ral network needed to match the complexity of the prob-
lem we wanted to transfer the learning to. For example, the
first approach used fully-connected neural networks having
4 layers with 8 neurons each. While it adequately learned
the CH4+MFI data (with good generalizations to the other
symmetries), it did not do a good job of transferring to the
C2H6+MFI data sets. Increasing the capacity of the net-
work (5 layers with 16, 32, 64, 32, 16 neurons respectively)
allowed good transferability. The conjecture is that the net-
work needs to have enough capacity to match the complexity
of the quantum logic of the problem to be transfered to. Cur-
rently, this is done in an ad-hoc manner. Having more for-
malized or precise heuristics or methods to determine such
a match requires additional effort and could be a topic for a
future research.

Finally, we tested transferring encoding functions from
the undoped MFI framework to the doped HMFI frame-
work, a more difficult problem (Figure 8). Doped zeolite is
formed by replacing a small fraction of silicon atoms with
aluminum atoms. These aluminum atoms present a chal-
lenge to transferring the encoding functions. This is due
to the undoped MFI data sets not containing any infor-
mation about how aluminum reacts with the hydrocarbons.
The introduction of aluminum can be considered a black
swan event from the viewpoint of the encoding functions.
Despite this, the encoding functions generalized well from
CH4+MFI (methane in undoped zeolite) to CH4+HMFI
(methane in doped zeolite). Again the encoding functions
were only trained using CH4+MFI T1 symmetry data and
generalized well to the other symmetry regions of CH4 in
doped zeolite (of which there are only 10 instead of 12).



Figure 5: CH4+MFI average test set error. The models were
trained on the T1 data set and tested on the T2–T12 symme-
try data. The MRE on the data sets for each test symmetry
region was computed and then averaged. Cases 5 and NN
(case 7) are the most directly comparable.

Conclusions
We have presented the Programmable Potentials with Neu-
ral Networks (PP-NN) methodology in the context adsorb-
ing hydrocarbons in zeolite frameworks. The methodol-
ogy builds generative models out of classical molecular dy-
namics potentials—such as Lennard-Jones potentials, which
give the correct long-range behavior—and small, targeted
neural networks that learn the quantum level logic between
atoms if given QM/MM data sets or other quantum mechan-
ical data sets.

The learned encoding functions can be trained on sim-
pler hydrocarbons and transmitted to more complex hydro-
carbons and beat the baseline Lennard-Jones potential. Us-
ing the previous trained encoding functions as initial condi-
tions for the more complex hydrocarbons, gives better per-
formance than an encoding function that was randomly ini-
tialized and trained on the more complex hydrocarbons data
set. This ability to transfer seems to require a higher capac-
ity network than is needed to just learn the potential for the
simpler hydrocarbon.

Looking forward, the computational catalysis community
stands to benefit from the development of efficient, accu-
rate and transferable machine-learning architectures such as
we have developed in this program. This community has
high standards for acceptable accuracy, because significant
errors in the predicted energies enter observable quantities
such as relative populations of binding sites, turnover fre-
quencies, etc., in the exponential of Boltzmann factors or
Arrenhius rate constants. Small errors in the relative binding
energies can lead to erroneous predictions for gas adsorp-
tion, and likewise can even lead to erroneous predictions
of reaction mechanisms. The goal in these communities is
to have ML learned force fields that have the accuracy of
quantum methods, but at the cost of force field methods. The
Programmable Potentials neural network (PP-NN) method-
ology is a promising initial step towards this goal. Since,

Figure 6: CH4+MFI generalization to C2H6+MFI. Base-
line (blue) is a pure LJ potential on the C2H6+MFI data set.
CH4 without adaptation (orange) uses the encoding func-
tions trained using the CH4+MFI T1 data set to build a Pro-
grammable Potential for C2H6+MFI. CH4 with adaptation
on C2H6 (green) is the same of the previous model except
now a small amount of training epochs using the T1 sym-
metry data set of C2H6+MFI is used to update the encod-
ing functions. The final model (red) uses encoding functions
trained from scratch on the C2H6+MFI T1 data set without
leveraging on information from CH4+MFI.

Figure 7: CH4+MFI generalization to C3H8+MFI (un-
doped to doped zeolite). The same as in Figure 6 except all
of the C2H6+MFI data sets were replaced with C3H8+MFI
data sets.

once trained, the PP-NN has an execution time on the order
of classical force field methods, molecular dynamics simula-
tions having quantum-level accuracy could be simulated in
hours or days rather than years for a comparable QM/MM
simulation.
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