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Abstract

There has been a surge in the interest of using machine learn-
ing techniques to assist in the scientific process of formulating
knowledge to explain observational data. We demonstrate the
use of Bayesian Hidden Physics Models to first uncover the
physics governing the propagation of acoustic impulses in
metallic specimens using data obtained from a pristine sample.
We then use the learned physics to characterize the microstruc-
ture of a separate specimen with a surface-breaking crack flaw.
Remarkably, we find that the physics learned from the first
specimen allows us to understand the backscattering observed
in the latter sample, a qualitative feature that is wholly absent
from the specimen from which the physics were inferred. The
backscattering is explained through inhomogeneities of a la-
tent spatial field that can be recognized as the speed of sound
in the media.

Introduction
There is a workflow found ubiquitously throughout many
disciplines at the intersection of science and engineering. It
begins when one observes some novel phenomenon or be-
havior. One then designs a laboratory experiment to collect
measurements to observe the phenomenon under a controlled
setting. Given these observations, one infers relevant physi-
cal laws from those observations. Given this new knowledge,
one may proceed with constructing physically-accurate com-
putational models of the discovered physics. With this tool
developed, hypothetical simulations may be carried out in
silico for the purposes of engineering design and analysis at
considerably reduced expense.

Perhaps the most challenging element of the pipeline is
the discovery of the relevant physics from the laboratory data.
In fact, there has been a surge of popularity in recent years
applying black-box data-driven modeling techniques which
involve fitting some general function model to the observation
data without the structure of a physical model (???). While
such models tend to be highly general, they struggle to give
accurate predictions or possess the sort of generalization that
enables significant scientific insight. The former challenge
may be somewhat addressed if it is inexpensive to obtain
massive amounts of observational data, though convergence
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may be unsatisfactorily slow due to the large hypothesis
space encoded in typical black-box models. The latter is
more challenging, as extrapolation in data-driven models
is notoriously suspect. For cases in which high accuracy
and extrapolation are required, a structured approach that
incorporates learned physics seems to be the most effective
approach.

In this paper, we consider the above questions in the con-
text of characterizing metal specimens given measurements
of their mechanical response to acoustic impulses with a pri-
mary focus on discovery of physics from laboratory data. We
consider several of approaches, including end-to-end differen-
tiable physical simulations (Degrave et al. 2019) and physics-
informed neural networks (PINNs) (Raissi, Perdikaris, and
Karniadakis 2019), eventually culminating in an application
of the recently-developed Bayesian Hidden Physics Model
(Atkinson 2020) to learn the physics of the system and apply
it in an extrapolatory regime to understand behavior qualita-
tively different from that exhibited by the data from which
the physics were discovered, i.e. backscattering due to a
surface-breaking crack. A key goal is to understand this phe-
nomenon by building physical knowledge from limited data
and a broad hypothesis space. Our machine learning approach
contrasts with traditional approaches which seek to calibrate
a low-dimensional parameter set for known physics, which
typically require considerable domain expertise. Rather, we
would like to be led to the appropriate explanation by the data,
as one might need to do in the absence of expert knowledge
or in a completely novel setting where such knowledge does
not yet exist.

The contributions of this paper are as follows:

• We look at the inverse problem on pristine and cracked
specimens through both PINNs and a traditional end-to-
end differentiable solver that enforces exact agreement on
the physics by design. We see that the two qualitatively
disagree on their characterization of the cracked specimen,
prompting the hypothesis that the wave equation is defi-
cient and that the soft agreement between the wave speed
field and the deflection field in PINNs is hiding some miss-
ing physics.

• We use the technique of Bayesian Hidden Physics Models
first demonstrated in (Atkinson 2020) to discover a novel
differential equation that better describes the data from a



hypothesis space containing the wave equation as a special
case.

• We demonstrate that the physics learned from the pristine
specimen may be transferred to explain the presence of
backscattering in a specimen with a flaw, demonstrating
the data efficiency and validity in extrapolation conferred
by a physics-informed approach.

The significance of this work is the demonstration that
Bayesian Hidden Physics Models may be fruitfully applied
to discover physics from real-world data sets, suggesting that
the end-to-end scientific workflow described above may be
realized.

Problem statement
Consider a physical system with a scalar spatiotemporal ob-
servable in two-dimensional space represented as a function
u(x, y, t). First, we assume that the evolution of u is de-
scribed by a dynamical partial differential equation of the
form

utt = F [u;θF ] in Ωst = Ωs × [0, T ), (1)
where θF denotes the (potentially infinite-dimensional) pa-
rameterization of the unknown operator F . The initial-
boundary conditions accompanying Eq. (1) are generally
not known. In addition to Eq. (1), one also has access
to some finite set of observation data on u, denoted as
D = {x(i), y(i), t(i), û(i)}ni=1. Third, we assume that one
has access to a simulation code capable of solving Eq. (1).
The simulation code may require the user to specify initial-
boundary conditions with parameters {θIC ,θBC}. The sim-
ulation code may also approximate θF with some internal,
finite-dimensional representation θf . In sum, the parame-
ters of the simulation code are denoted θ = (θf ,θIC ,θBC).
Assume that the output of the simulator may be queried as
u =

(
u(x(1), y(1), t(1);θ), . . . , u(x(n), y(n), t(n))

)
∈ Rn.

The goal of the simulator calibration problem with known
physics is to determine optimal values for theta θ such that
optimally explain D in some sense.

In the traditional setting, optimality may be defined in
terms of some loss function to be minimized such as mean
squared error. However, even in the presence of a large vol-
ume of observation data, its coverage in the space relevant to
the input of the differential operator may be sparse (Atkinson
2020), yielding many potential parameter sets (θf ) consis-
tent with D. Furthermore, measurements in D may be noisy.
To address these challenges, we will consider a Bayesian ap-
proach by defining a prior p(θf ), a likelihood associated with
the observed data p(û|u;θû) with parameters θû, and use
variational inference (Blei, Kucukelbir, and McAuliffe 2017)
to approximate its posterior by maximizing an evidence lower
bound,

ELBO(θ;D) =〈p(û|u(θ);θû)〉q(θf |θ\f )

− KL
(
q(θf |θ\f )||p(θf |θ\f )

)
,

(2)

where θ\f = (θIC ,θBC ,θû) includes all parameters over
which a point estimate will be taken. Note that while this
approach might be extended to θIC θBC , and θû, in practice
the uncertainty associated with these are negligible compared
to that on θf if many data are available (Atkinson 2020).

Methodology
Here, we review the methodologies used for microstructure
characterization. We first discuss the acquisition of the lab-
oratory dataset subject to analysis. We then discuss how
characterization may be solved as an inverse problem via
gradient-based calibration through a differentiable simula-
tion code or the method of physics-informed neural networks
for inverse problems. Finally, we review Bayesian Hidden
Physics Models for discovery of nonlinear partial differential
operators with uncertainty quantification as a means of solv-
ing the inverse problem without knowing a priori what the
governing physics are.

Data acquisition
We base our analysis on datasets from two specimens. The
first, referred to as the “pristine” specimen, is a nickel poly-
crystalline alloy. The second, also used in (Shukla et al. 2020)
and referred to as the “cracked” specimen, is a National Insti-
tute of Standards and Technology (NIST) surface-breaking
crack reference standard (RM 8458) in a 7 cm×7 cm×2 cm
block of 7075-T651 Aluminum allow substrate material. To
generate the datasets, a piezo-electric transducer imparts a
wave packet with a frequency of 5 MHz into the specimen,
causing a wavefield to travel across the surface of the spec-
imen. For the cracked specimen, the wave packet is propa-
gated normal to the crack line. The wavefield is measured via
laser doppler vibrometry at a temporal resolution of 50 MHz
(0.02 µs per sample) and spatial resolution of 0.05 mm. For
the pristine specimen, the dataset comprises 1024 measure-
ments in time, on a grid of 400×260 spatial locations. For the
cracked specimen, the dataset comprises 1024 measurements
in time, on a grid of 240× 240 spatial locations.

Modeling approaches
We now discuss the various modeling approaches we apply
to understand the data described above. A key desideratum
is that the relationship between the representation of the mi-
crostructure in our models and the resultant measurement
field (sampled at a finite set of discrete points) be differ-
entiable. Therefore, we opt for a heterogeneous continuum
model of the specimen. it is known that, under the assump-
tion that the physics are represented by the (two-dimensional)
wave equation,

utt(x, y, t) = v2(x, y)∆u(x, y, t), (3)

the presence of microstructure flaws may be modeled as a
locally-depressed value of v (Seidl 2018). Our construction
reflects the physical insight that flaws in metallic media may
be captured as local domains in which the constitutive proper-
ties deviate significantly from their values in the undamaged
material.

Another way of modeling a flaw such as a crack is through
the imposition of appropriate boundary conditions at the
edge of the flaw preventing the transmission of force across it.
However, the use of boundary conditions will be problematic
from a practical standpoint because it precludes the use of
gradient-based techniques for calibration. Given the high
dimensionality of the simulation parameter space incurred



by using implicit neural representations of the parameters
of interest, gradient-based techniques are required to make
the problem computationally tractable as there are no known
gradient-free methodologies with competitive performance
for high-dimensional optimization.

Finite difference physics solver We consider the use of
a simulation-based calibration scheme built on a finite-
difference (FD) implementation of a partial differential equa-
tion of the form

utt = f(u, ux, uy, uxx, uyy;θf ). (4)

For the wave equation,

f = v2(x, y;θv)(uxx + uyy), (5)

The required spatial derivatives are computed via a second-
order central finite difference scheme. We use PyTorch
(Paszke et al. 2019) to implement f as a convolution op-
erator with fixed kernel matrix. Implementing the solver
completely in PyTorch also results in the ability to easily
incorporate neural representations of v and (Dirichlet) bound-
ary conditions (Hoyer, Sohl-Dickstein, and Greydanus 2019;
Sitzmann et al. 2020; Raissi, Perdikaris, and Karniadakis
2019) as well as to differentiate through the simulation via
backward-mode automatic differentiation (backpropagation).
While our implementation uses naı̈ve automatic differentia-
tion through the whole simulation similarly to (Degrave et al.
2019), more memory-efficient differentiable solvers have
been devised utilizing adjoint equations (de Avila Belbute-
Peres et al. 2018) which could be used to relieve the memory
cost associated with scaling this method to finer-resolution
simulations, though the time cost would not be significantly
altered. Empirically, we find that the latter constitutes the
tighter constraint for our problem.

Physics-informed neural networks for solving inverse
problems The method of physics-informed neural net-
works is explained in detail in (Raissi, Perdikaris, and Kar-
niadakis 2019). For physics-informed neural networks for
inverse problems (henceforth referred to as iPINNs), one pa-
rameterizes the solution u(·) to a differential equation with a
neural network and supervises the network with the squared
residual of the relevant partial differential equation as well as
a set of observations on û. This method uses gradient-based
optimization to simultaneously optimize the parameters of
the solution network as well as any other unknown parame-
ters of the differential equation.

In the case of the current problem, (Shukla et al. 2020)
define a solution net u(x, y, t) and a latent field net v(x, y)
and supervise both on the heterogeneous wave equation of
Eq. (3) as well as D via a squared error loss on both. For
completeness, we implement their method as a baseline for
inversion when the physics are assumed to be known (i.e. Eq.
(5) is used with only v(x, y) subject to learning).

Bayesian Hidden Physics Models Bayesian Hidden
Physics Models (BHPMs) (Atkinson 2020) are compositional
probabilistic models representing data from multiple exper-
iments and their common underlying physics. The key dif-
ferences between BHPMs and inverse PINNs are that the

physics are not assumed to be known a priori (up to some
calibration parameters). The BHPM approach also extends
the Deep Hidden Physics Models approach (Raissi 2018)
by quantifying the epistemic uncertainty in the discovered
partial differential operator, providing a quantitative answer
to the informal question “What do the data tell us about the
physics, and what don’t they tell us?”

Informally, BHPMs comprise “leaf” modules which are in
charge of modeling information specific to a single experi-
ment, while the root combines the functional representations
of the leaves to learn a common physical governing law. For-
mally, let u : Rds+1 → R represent a scalar observable field
in ds-dimensional space and time as an implicit parameteri-
zation of the measurements in D. Furthermore, u is assumed
to obey some implicit relationship Φ[u(·)] = 0. In the con-
text of the current problem, each leaf contains two functions:
u(x, y, t) and a(x, y), both of which are parameterized by
multilayer perceptrons (MLPs) with sine activation functions.
We also constrain a(·) > 0 by using an element-wise ex-
ponential activation function as its final layer. The former
captures the measured deflection in space and time, and the
latter is a latent field for which no observations are avail-
able. The two are related through the following differential
equation:

utt = a2(x, y)f(u, ux, uy, uxx, uyy), (6)

Equation (6) may be thought of as a generalized wave equa-
tion; one recovers the familiar linear wave equation when
a = v(x, y) and f = uxx + uyy, wherein a gains the physi-
cal significance of being the speed of sound in the medium.
Imposing rotational invariance on f(·) we obtain

utt = a2(x, y)f(u, |∇u|,∆u), (7)

We define the input to f as ψ = (u, |∇u|,∆u) for brevity.
Finally, reflecting our ignorance about the functional form

of the physics, we place a Gaussian process prior over f(·):

f(·) ∼ GP (µ(·), k(·, ·)) , (8)

where µ(·) is a linear function and k is an exponentiated
quadratic parametric kernel with automatic relevance deter-
mination (Rasmussen and Williams 2006).

Decomposing the right hand side of Eq. (7) is advanta-
geous because it allows us to separate the properties of the
particular microstructure of the specimen being studied from
the general physical law; the former is represented by a, while
the latter is captured in f and may be reused once learned.
Furthermore, the multiplicative interaction between a2 and f
is advantageous because it encourages an interpretable struc-
ture between the various components of the physics while
the expressiveness of a and f allow us to discover rich inter-
actions.

The structure of the right hand side of Eq. (7) implies
that the product a2f is also a priori a Gaussian process-
distributed:

a2f ∼ GP
(
a2µ(·), a4k(·, ·)

)
. (9)

Due to the high volume of data passing through the f
as well as the low complexity of the function it is ex-



pected to encode1, we approximate it using an uncollapsed
sparse variational formulation (Hensman, Fusi, and Lawrence
2013), approximating the true posterior p(f(·)|D) ≈∫
p(f(·)|fu)q(fu)dfu, where the inducing variables fu ∈

Rm associated with inducing input locations Ψu ∈ Rm×3

are a priori distributed according to f(·) and are given a
Gaussian variational posterior.

As in (Atkinson 2020), we equip the measurement and
physics targets with Gaussian likelihoods. Equation (2) is
maximized with the variational parameters of f(·)’s inducing
points variables as θf and the likelihood and MLP parameters
as θ\f .

Related work
Bayesian calibration of physics codes to data has a long
history, with the seminal work of Kennedy and O’Hagan
(Kennedy and O’Hagan 2001). Other work (Bilionis and
Zabaras 2013) showed how fully Bayesian inversion incor-
porating probabilistic surrogate models may be facilitated.
More recently, the use of end-to-end differentiable physics
engines for inverse problems in control has been demon-
strated (de Avila Belbute-Peres et al. 2018; Degrave et al.
2019; Rackauckas et al. 2020). Such methods enable the
use of gradient-based inference and enable one to calibrate
much higher-dimensional parameters, including implicit neu-
ral representations of unknown field quantities (Sitzmann
et al. 2020). The Bayesian Hidden Physics Models approach
(Atkinson 2020) combines the Bayesian aspects of earlier
work with the powerful neural representations of the latter
and can be used to conduct nonparametric inference on non-
linear partial differential operators.

Regarding the application to microstructure characteriza-
tion, Seidl (Seidl 2018) showed that the presence of cracks
can be modeled as regions with locally-depressed wave speed.
More recently, Shukla et al. (Shukla et al. 2020) showed that
the problem of waveform inversion can be accomplished us-
ing the method of physics-informed neural networks (PINNs)
(Raissi, Perdikaris, and Karniadakis 2019). The key differ-
ence between our work and these is that we do not specify
the physics of the data a priori when using Bayesian Hidden
Physics Models; instead, we allow ourselves to discover the
physics from the data. Additionally, we capture the epistemic
uncertainty in the physics due to the finite amount of data on
which our inference is based, enabling us to identify what
knowledge of the physics is still missing and enabling one to
be able to carry out a principled adaptive experimental design
algorithm.

The crack inversion problem has been tackled traditionally
through physics-based finite element simulations. Fichtner
has elaborated (Fichtner 2010) the aspects of full waveform
tomography including methods for the numerical solution
of the elastic wave equation, the adjoint method, the design
of objective functionals and optimization schemes. Rao et
al. (Rao, Ratassepp, and Fan 2016) proposed a guided wave

1For example the wave equation is a linear equation in two scalar
variables, and even differential equations whose solutions exhibit
high complexity come from operators with comparatively simple
structure.

tomography method based on full waveform inversion for
reconstruction of the remaining wall thickness in isotropic
plates. The forward model is computed in the frequency
domain by solving a full-wave equation in a two-dimensional
acoustic model. Seidl et al. (Seidl 2018) elaborated the work
to detect structural flaws and their position, dimension and
orientation through acoustic full waveform inversion.

Results
Code implementing the experiments can be found on
GitHub.2

Calibration of known physics to a pristine
specimen
We first demonstrate the various modeling approaches on
modeling the “pristine” specimen. Figure 1 shows a snapshot
in time of the results calibrating the FD approach to data
cropped to a 1.5 mm × 2.5 mm × 1 µs window, while Fig.
2 shows the results for the iPINN approach applied to a
3.75 mm × 2.5 mm × 3 µs window. For the FD approach
we report the agreement between simulated and observed
displacement fields as well as the inferred v(·). For the iPINN
approach we additionally report on the residual of the physics
equation since it is not enforced by construction. We see that
both are able to reproduce the observed data and explain the
data in terms of the wave equation physics that they assume.
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Figure 1: Calibration of the FD approach to the dataset from
the pristine specimen. Note that the left side of (b) is unre-
liable as the wave packet does not travel over it during the
window used to calibrate the simulator.

2https://github.com/sdatkinson/BHPM-Ultrasound
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Figure 2: iPINN learned models for the observations and
physics of the pristine specimen.

Calibration of known physics to a cracked
specimen
We now proceed to characterize a specimen with a localized
flaw. We expect that this will show up as a corresponding
region in which v is noticeably lower. This problem is chal-
lenging due to the details in the geometry of the flaw.

Figure 3 shows a snapshot in time of the calibration result
using the FD method on the cracked specimen windowed to
4.5 mm × 3 mm × 1.2 µs, and Fig. 4 shows compares the
calibration using the iPINN model with data cropped only in
time to 5 µs. We were not able to calibrate as large an area for
the FD solver due to its limitations related to discretization
and the computational cost associated with the method.3
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Figure 3: Calibration of the FD solver to the cracked speci-
men.

Comparing the FD and iPINN approaches, we see that
there are some discrepancies in the neighborhood of the flaw.
On one hand, the relationship between u and v is enforced to

3The FD approach parameters were selected to limit it to taking
at most about an order of magnitude more time than the other
approaches.
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Figure 4: iPINN learned models for the observations and
physics of the cracked specimen.

solver precision in the FD approach. By contrast, agreement
in the physics is only enforced through a soft constraint in the
case of the iPINN approach. Based on the observations that
(1) the FD solver struggles to accurately reproduce the data
in the vicinity of the crack and (2) that the physics are least in
agreement in the vicinity of the crack for the iPINN approach,
we infer that there may be missing physics in the standard
wave equation that preclude its direct application to the case
of flawed specimens. In the next sections, we explore this
hypothesis by learning the physics from data using a Bayesian
Hidden Physics Model with a larger physics hypothesis space
rather than calibrating the postulated wave equation to data.

Discovery of unknown physics from a pristine
specimen
A Bayesian Hidden Physics model is constructed as discussed
above and trained on data obtained from the pristine sample
windowed to 3.75 mm× 2.5 mm× 3 µs. Figure 5 shows the
agreement obtained for the observation data and discovered
physics. The root mean squared error for the observation
function is 1.35× 10−1 and the root mean squared residual
of the learned physics using the posterior mean of f is 1.44×
101.

Characterization of flawed specimen using learned
physics
We now transfer the learned physics from the pristine speci-
men to characterize the cracked specimen, windowed in time
to 5 µs. To do this, we initialize a second BHPM model, using
the posterior on f(·) learned from the first experiment. Only
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Figure 5: BHPM learned models for the observations and
physics of the pristine specimen.

the MLPs for u and a are trained to characterize the sample.
Figure 6 shows the agreement obtained for the observation
data and discovered physics. The root mean squared error for
the observation function is 2.38 × 10−1 and the root mean
squared residual of the learned physics using the posterior
mean of f is 1.46× 102. Remarkably, we see that a(·) takes
on depressed values in the vicinity of the crack in the spec-
imen, indicating that the backscattering in the observations
can be traced back to the inhomogeneity in the material, while
the far-field character is relatively homogeneous. Note also
that the factors a and f comprising the right hand side are
not individually uniquely identifiable since an arbitrary factor
of α could be multiplied and divided into a2 and f , respec-
tively; therefore, the absolute magnitude of a in Figs. 5c and
6c is arbitrary and should not be directly compared with v(·).
However, the relative magnitude within each field as well as
the relative magnitude across experiments is meaningful due
to the fact that f was held fixed.

Conclusions
In this work, we considered the problem of characterizing the
microstructure of metal specimens with and without flaws
from data via physics discovery. We began by establishing
agreement between two physics-based approaches using a
end-to-end differentiable finite difference code as well as the
inverse physics-informed neural networks approach. While
both methods exhibited good agreement for pristine speci-
mens, we found that they disagreed more in the case of a spec-
imen with a crack flaw. Following this observation, we used
Bayesian Hidden Physics Models to learn the physics from
data from the pristine specimen, allowing for a larger hypoth-
esis space than the standard wave equation. We then trans-
ferred the learned physics to the flawed specimen and char-
acterized its microstructure through the lens of the learned
physics. We found that the BHPM approach is able to identify
the flaw in the specimen.
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Figure 6: BHPM learned models for the observations and
physics of the cracked specimen.

It is of general interest to develop an end-to-end scientific
and engineering pipeline wherein one may begin by observ-
ing some novel behavior, collect measurements within a lab-
oratory setting, deduce the relevant physical laws from those
observations, then proceed with constructing a physically-
accurate computational model of the discovered physics such
that simulation may be leveraged for engineering design and
analysis. All elements of this pipeline have been reduced to
practice in the past. However, the most challenging element
of the pipeline is that of discovery of novel physics from
data; this is typically exclusively in the realm of human scien-
tists. Our results using BHPM demonstrate that probabilistic
machine learning techniques may expedite this process.

A number of questions of scientific interest persist, as do
several opportunities for further engineering development
based on our work. On the more fundamental side, the proba-
bilistic side of physics discovery through machine learning
is in its infancy. However, the recent advance of the BHPM
approach stands to unite the large body of Bayesian inquiry
to more open-ended exploration and discovery in physics; in
particular, questions of optimal experimental design may now
be treated rigorously, as the BHPM approach places questions
of physics knowledge with an information-theoretic context.
On the side of engineering development and capability, it
is of interest to incorporate the learned physics into novel
computational models that can be brought to bear to explore
the space of material behaviors under various heterogeneities
and external actions. The construction of physics-based codes
and surrogates therein will lead the way to efficient sensing
methodologies capable of real-time characterization and mon-
itoring of materials and structures in engineering systems.
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