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Abstract 

Recently developed physics-informed neural network 
(PINN) has achieved success in many science and engineer-
ing disciplines by encoding physics laws into the loss func-
tions of the neural network, such that the network not only 
conforms to the measurements, initial and boundary condi-
tions but also satisfies the governing equations. This work 
first investigates the performance of PINN in solving stiff 
chemical kinetic problems with governing equations of stiff 
ordinary differential equations (ODEs). The results elucidate 
the challenges of utilizing PINN in stiff ODE systems. Con-
sequently, we employ Quasi-Steady-State-Assumptions 
(QSSA) to reduce the stiffness of the ODE systems, and the 
PINN then can be successfully applied to the converted 
non/mild-stiff systems. Therefore, the results suggest that 
stiffness could be the major reason for the failure of the reg-
ular PINN in the studied stiff chemical kinetic systems. The 
developed Stiff-PINN approach that utilizes QSSA to enable 
PINN to solve stiff chemical kinetics shall open the possibil-
ity of applying PINN to various reaction-diffusion systems 
involving stiff dynamics. 

 Introduction   

Deep learning has enabled advances in many scientific and 

engineering disciplines, such as computer visions, natural 

language processing, and autonomous driving. Depending 

on the applications, many different neural network architec-

tures have been developed, including Deep Neural Net-

works (DNN), Convolutional Neural Networks (CNN), Re-

current Neural Networks (RNN), and Graph Neural Net-

work (GNN). Some of them have also been employed for 

data-driven physics modeling [1–8], including turbulent 

flow modeling [9] and chemical kinetic modeling [10]. 

Those different neural network architectures introduce spe-

cific regularization to the neural network based on the nature 
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of the task such as the scale and rotation invariant of the 

convolutional kernel in CNN. Among them, the recently de-

veloped Physics-Informed Neural Network approach 

(PINN) [11–17] enables the construction of the solution 

space of differential equations using deep neural networks 

with space and time coordinates as the inputs. The govern-

ing equations (mainly differential equations) are enforced 

by minimizing the residual loss function using automatic 

differentiation and thus it becomes a physics regularization 

of the deep neural network. This framework permits solving 

differential equations (i.e., forward problems) and conduct-

ing parameter inference from observations (i.e., inverse 

problems). PINN has been employed for predicting the so-

lutions for the Burgers’ equation, the Navier–Stokes equa-

tions, and the Schrodinger equation [12]. To enhance the ro-

bustness and generality of PINN, multiple variations of 

PINN have also been developed, such as Variational PINNs 

[18], Parareal PINNs [19], and nonlocal PINN [20]. 

 

Despite the successful demonstration of PINN in many of 

the above works, Wang et al. [21] investigated a fundamen-

tal mode of failure of PINN that is related to numerical stiff-

ness leading to unbalanced back-propagated gradients be-

tween the loss function of initial/boundary conditions and 

the loss function of residuals of the differential equations 

during model training. In addition to the numerical stiffness, 

physical stiffness might also impose new challenges in the 

training of PINN. While PINN has been applied for solving 

chemical reaction systems involving a single-step reaction 

[15], stiffness usually results from the nonlinearity and com-

plexity of the reaction network, where the characteristic 

time scales for species span a wide range of magnitude. Con-

sequently, the challenges for PINN to accommodate stiff 



kinetics can potentially arise from several reasons, including 

the high dimensionality of the state variables (i.e., the num-

ber of species), the high nonlinearity resulted from the inter-

actions among species, the imbalance in the loss functions 

for different state variables since the species concentrations 

could span several orders of magnitudes. Nonetheless, stiff 

chemical kinetics is essential for the modeling of almost 

every real-world chemical system such as atmospheric 

chemistry and the environment, energy conversion and stor-

age, materials and chemical engineering, biomedical and 

pharmaceutical engineering. Enabling PINN for handling 

stiff kinetics will open the possibilities of using PINN to fa-

cilitate the design and optimization of these wide ranges of 

chemical systems.  

 

In chemical kinetics, the evolution of the species concentra-

tions can be described as ordinary differential equation 

(ODE) systems with the net production rates of the species 

as the source terms. If the characteristic time scales for spe-

cies span a wide range of magnitude, integrating the entire 

ODE systems becomes computationally intensive. Quasi-

Steady-State-Assumptions (QSSA) have been widely 

adopted to simplify and solve stiff kinetic problems, espe-

cially in the 1960s when efficient ODE integrators were un-

available [22]. A canonical example of the utilization of 

QSSA is the Michaelis–Menten kinetic formula, which is 

still widely adopted to formulate enzyme reactions in bio-

chemistry. Nowadays, QSSA is still widely employed in nu-

merical simulations of reaction-transport systems to remove 

chemical stiffness and enable explicit time integration with 

relatively large time steps [23,24]. Moreover, imposing 

QSSA also reduces the number of state variables and 

transport equations by eliminating the fast species such that 

the computational cost can be greatly reduced. From a phys-

ical perspective [22,25], QSSA identifies the species 

(termed as QSS species) that are usually radicals with rela-

tively low concentrations. Their net production rates are 

much lower than their consumption and production rates and 

thus can be assumed zero. From a mathematical perspective 

[22], the stiffness of the ODEs can be characterized by the 

largest absolute eigenvalues of the Jacobian matrix, i.e., the 

Jacobian matrix of the reaction source term to the species 

concentrations. QSSA identifies the species that correspond 

to the relatively large eigenvalues of the chemical Jacobian 

matrix and then approximates the ODEs with differential-

algebraic equations to reduce the magnitude of the largest 

eigenvalue of the Jacobian matrix and thus the stiffness.  

 

In the current work, we evaluate the performance of PINN 

in solving two classical stiff dynamics problems and com-

pare it with the performance of Stiff-PINN, which incorpo-

rates QSSA into PINN to reduce stiffness. While current 

work focuses on PINN, the mitigation of stiffness via QSSA 

can also be applied to other data-driven approaches, such as 

neural ordinary differential equations. 

Results 

We present the results of regular-PINN and stiff-PINN to 

solve the classical stiff ROBER problem, i.e., 

 

𝑑𝑦1

𝑑𝑡
= −𝑘1𝑦1 + 𝑘3𝑦2𝑦3,  

𝑑𝑦2

𝑑𝑡
= 𝑘1𝑦1 − 𝑘2𝑦2

2 − 𝑘3𝑦2𝑦3,  

𝑑𝑦3

𝑑𝑡
= 𝑘2𝑦2

2. 

 
The results are then shown in the figure below. It is found 

that the regular-PINN failed to capture the dynamics of 

such a stiff system while stiff-PINN with QSSA can suc-

cessfully solve it. 

 
Figure 1. Solutions of the benchmark ROBER problem us-

ing the BDF solver (the exact solution), regular-PINN, and 

Stiff-PINN with QSSA. While the regular-PINN fails to 

predict the kinetic evolution of the stiff system, Stiff-PINN 

with QSSA works very well. The associated code can be 

found at https://github.com/DENG-MIT/Stiff-PINN. 
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