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Abstract
Deep learning (DL) techniques have been successful in many
applications, with the most impressive results achieved on
problems where the dimension of the underlying data or prob-
lem domain is large. In this paper, we describe recent results
on both scalar- and Hilbert-valued function approximation
via Deep Neural Networks (DNN). This problem arises in
many engineering problems, in particular those involving the
solution of parametric Partial Differential Equations (PDEs).
Such problems are challenging, since point-wise samples
are expensive to acquire, and the function is usually high-
dimensional. First, we consider a DNN architecture and train-
ing procedure for which the resulting DNN is guaranteed to
perform as well as current best-in-class schemes for holo-
morphic, scalar- or Hilbert-valued functions based on poly-
nomial approximations. This result demonstrates the efficacy
of DL for this problem, and makes explicit the effect of all
sources of error, including discretization error of the under-
lying Hilbert space and measurement error. Second, we pro-
vide several numerical results illustrating the performance of
DNNs on both real-valued functions and solutions of para-
metric PDEs. These results suggest that better approxima-
tions can be achieved through careful tuning of the DNN ar-
chitecture and training algorithm.

1 Introduction
Modern machine learning approaches based on training
DNNs on large datasets have achieved impressive results
on high-dimensional problems in several important scien-
tific computing applications, including inverse problems in
imaging (Adcock and Hansen 2021; Ongie et al. 2020),
molecular dynamics simulations (Faber et al. 2017), partial
differential equations (PDEs) (Berg and Nyström 2018), and
parameterized PDEs for uncertainty quantification (UQ) in
engineering (Cyr et al. 2020; Dal Santo, Deparis, and Pe-
golotti 2020; Geist et al. 2020; Khoo, Lu, and Ying 2020;
Laakmann and Petersen 2020). Recent theoretical results on
DNN expressivity suggest that such architectures are ca-
pable of approximating a wide class of functions by em-
ulating existing approximation schemes, e.g., polynomials,
wavelets, or free-knot splines. For smooth functions, ex-
ponential rates of convergence have been shown for fully-
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connected ReLU DNN architectures (Opschoor, Schwab,
and Zech 2019).

While these results are impressive, many important ques-
tions about the application of DL techniques to problems in
scientific computing remain. The work (Adcock and Dexter
2020) raised key issues regarding current methods of train-
ing which prevent DNNs from practically achieving high-
accuracy approximations on smooth function approxima-
tion tasks. It was also demonstrated in (Antun et al. 2020;
Gottschling et al. 2020) that DL models trained to solve in-
verse problems in imaging can fail to recover small struc-
tural changes in images, and small perturbations can lead to
numerical artifacts. In other words, DNNs can lead to un-
stable methods unless they are carefully constructed. Hence,
in order for these tools to be accepted and applied to critical
tasks in scientific computing with strict error tolerances, e.g.,
UQ problems in mechanical engineering, it is necessary to
develop theoretical foundations on stability and convergence
of DNNs, as well as an understanding of how to train them
to ensure these properties.

In this work we showcase results on learning high-
dimensional scalar- and Hilbert-valued functions from lim-
ited datasets by DNNs. While most previous studies have
considered scalar-valued functions, Hilbert-valued functions
arise is various important applications, for example UQ
problems involving PDEs. Such problems are typically ex-
pressed in terms of a differential operator Dx, with x com-
prising the spatial and temporal variables, and the goal is to
find for all y ∈ U ⊆ Rd a solution u ∈ V , with V a Hilbert
or Banach space, satisfying

Dx(u,y) = 0, (1)

subject to suitable boundary conditions. Existing techniques
for solving such problems achieve a discretization of the
infinite-dimensional parameter to solution map y 7→ u(y) ∈
V by combining spatial discretization, e.g., finite element or
difference methods, with global polynomial approximation,
achieved through Galerkin projection (Babuška, Tempone,
and Zouraris 2004), hierarchical interpolation on sparse
grids (Nobile, Tempone, and Webster 2008a), discrete least-
squares (Chkifa et al. 2015), or compressive sensing-based
approaches (Adcock, Brugiapaglia, and Webster 2017; Dex-
ter, Tran, and Webster 2019; Doostan and Owhadi 2011;
Hampton and Doostan 2015).



Challenges
The large underlying dimension of problems of the form
(1) presents a major challenge in practical applications. The
curse of dimensionality states that the amount of data and
computational effort needed to construct an approximation
may grow exponentially with the problem dimension. In
many real-world problems arising in scientific computing
and UQ the parametric dimension d� 1, as the parameters
are used to model various material properties, forcing terms,
and boundary information. In such settings, naı̈ve applica-
tion of the aforementioned techniques can lead to compu-
tationally inefficient schemes or suboptimal approximations
with respect to the sample complexity, i.e., the number of
samples required to construct the approximation.

Previous work
DNNs have recently been studied for these problems in
(Kutyniok et al. 2020) where, under assumptions guaran-
teeing low-dimensionality of the solution manifold, fast,
dimension-independent rates of convergence were estab-
lished by connecting DNNs to reduced basis approxima-
tions and the theory of Kolmogorov N -widths. The work
(Geist et al. 2020) numerically tested the accuracy of DNNs
in approximating solutions to the parametric diffusion equa-
tion over a range of dimensions, finding errors scale with
the inherent complexity of the problem as the dimension in-
creases, but the observed scaling was not exponential. Other
works such as (Cyr et al. 2020; Dal Santo, Deparis, and
Pegolotti 2020; Khoo, Lu, and Ying 2020; Laakmann and
Petersen 2020) have also demonstrated the potential of the
DNN approach for parametric PDEs.

Further, it is hoped that DNNs may overcome some of the
limitations of standard polynomial-based methods. These
methods require strong smoothness assumptions on the un-
derlying parameterized PDE problem in order to show fast
rates of convergence. However, problems typically found
in engineering or science applications rarely satisfy all of
these assumptions (Smith 2013). On the other hand, DNNs
have been shown to achieve optimal rates of approxima-
tion for piecewise smooth functions (Petersen and Voigt-
laender 2018), suggesting far greater flexibility than the
polynomial-based approach. Numerical studies have also
demonstrated the efficiency of DNNs in approximating dis-
continuous (scalar-valued) functions (Adcock and Dexter
2020), whereas polynomial-based methods fail to converge.

This work
The purpose of this work is to describe recent results (Ad-
cock and Dexter 2020; Adcock et al. 2020) on DNN approx-
imation of scalar- and Hilbert-valued functions and their ap-
plication to parametric PDEs. Although DNNs have shown
some promise for discontinuous functions, in this work we
focus on the smooth case, where a direct comparison with
polynomial-based methods is valid. In particular, we focus
on the following question: to what extent (both theoretically
and empirically) can DNN approaches outperform current
best-in-class polynomial-based methods?

2 Preliminaries
We first require some notation. For d ∈ N we write Nd0 :=
{ν = (νk)dk=1 : νk ∈ N0} for the set of nonnegative integer
multi-indices. The inequality µ ≤ ν is understood compo-
nentwise. We write 0 and 1 for the multi-indices consisting
of all zeros and all ones respectively. We also use the nota-
tion A . B to mean that there exists a numerical constant
c > 0 independent of A and B such that A ≤ cB, and like-
wise for A & B.

Setup
Throughout, we let V be a separable Hilbert space over the
field R, with inner product 〈·, ·〉V and corresponding norm

‖v‖V =
√
〈v, v〉V .

We let VN be the vector space of Hilbert-valued vectors of
length N , i.e. u = (ui)

N
i=1 where ui ∈ V , i = 1, . . . , N .

More generally, let Λ ⊆ Nd0 denote a (possibly infinite)
multi-index set. We write v = (vν)ν∈Λ for a sequence with
V-valued entries, vν ∈ V . We define the space `2(Λ;V) as
the set of those sequences for which the corresponding norm

‖v‖V,2 :=

(∑
ν∈Λ

‖vν‖2V

)1/2

<∞.

For the parametric domain, we consider the hypercube
equipped with the uniform probability measure

U = [−1, 1]d, d%(y) = 2−d dy. (2)

For 1 ≤ p ≤ ∞, we write Lp%(U) for the corresponding
Lebesgue spaces and ‖·‖Lp

%(U) for their norms. Next, we
define the Bochner space Lp%(U ;V) as the space consisting
of (equivalence classes of) strongly %-measurable functions
f : U → V for which

‖f‖Lp
%(U ;V) :=

{(∫
U ‖f(y)‖pV d%(y)

)1/p
1 ≤ p <∞

ess supy∈U ‖f(y)‖V p =∞
.

Generally speaking, one cannot deal directly with an
infinite-dimensional output space V . Hence, we introduce
a discretization (e.g. a finite element discretization). This
is a finite-dimensional subspace Vh ⊂ V of dimension
K = dim(Vh). We let Ph : V → Vh be the orthogo-
nal projection onto Vh and {ϕk}Kk=1 be a (not necessarily
orthogonal) basis of Vh. Moreover, for f ∈ L2

%(U ;V) we
let Phf ∈ L2

%(U ;Vh) be the function defined almost every-
where as

(Phf)(y) = Ph(f(y)), ∀y ∈ U .

Holomorphy and polynomial approximation
The focus of this work is the approximation of smooth func-
tions f : U → V . Note that f may either be scalar-valued,
e.g. V = R, or Hilbert-valued, in which case V is a sepa-
rable, but potentially infinite-dimensional Hilbert space. By
smooth, we mean that f has a holomorphic extension to a
suitable complex region O of the form U ⊆ O ⊆ Cd.



Specifically, we take these regions to be Bernstein polyel-
lipses. Given parameters ρ > 1, these are of the form

Eρ = Eρ1 × · · · × Eρd ,

where, for ρ > 1, Eρ = { 1
2 (z + z−1) : z ∈ C, 1 ≤ |z| ≤

ρ} ⊂ C are the classical Bernstein ellipses. Note that Bern-
stein polyellipses, much like classical Bernstein ellipses, are
intimately connected with multivarate polynomial approxi-
mation (Chkifa, Cohen, and Schwab 2015; Cohen and De-
Vore 2015; Cohen, DeVore, and Schwab 2011).

To be precise, in this work we consider the classes of
functions HA = HA(γ, ε, d), where γ > 0 and ε > 0
are constants. This class consists of functions f : U → V
that have a holomorphic extension to a Bernstein polyellipse
Eρ and satisfy ‖f‖L∞(Eρ;V) ≤ 1, and where the parameters
ρ = (ρj)

d
j=1 also satisfy

1

d+ 1

(
d!
∏d
j=1 log(ρj)

1 + ε

)1/d

≥ γ. (3)

The motivation for this definition is the following. For any
f ∈ HA(γ, ε, d) its best s-term polynomial approximation
fs in L2

%-orthogonal polynomials (normalized, tensor Leg-
endre polynomials) decays exponentially fast in s: namely,

‖f − fs‖L2
%(U ;V) ≤ exp(−γs1/d), ∀s ≥ s̄(d, ε,ρ), (4)

where s̄(d, ε,ρ) is a constant (Opschoor, Schwab, and Zech
2019). This is the rate we seek to obtain with a DNN ap-
proximation.

Problem statement
Let f : U → V be a holomorphic and potentially Hilbert-
valued function. We assume m sample points {yi}mi=1 are
drawn independently and identically according to the uni-
form measure %. For each yi, we suppose an approximate
value of f(yi) is computed in the space Vh. Hence, the mea-
surements of f are

di = f(yi) + ni ∈ Vh, i = 1, . . . ,m. (5)

Note that this encompasses the fact that, for example in para-
metric PDEs, f(yi) is computed via a black-box numerical
routine (e.g. a numerical PDE solve) that must, of course,
return a value in a finite-dimensional space. Thus the mea-
surement error term ni contains the error resulting from nu-
merical solver.

Our goal is to approximate f from the measurements
{di}mi=1 using a DNN. Write the projection Phf in terms
of the basis {ϕk}Kk=1 as

f ≈ (Phf)(y) =

K∑
k=1

ck(y)ϕk.

We aim to approximate the vector-valued map Rd → RK ,
y 7→ (ck(y))Kk=1, with a DNN Φ̂ : Rd → RK . We consider
feedforward DNN architectures, i.e.

Φ̂(y) = AL+1(ρ(AL(ρ(· · · ρ(A0(y)) · · · )))), L ≥ 1

where ρ is the activation function andAl are the affine maps.
Given such a DNN Φ the resulting approximation to f is

f(y) ≈ fΦ(y) =

K∑
k=1

(Φ(y))kϕk ∈ Vh.

Note that when V = R, i.e. f is scalar-valued, such consid-
erations are unnecessary, since Vh = V = R and we simply
have f(y) ≈ Φ(y).

3 Learning holomorphic, Hilbert-valued
functions via DNNs

We now present a theoretical result demonstrating that
DNNs can be learned to efficiently approximate holomor-
phic functions. Note that (Opschoor, Schwab, and Zech
2019) has previously shown that there is a DNN that
achieves the same rate of approximation (4) as the best s-
term polynomial approximation. In the following result, we
show that such a DNN can also be learned efficiently from
the data (5) through a standard training strategy. Due to
space limitations we omit some details. The full details and
proof can be found in (Adcock et al. 2020).

Theorem 3.1 Let m ≥ 2,

m̃ := cm/(log2(m) min{log(m) + d, log(m) log(2d)}),

such that m̃ ≥ 2d and {yi}mi=1 be drawn randomly and in-
dependently from %. Then, with high probability, there is

• a class of neural networksN whose size, maximum depth
and number of trainable parameters are at most polyno-
mial in m̃ (the rate of growth can be specified, along with
the dependence on d),

• a regularization functional J : N → [0,∞) based on a
certain norm of the trainable parameters,

such that for every f ∈ HA(γ, ε, d) with noisy evaluations
(5), any minimizer Φ̂ of the regularized training problem

minimize
Φ∈N

√
1
m

∑m

i=1
‖fΦ(yi)− di‖2V,2 + λJ (Φ), (6)

satisfies, for e = (ni)
m
i=1/
√
m and for m large enough,

‖f − fΦ̂‖L2
%(U ;V) . exp(−γm̃1/(2d)/

√
2)︸ ︷︷ ︸

(a)

+ ‖e‖V,2︸ ︷︷ ︸
(b)

+ ‖f − Ph(f)‖L∞(L2
%;V)︸ ︷︷ ︸

(c)

.

Many recent works have shown that DNNs can efficiently
approximate different classes of functions – see, e.g., (Ad-
cock and Dexter 2020; Petersen and Voigtlaender 2018; Op-
schoor, Schwab, and Zech 2019; Grohs et al. 2019) and
references therein). Such results are of the form of exis-
tence theorems, i.e. they assert the existence of a DNN of
a give architecture with favourable approximation properties
– for example, as noted above (Opschoor, Schwab, and Zech
2019) shows the existence of DNN with the same approxi-
mation rates as the best s-term polynomial approximation –



but no constructive means for learning it, nor an estimate on
the number and type of samples needed to do so. We term
Theorem 3.1 a practical existence theorem, since it asserts
not only the existence of such a DNN, but also that it can
be trained. Moreover, through the first term (a) in the er-
ror bound, which is exponentially small in m̃, it shows that
the DNN can be trained in a sample-efficient way. It shows
that such a DNN achieves the same error as the best s-term
polynomial approximation, with a sample complexity that
scales quadratically in s. This is, in fact, exactly the same
sample complexity as achieved by polynomial-based com-
pressed sensing methods for holomorphic function approx-
imation (Adcock, Brugiapaglia, and Webster 2017; Dexter,
Tran, and Webster 2019). Hence, (a) asserts the DNN proce-
dure achieves the sample approximation rate in terms of m̃
as current best-in-class schemes.

This aside, Theorem 3.1 also makes explicit the effect of
the three main errors in the training process. First, the ap-
proximation error (a), that depends on number of samples
m̃. Second, the sampling error (b), i.e. the error in the nu-
merical PDE solve. And third, the discretization error (c).
This error is due to working in the finite-dimensional space
Vh rather than V . However, the key point is that it is propor-
tional to the error of the orthogonal projection Ph(f), i.e.
the best approximation to f from Vh.

4 Numerical experiments
This result demonstrates the potential efficacy of the
DNN approach for Hilbert-valued function approximation.
Namely, the DNN approach can perform as well as cur-
rent best-in-class schemes based on compressed sensing for
holomorphic, Hilbert-valued function approximation. How-
ever, we caution that the training procedure outlined in The-
orem 3.1 is not expected to lead to DNNs that perform
any better. Its proof heavily leverages the relation between
DNNs and polynomials and loss function minimization and
standard optimization problems for compressed sensing. On
the other hand, the generality of the fully-connected DNN
architectures allows them to be applied to problems where
polynomial approximations are known to fail, e.g. functions
with discontinuities or low parametric regularity. This mo-
tivates the need for numerical experimentation, which com-
pares the practical performance of DNN training with stan-
dard architectures and loss functions to other schemes such
as polynomial-based compressed sensing.

Scalar-valued function approximation
In this section, we consider scalar-valued function approxi-
mation. Our purpose is to compare the standard DNN train-
ing to best-in-class compressed sensing schemes. For fur-
ther details of the study, and for additional experiments, see
(Adcock and Dexter 2020). We focus on two factors. First,
the sample complexity, i.e. the behaviour of the error as m
varies, and second, the effect of noise in the measurements.

We consider ReLU DNN architectures with a fixed num-
ber of nodes N per layer and depth L. We vary the ra-
tio β := L/N to try to obtain the best approximation.
We use TensorFlow and perform calculations in single
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Figure 1: Error approximating (left) f1(y) and (right) f2(y)
with d = 8.

precision. For training, we use the standard `2-loss func-
tion and the Adam optimizer (Kingma and Ba 2014). We
train for a maximum of 50,000 epochs or until the toler-
ance εtol = 5 × 10−7 is reached. The weights and biases
are initialized as normal random variables with mean 0 and
variance 0.01. The compressed sensing schemes follow the
setup of (Adcock, Brugiapaglia, and Webster 2017), and are
based on Legendre polynomials in a hyperbolic cross index
set, combined with either `1-minimization or weighted `1-
minimization (the latter being known to offer improved per-
formance). These experiments are performed in double pre-
cision in Matlab using the SPGL1 solver (van den Berg
and Friedlander 2019, 2009). The approximation error is
taken as the relative L2(U) error, and is computed using a
high-order isotropic Clenshaw–Curtis sparse grid quadrature
rule consisting of roughly 1.9× 106 points.

In Fig. 1, we consider two different smooth, scalar-valued
functions:

f1(y) = exp

(
−
∑d
k=1 cos(yk)

8d

)
,

f2(y) =

( ∏d/2
k=1 1 + 4ky2

k∏d
k=d/2+1 100 + 5yk

)1/d

.

This experiment demonstrates a gap between the practical
existence theorem, Theorem 3.1, and practical performance
of DNNs when trained with standard architectures and op-
timizers. The first function is extremely smooth and there-
fore has approximately sparse polynomial coefficients. In
spite of Theorem 3.1, Fig. 1 demonstrates that compressed
sensing significantly outperforms the DL approach. On the
other hand, the function f2 is less favourably approximated
by polynomials, and the DL approach achieves competitive
performance with compressed sensing. This points towards
the efficacy of DL for broader classes of functions. Note that
both experiments were also completed over 30 alternative
ReLU DNN architectures of varying depth and width with
similar results.

Next, in Fig. 2 we consider the effect of noise. These ex-
periments suggest that the trained DNNs are numerically
stable, with the noise contributing linearly to the overall er-
ror. Unlike the gap identified above in the approximation er-
ror, this behaviour is in good agreement with Theorem 3.1.
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Figure 2: Errors of two best-performing ReLU DNNs in ap-
proximating (left) f1(y) and (right) f2(y) in d = 8 dimen-
sions with and without N(0, σ2) noise for various σ.

Parametric PDEs with mixed boundary conditions
We conclude by applying DL to a parametric PDE problem.
Specifically, we consider a non-trivial, two-dimensional
Hilbert-valued function approximation problem arising as
the solution of a parametric PDE with mixed boundary con-
ditions. See, e.g. (Adcock et al. 2020; Geist et al. 2020), for
parametric PDE problems with Dirichlet boundary condi-
tions. Here, our objective is to examine the efficacy of the
DNN approach on a non-standard parametric PDE.

Let Ω ⊆ R2 be a given bounded domain with polyhedral
boundary ∂Ω = Γ, such that Γ = ΓD ∪ΓN and ΓD ∩ΓN =
∅. We focus on the following parametric diffusion example
with mixed boundary conditions

−∇ · (K(x,y)∇u(x,y)) = f(x,y) x ∈ Ω,y ∈ U ,
u(x,y) = h(x,y) x ∈ ΓD,y ∈ U ,

∇u(x,y) · n = 0 x ∈ ΓN ,y ∈ U ,

where, given y ∈ U , f(y) ∈ [L2(Ω)]2 and h(y) ∈
[H1/2(ΓD)]2, whose components are in the space of traces
of functions in H1(Ω). We define K = diag(a), where the
vector a = [a1, a2]>. Then, to guarantee well-posedness
and parametric regularity of the solution u, we require uni-
form boundedness assumptions on each component of K,
see (Cohen, DeVore, and Schwab 2011) for more details.
That is, there exists aj,max ≥ aj,min > 0 such that

ajmin ≤ aj(x,y) ≤ aj,max, ∀x ∈ Ω,∀y ∈ U , j ∈ {1, 2}.

In our example, we set Ω = (0, 1)2 and define the Dirich-
let and Neumann boundaries as

ΓD = {x ∈ [0, 1]2 : x1 = 0, x1 = 1},
ΓN = {x ∈ [0, 1]2 : x2 = 0, x2 = 1}.

Next, we define the uniformly positive tensor K with com-
ponents

a1(x,y) = 3 + x1y1 + x2y2,

a2(x,y) = exp(1 + y1(
√
πL
2 )1/2 + ζ sin(πx1)y2).

Here, the first is a simple affine coefficient, and the sec-
ond is a modification of the example from (Nobile, Tem-
pone, and Webster 2008b) of a diffusion coefficient with
one-dimensional (layered) spatial dependence (see (Adcock

et al. 2020) for more details). We next define the Hilbert
spaces

H(div; Ω) := {τ ∈ [L2(Ω)]2 : div(τ) ∈ L2(Ω)},

and, similar to the analysis of (Gatica 2014, Section 4.2), we
introduce σ(y) = ∇u(y) ∈H(div; Ω) as an additional un-
known. Due to limitation of space, we now simply state the
mixed formulation and refer to its well posednes to (Gatica
2014, Section 4). In this way, definingH = [L2(Ω)]2 and

Q = {τ ∈ [H(div; Ω)]2 : τ · n = 0 in ΓN},

one arrives to the mixed variational formulation: given y ∈
U , find (u(y),σ(y)) ∈H ×Q such that

〈σ, τ 〉L2(Ω) + 〈u,∇ · τ 〉L2(Ω) =〈τ · n,h〉ΓD

〈∇K · σ,v〉L2(Ω) + 〈Kv,∇ · σ〉L2(Ω) =−〈f ,v〉L2(Ω)
(7)

for all (v, τ ) ∈H×Q. Note that, in this case, V = L2(Ω)×
H(div; Ω).

To discretize this problem, we consider a uniform dis-
cretization, meaning an arbitrary finite-dimensional sub-
space, where the usual [P1]2-Lagrange finite elements are
used for H and the Raviart-Thomas [RT2]2 are used for Q.
Furthermore, given y ∈ U , we define the Finite Element
(FE) and DNN approximations for u(y) = [u1, u2]>(y) by

uh,j(y) =

K1∑
k=1

cj,k(y)ϕk, uΦ,h,j(y) =

K1∑
k=1

(Φ(y))k,jϕk,

for j ∈ {1, 2} respectively, where (ϕk)K1

k=1 is a basis for
P1. Similarly, defining basis functions for the RT2-spaces
as (ϕ̃k)K2

k=1, we can analogously define the FE and DNN
approximations to σ. We omit further details.

We consider different types of DNN architectures to ap-
proximate the coefficients of the finite element basis. In this
study, we use the same finite element discretization in gener-
ating the sample training and testing data. We consider finite
element discretizations on a mesh with h =

√
2/32, giving

a total 22,914 degrees of freedom.
For comparison, we consider both the Leaky-ReLU and

hyperbolic tangent activation functions. To train the DNN,
we use the Adam optimizer along with an exponentially de-
cay learning rate, minimizing the standard `2-mean squared
error. The training data for the DNN is generated by solving
(7) at a set of uniform random points {yi}mi=1 ⊆ U , with
exact solution given by

u1(x,y) =
sin(π(y1 + y2))(cos(πx2) exp(x2

1 − 1) + cos(πx1)),
u2(x,y) =

cos(π(y1 + y2))(cos(πx2) exp(x2
1 − 1) + sin(πx1)).

Fig. 3 shows the results of training with different loss
functions. Generally speaking, networks using Leaky-ReLU
achieve smaller training loss over the hyperbolic tangent.
Moreover, the numerical results shows that deeper and wider
networks are faster to train, meaning they can achieve a
smaller training loss error after a fixed number of epochs.
On the other hand, it is interesting to see that test errors



Figure 3: Shows the performance of different DNN architec-
tures for approximating the mixed parametric PDE problem,
using batch size of m/2, L hidden layers and N nodes per
layer withL/N = 0.1. (Left) Comparison of training `2 loss
function on m = 200 (uniform random samples). (Right)
Shows the testing error Bochner norm of the function uΦ,h,1

and the error norm of its gradient σΦ,h,1, square and triangle
markers respectively.

are not so different for the different architectures, with the
best two performing Leaky-ReLU and hyperbolic tangent
networks giving similar results. Interestingly, even though
separate DNNs are trained for each (due to the mixed for-
mulation), the test errors for u1 are substantially smaller (by
several orders of magnitude) than those for its gradient∇u1.

In addition to this we also plot the best approximate solu-
tions for u and σ produced by the DNN. Figure 4 shows
the approximations achieved by a DNN trained on m =
200 samples to error 6.3699 × 10−6 in the loss after 2900
epochs of training, and evaluated at input parameter value
y = [0,−0.707106]. It is noticeable that the approximation
to ∇u1 is slightly better than the approximation to ∇u2. In
Figure 5, we also compare the DNN solution for u2 with the
FE approximation.

5 Conclusion
Deep neural networks offer many advantages for efficiently
learning scalar- and Hilbert-valued functions and, in partic-
ular, solutions to parametric PDE problems. Unlike virtu-
ally every polynomial-based approach, selection of a basis
or dictionary is not necessary when applying DNNs. They
also offer the capability to solve challenging UQ problems
which possess discontinuities leading to low parametric reg-
ularity, problems for which methods such as sparse poly-
nomial approximation via compressed sensing are poorly
suited. In this work we presented a theoretical result which
demonstrated the efficacy of the DNN approach for smooth
function approximation. However, as observed in our first
experiments and elaborated further in (Adcock and Dexter
2020), such theoretical rates may not be met in practice via
standard architecture designs and training. This suggests a
strong possibility to further modify DNN architecture and
training procedures to achieve superior performance across a
range of challenging high-dimensional problems, including

Figure 4: Visualization of the DNN approximation with hy-
perbolic tangent activation function, L = 5 hidden layers,
and N = 50 nodes per hidden layer. The colours show the
approximation to uh,j , and the white arrows show the the
approximation for σh,j (j = 1 left and j = 2 right).

those on which polynomials perform badly, e.g. nonsmooth
functions. Finally, we also presented new results on DNN
approximation of parametric PDEs with mixed boundary
conditions. These results highlight the potential of the DNN
approach, although further work is needed to tune the archi-
tectures to get optimal performance – including better ap-
proximation of the gradient – and to determine the method’s
efficacy, in particular, in comparison to current best-in-class
schemes based on polynomial approximation.

Figure 5: Comparison of the output of the DNN from
Fig 4 to approximate u2,h(y). Here the testing error is
6.7321 · 10−3, yellow/green colours the FE approximation,
and blue/red colours the DNN approximation. We omit the
visualization of u1 since its indistinguishable from the FE
approximation.
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