
Model Reduction for the Material Point Method on Nonlinear Manifolds Using
Deep Learning

Peter Yichen Chen1,2, Maurizio Chiaramonte1, Eitan Grinspun2,3, Kevin Carlberg1

1Facebook Reality Labs Research
2Columbia University

3Toronto University
cyc@cs.columbia.edu, mchiaram@fb.com, eitan@cs.toronto.edu, carlberg@fb.com

Abstract

This work proposes a projection-based model-reduction ap-
proach for the material point method (MPM), a popular hy-
brid Eulerian–Lagrangian method used in engineering and
computer graphics for simulating solids, fluids, and multi-
phase phenomena. The proposed technique employs a kine-
matic approximation of the deformation map by enforcing
deformation trajectories to reside on a low-dimensional man-
ifold expressed in extrinsic form via a parameterization func-
tion corresponding to a decoder. By explicitly approximating
the deformation map, the deformation gradient can be com-
puted simply by differentiating the associated parameteriza-
tion function. Further, this mapping can be inverted in order
to generate new material points as needed allowing for adap-
tive refinement. The method generates dynamics via projec-
tion, i.e., at every time step, the method performs two steps:
(1) compute the velocity on grid nodes of the Eulerian mesh,
and (2) perform least-squares projection of the computed ve-
locity onto the tangent space to this low-dimensional man-
ifold. The approach supports hyper-reduction, which is es-
sential for achieving computational complexity independent
of the original number of material points. Numerical exam-
ples on large-scale problems illustrate the method’s ability
to generate orders-of-magnitude computational-cost savings
with negligible error.

Introduction
The Material Point Method (MPM) (Sulsky, Zhou, and
Schreyer 1995; Jiang et al. 2016) is a hybrid Eulerian–
Lagrangian discretization method widely employed in the
computer-graphics community for solid, fluid, and multi-
phase simulations. Due to its dual Eulerian and Lagrangian
representations, MPM offers several advantages over the fi-
nite element method: large deformation, fracture, as well as
contact and collision are handled relatively easily.

However, MPM’s dual representations of the material
make it especially computationally expensive. This pre-
cludes the ability of MPM to be used in time-critical and
real-time settings such as fast-turnaround design, interactive
applications, and control.

Copyright © 2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0)

Reduced-order model
We introduce a strategy for constructing a projection-based
reduced-order model (ROM) that introduces a kinematic
approximation comprising constructing a low-dimensional
nonlinear manifold approximation to the deformation map
and generates dynamics by first computing the velocity on
grid nodes of the Eulerian mesh, and then performing least-
squares projection of the computed velocity onto the tangent
space of the manifold.

Kinematics: low-dimensional manifold
In analogue to constructing low-dimensional nonlinear man-
ifolds for finite-dimensional dynamical-system state spaces
(Lee and Carlberg 2020), one can restrict any element of the
reference domain Ωref ⊆ Rd to evolve on a low-dimensional
manifold. We first denote the approximated deformation
map as φ̃ : Ωref × T × D → Rd with φ̃(·; ·,µ) ∈ S(µ),
∀µ ∈ D and

φ̃(·; t,µ) :X 7→ x̃(t,µ) (1)

: Ωref → Ω̃(t,µ), ∀t ∈ T , µ ∈ D, (2)

where S(µ) denotes the space of admissible solutions satis-
fying initial and essential boundary counditions, Ω̃(t,µ) ⊆
Rd denotes the deformed domain corresponding to the ap-
proximated deformation map at time t ∈ T and parameter
instance µ ∈ D, and enforce the kinematic constraint

φ̃(X; ·, ·) ∈M(X) := {g(X; ŷ) | ŷ ∈ Rr} ⊆ Rd, (3)

∀X ∈ Ωref, where g : Ωref × Rr → Rd denotes the parame-
terization of an r-dimensional manifold.

The kinematic restriction (3) implies that there exists gen-
eralized coordinates x̂ : T × D → Rr such that

φ̃(X; t,µ) = g(X; x̂(t,µ)),

∀X ∈ Ωref, ∀t ∈ T , µ ∈ D.
(4)

Assuming the parameterization function is continuously dif-
ferentiable in its first argument, Eq. (4) implies that the de-
formation gradient of the approximate deformation map can
be calculated by differentiating the parameterization func-
tion as

F̃ : (X, t,µ) 7→ ∇φ̃(X; t,µ) ≡ ∇g(X; x̂(t,µ))

: Ωref × T ×D → Rd×d.
(5)



, where ∇ denotes differentiation with respect to the first
argument. Further, assuming the parameterization function
is continuously differentiable in its second argument, Eq. (4)
implies that the velocity of the approximate solution can be
calculated via the chain rule as

˙̃
φ(X; t,µ) ≡ ∂g

∂x̂
(X; x̂(t,µ)) ˙̂x(t,µ). (6)

Remark (Manifold construction via deep learning). While
the manifold-parameterization function g : Ωref×Rr → Rd
can be constructed in a variety of ways, we employ a fully-
connected, 5-layer, deep-learning architecture (i.e., a multi-
layer perceptron) with ELU activation functions due to their
continuous differentiability. ELU can be viewed as a smooth
extension of the more popular ReLU activation function. We
set g ← gθ? where θ?, the network weights, are the (approx-
imate) solutions to the problem

minimize
θ, {x̂(t,µ)}t∈Ttrain,µ∈Dtrain∑
µ∈Dtrain, t∈Ttrain, X∈Ωref,train

(‖gθ(X; x̂(t,µ))− φ(X; t,µ)‖22

+ λ1‖∇gθ(X; x̂(t,µ))−∇φ(X; t,µ)‖2F

+ λ2‖
∂gθ
∂x̂

(X; x̂(t,µ)) ˙̂x(t,µ)− φ̇(X; t,µ)‖22),

(7)
where Dtrain ⊆ D, Ttrain ⊆ T , and Ωref,train ⊆ Ωref denote
parameter, time, and reference-domain instances at which
the original (full-order) MPM has been solved and solutions
are available, ˙̂x(t,µ) = x̂(t+∆t,µ)−x̂(t,µ)

∆t is computed via
explicit Euler with ∆t being the time step size of MPM, and
λ1, λ2 ∈ R+ denote penalty parameters for the deformation
gradient and velocity, respectively.

Dynamics: velocity projection
To generate projection-based dynamics at each time in-
stance, the proposed ROM (1) computes the velocity on grid
nodes of the Eulerian mesh, and (2) performs least-squares
projection of the computed velocity onto the tangent space to
the low-dimensional manifold. However, to ensure the com-
putational complexity is independent of the number of origi-
nal material points np, we must restrict these steps to execute
on only a subset of domain. Toward this end, we propose two
separate hyper-reduction approaches.

Hyper-reduction approach #1: material-point projection
The first approach we propose is material-point centric. We
begin by identifying a priori a set M ⊆ {1, . . . , np} of
sample material via stochastic sampling. We also consider
the neighbors of these material pointsN ⊆ {1, . . . , np}, de-
fined as the set of material points needed for the computation
of the dynamics of the sample material points for all t ∈ T
and µ ∈ D; note that M ∩ N = ∅. With these material
points identified, Algorithm 1 provides the associated steps
taken by the resulting (online) reduced-order-model simula-
tion.

While this approach can incur an operation count inde-
pendent of the original number of material points np and Eu-
lerian basis functions nb, it requires computing (and track-
ing) the set of neighboring material points, which is difficult

Algorithm 1: ROM dynamics approach #1
Input: Generalized coordinates x̂(tn) and velocities

˙̂x(tn).
Output: Generalized coordinates x̂(tn+1) and

velocities ˙̂x(tn+1).
1 Identify the grid nodes I ⊆ {1, . . . , nb} needed to

compute dynamics for the sample material points,
i.e., I = {i |Ni(xpn) 6= 0 for any p ∈M}, where
Ni is the Eulerian basis function.

2 Compute the deformation gradient F pn , velocity vpn,
and position xpn for each sample and neighbor
material point p ∈M∪N at time instance tn by
evaluating (4)–(6) forX = Xp, p ∈M∪N and
t = tn.

3 Perform the ‘particle to grid’ transfer by computing
for i ∈ I

fσi,n = −
∑

p∈M∪N

J(F pn )

ρ0
σ(F pn )∇xNi(xpn) mp

fei,n =
∑

p∈M∪N

J(F pn )

ρ0
b(xpn)Ni(x

p
n) mp,

where J := det(F ), σ denotes the Cauchy stress, b
denotes body forces, mp is the material point mass,
and ρ0 is the initial material density.

4 Perform the update step by computing for i ∈ I

v̇i,n+1 =
1

mi
(fσi,n + fei,n)

∆vi,n+1 = v̇i,n+1∆tn

vi,n+1 = vi,n + ∆vi,n+1.

5 Perform the ‘grid to particle’ transfer by computing
for p ∈M∪N

vpn+1 =
∑
i∈I

vi,n+1Ni(x
p
n).

6 Update the generalized coordinates
x̂(tn+1) = x̂(tn) + ∆tn ˙̂x(tn+1), where ˙̂x(tn+1)
satisfies the minimization problem

min
x̂(tn+1)

∑
p∈M

‖∂g
∂x̂

(Xp; x̂(tn))x̂(tn+1)− vpn+1‖22.



to do in practice. The next method mitigates this issue by
adopting a sample-node-centric perspective.

Hyper-reduction approach #2: sample-node projection
This section presents an alternative that leverages the
fact that—if constructed to be injective—the manifold-
parameterization function g can be inverted for positions in
the reference domain given the position in the deformed con-
figuration and values of the generalized coordinates. Thus,
the key elements of this approach are: (1) no need to track
individual material points, (2) the ability to generate effec-
tive material points as needed, and (3) performing classical
finite-element quadrature on the Eulerian grid to assemble
the governing equations.

Regarding quadrature, we first note that∫
Ω

fρdV =

ne∑
e=1

∫
Ωe

fρdV ≈
ne∑
e=1

nq∑
q=1

f(xq)ρ(xeq)wq.

where ne is the number of elements, nq is the number of
quadrature points, andwq is the quadrature weight. Consider
approximating the integrals from the weak-form of the equa-
tion of motion using classical techniques as

ne∑
e=1

nq∑
q=1

(
∑
j

ρv̇jNj Ni)|xq
wq

= −
ne∑
e=1

nq∑
q=1

(σ(F )∇Ni − bNi)|xq
wq

+

∫
∂Ω

tNi, i = 1, . . . , nb.

(8)

In contrast to the first approach, this approach (Algorithm
2) does not require tracking any fixed material points nor
their neighbors. Rather, by selecting in step 1 a set of sample
nodes I and leveraging invertibility of the deformation map,
the approach can incur an operation count independent of
the original number of material points np and Eulerian basis
functions nb without any special tracking.

Numerical experiments
Unit tests
For unit testing, we shear the top of a cylinder made of elas-
tic material for one timestep.

Training with gradient penalty In Table 1, we compare
different training setups. With both λ1 and λ2 set to be zero,
the network is trained only with the position information
without first-order gradient information. While the position
error and deformation gradient error of the reduced-order
simulations are relatively small, a large velocity error is ob-
served. Training with a positive λ2 while keeping λ1 zero,
the network is now trained with additional temporal gradi-
ent information (velocity). Consequently, the velocity error
is significantly improved, which also leads to significant im-
provement in the position error. However, a slight increase in
the deformation gradient is observed. We thereby train with
both the spatial (deformation gradient) and the temporal (ve-
locity) gradient information by setting both λ1 and λ2 set to

Algorithm 2: ROM dynamics approach #2
Input: Generalized coordinates x̂(tn) and velocities

˙̂x(tn).
Output: Generalized coordinates x̂(tn+1) and

velocities ˙̂x(tn+1).
1 Select (any) sample nodes I ⊆ {1, . . . , nb} of

interest that satisfy Ni(x) 6= 0 for some x ∈ Ω.
2 Define a quadrature rule comprising quadrature

points and weights xqn ∈ Ω, wq
n ∈ R+,

q = 1, . . . , nq used to assemble the governing
equations at the sample nodes I.

3 Compute the deformation gradient F qn and velocity
vqn for each quadrature point q = 1, . . . , nq at time
instance tn by evaluating (4)–(6) forX = Xq

n,
q = 1, . . . , nq and t = tn, whereXq

n satisfy
xqn = g(Xq

n; x̂(tn)), q = 1, . . . , nq .
4 Perform the ‘particle to grid’ transfer by computing

for i ∈ I

fσi,n = −
nq∑
q=1

J(F qn)

ρ0
σ(F qn)∇xNi(xqn) wq

fei,n =

nq∑
q=1

J(F qn)

ρ0
b(xqn)Ni(x

q
n) wq.

5 Perform the update step by computing for i ∈ I

v̇i,n+1 =
1

mi
(fσi,n + fei,n)

∆vi,n+1 = v̇i,n+1∆tn

vi,n+1 = vi,n + ∆vi,n+1.

6 Select (any) sample material points xsn,
s = 1, . . . , ns that satisfy the condition: if
Ni(x

s
n) 6= 0, then i ∈ I.

7 If needed, perform the ‘grid to particle’ transfer by
computing for s = 1, . . . , ns

vsn+1 =
∑
i∈I

vi,n+1Ni(x
s
n),

where vsn can be computed by evaluating Eq. (6) for
X = Xs

n, s = 1, . . . , ns, whereXs
n satisfies

xsn = x̂(Xs
n; x̂(tn)), s = 1, . . . , ns.

8 Update the generalized coordinates
x̂(tn+1) = x̂(tn) + ∆tn ˙̂x(tn+1), where ˙̂x(tn+1)
satisfies the minimization problem

min
˙̂x(tn+1)

ns∑
s=1

‖∂g
∂x̂

(Xs; x̂(tn)) ˙̂x(tn+1)− vsn+1‖22.



Training Position Velocity Deformation
Parameters Error Error Gradient

Error

λ1 = 0, λ2 = 0 0.19% 13% 0.2%
λ1 = 0, λ2 = 0.01 0.004% 0.3% 0.3%
λ1 > 10000, λ2 > 0.01 0.004% 0.2% 0.2%

Table 1: Training parameters’ influence on the accuracy of
the reduced-order simulations. Training with both spatial
(λ1) and temporal (λ2) gradient penalty yields the best re-
sult. The material is discretized with 3 material points.

Projection Position Velocity Deformation
Scheme Error Error Gradient

Error

Material-Point
-Centric 0.01% 0.06% 0.11%

Sample-Node
-Centric 0.01% 0.06% 0.11%

Material-Point
-Centric,
Hyper-reduction
(6)

0.01% 0.16% 0.11%

Sample-Node
-Centric,
Hyper-reduction
(6)

0.01% 0.13% 0.11%

Table 2: Projection approaches and hyper-reduction. Both
projection approaches achieve the same level of accuracy
with or without hyper-reduction. The material is discretized
with 17 material points.

be positive. As expected, optimal errors across position, ve-
locity, and deformation gradient are observed.

Material-point-centric projection vs. sample-node-
centric projection In Table 2, we compare the reduced-
order simulation’s accuracy when using different projection
methods. All the simulations use the same network with the
same weights. Both the material-point-centric approach and
the sample-node-centric approach achieve relatively small
error.

Hyper-reduction Table 2 also demonstrates the effective-
ness of hyper-reduction where we use only a small subset
of the original material points for projection, which leads to
cheaper computational cost. While the original number of
material points is np = 17, using 6 for projection yields the
same level of position error.

Poking test
An elastic cylinder, whose information is listed in Table 3,
is poked at the top (Figure 1). The poking force is char-
acterized by its spherical coordinate, f(ρ, θ, φ). We gener-
ate training and testing data by varying the three parame-
ters characterizing the poking force, where ρ ∈ [1.0, 1.2],

Figure 1: The material is poked at the top by different forces,
resulting in different deformed state.

Specimen information Value Unit

Radius 10 cm
Height 40 cm
E 12500 Pa
ν 0.3

Table 3: Poking test specimen information

θ ∈ [0◦, 9◦], and φ ∈ [10◦, 15◦]. A total number of 27 simu-
lations are generated via full factorial sampling, 22 of which
for training while 5 for testing. Each simulation consists of
36 timesteps or 0.25s. Therefore, a total of 945 simulation
snapshots is used for training and testing.

There are np = 1, 368 material points in the full-order
simulation. The dimension of the generalized coordinate is
chosen to be 5, effectively reducing the dimension of the
simulation by a factor of 821. The number of material points
for hyper-reduction is 15; these points are chosen from the
portion where the poking force is applied, the bottom where
the cylinder is fixed, as well as the middle section where the
material is allowed to deform freely.

The reduced-order simulation is able to reproduce the
training cases with a position error of 0.50% and is able to
predict the testing cases with a 0.55% error.

Future work
In the future, we would like to extend our work to support
plasticity, fracture, contact, and collision.

References
Jiang, C.; Schroeder, C.; Teran, J.; Stomakhin, A.; and Selle,
A. 2016. The material point method for simulating contin-
uum materials. In ACM SIGGRAPH 2016 Courses, 1–52.
Lee, K.; and Carlberg, K. T. 2020. Model reduction of dy-
namical systems on nonlinear manifolds using deep convo-
lutional autoencoders. Journal of Computational Physics
404: 108973.
Sulsky, D.; Zhou, S.-J.; and Schreyer, H. L. 1995. Applica-
tion of a particle-in-cell method to solid mechanics. Com-
puter physics communications 87(1-2): 236–252.


