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Abstract

High-fidelity combustion simulations are useful for optimiz-
ing engineering designs, and can result in reduced design
costs, increased engineering performance, and lower emis-
sions. In these simulations, the representation of combustion
chemistry is a computational bottleneck. In this investigation,
we accelerate unsteady combustion simulations by employing
neural networks for dynamic combustion submodel assign-
ment. Neural networks, trained with local flow properties as
input variables and combustion model errors as training la-
bels, assign three different combustion models — finite-rate
chemistry (FRC), flamelet progress variable (FPV), and inert
mixing (IM) — with high classification accuracy in a priori
tests. A priori results are compared with those generated by
random forests. A posteriori simulations, integrating a neural
network model in the computational fluid dynamics solver,
demonstrate that high-fidelity simulations can be performed
with this approach at significantly reduced cost compared to
detailed chemistry simulations and simultaneously achieving
improved accuracy over low-order combustion models.

Introduction

Combustion processes are present in engineering applica-
tions, such as in rockets, thermal generators, and propulsion
engines. Thus, accurate combustion simulation techniques
are useful for optimizing engineering designs, and can re-
sult in reduced design costs, increased engineering perfor-
mance, and substantially lower greenhouse-gas emissions
and pollutants. However, commonplace adoption of such
high-fidelity simulation techniques is restricted by a bottle-
neck that emerges from the high computational expense of
combustion chemistry. Hence, a significant portion of com-
bustion research has been devoted to the development of
cost-efficient models for representing the combustion chem-
istry (Pope|2013)) in large-scale high-fidelity simulations.
Alternatively, data-driven methods can be employed for
fast and accurate predictive modeling. In particular, artificial
neural networks have been employed for regressing thermo-
physical quantities (Christo et al.||[1996; Blasco et al.[|{1999;
Ihme, Schmitt, and Pitsch|2009; Kempf, Flemming, and Jan{
ickal2005; [Sen and Menon/2010), and modeling turbulent
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terms (Lapeyre et al.|[2019; [Henry de Frahan et al.[|2019).
However, supervised learning in flow-physics problems are
still in their infancy, and face challenges when extrapolating
beyond the training set — resulting in generalization errors
that arise from numerical predictions that only match spe-
cific flow configurations represented by the training data (Wu
Xiao, and Paterson!2018)).

This study ameliorates this issue by employing a ma-
chine learning classification algorithm that selects well-tested
physics-based combustion submodels of varying fidelity and
complexity, and assigns them to different regions of the sim-
ulation domain. Thus, the potential approximation errors
made by the machine-learning algorithm are limited by the
predictive capability of the lowest performing submodel. Pre-
vious work (Chung et al.|2020) has investigated the use of
random forests (Breiman/2001) for combustion submodel
assignment. While random forests can provide high classifi-
cation accuracy, the development of deep learning methods
provides advantages to neural networks in learning spatial
and temporal data, commonly seen in flow-physics problems.

To this end, we examine the application of employing
neural networks for the purpose of local and dynamic
model assignment in large-eddy simulations (LES) of a
gaseous-oxygen/gaseous-methane (GOX/GCH4) rocket com-
bustor (Silvestri et al.|2015},|2016)). Results from an a priori
investigation are assesed and compared with results from
random foretts. Additionally, an a posteriori neural network-
integrated simulation to demonstrate the effectiveness of this
approach, and the computational gains achieved.

Mathematical models
Large-eddy simulations in the present study are performed
by solving the Favre-filtered conservation equations for mass,
momentum, energy, and chemical species:
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with density p, velocity vector w, specific total energy e,
stress tensor 7, and heat flux vector q; ~ denotes a filtered



quantity and ~ is a Favre-filtered quantity. Subscripts v and
t denote viscous and turbulent quantities, respectively. The
pressure p is computed from the ideal gas equation of state. ¢,
J, and S are the transported scalars, scalar diffusive fluxes,
and scalar source terms for the candidate combustion mod-
els. The dynamic Smagorinsky model (Moin et al.[|{1991])
and dynamic thickened-flame model (Colin et al.[2000) are
used to model closure in the turbulent terms. Simulations
are performed by employing an unstructured compressible
finite-volume solver (Khalighi et al.|201 1} [Ma, Lv, and IThme
2017; W et al.|2019)).

In this work, we employ three different combustion
submodels, namely an inert mixing (IM) model, the
flamelet/progress variable (FPV) model (Pierce and Moin
2004; [hme, Cha, and Pitsch|2005), and a finite-rate chemistry
(FRC) model. The present framework couples the different
combustion models with the approach developed by [Wu et al.
(2019)), which ensures the conservation of mass, momen-
tum, and energy. Reconstruction of the chemical state-vector
needed for FRC involves interpolation from the chemistry
tables that stores all species, whereas the reconstruction of
the progress variable needed for tabulated chemistry involves
the sum of all major combustion product species: CO,, CO,
H,O0, and H;. To ensure consistency between the combustion
submodels, the aforementioned reconstruction is applied for
the inactive combustion model at the submodel interface at
every timestep. The GRI-3.0 chemical mechanism (Smith
et al.|2000), involving 33 chemical species, is used to describe
combustion chemistry.

Experimental configuration and
computational setup

We perform simulations of the gaseous oxygen-gaseous
methane rocket combustor setup by |Silvestri et al.| (2015,
2016) using an axisymmetric domain. We select this config-
uration to challenge the shortcomings of FPV in represent-
ing correct wall heat flux, which results in a thicker ther-
mal boundary layer and overprediction of CO mass fraction
shown in fig. [T}

Inlet fuel and oxidizer mass flow rates and temperature,
along with chamber and nozzle wall temperatures are pre-
scribed following experimental measurements (Silvestri et al.
2015}, |2016; |Perakis and Haidn|2019)). All remaining bound-
aries are defined as adiabatic non-slip walls with the excep-
tion of the exhaust, which is modeled as a pressure outlet. The
computational domain is discretized by a block-structured
mesh consisting of 2 x 10° cells. The wall-normal direction
is resolved down to 30 pm, and a wall model (Kawai and
Larsson|2013) is employed for the viscous sublayer. A typical
timestep is 25 ns, corresponding to a convective CFL number
of 1.0.

Data-driven methods

In this section, we describe the procedure for incorporating
a supervised learning algorithm for combustion submodel
assignment. Firstly, we use the instantaneous flow-field so-
lutions from the FRC simulation of the combustor as the
learning dataset. FRC data are then used to reconstruct FPV

and IM quantities of interest () by interpolating from gener-
ated flamelet tables (Pitsch|{1998)).

Secondly, we assign labels ) = {IM, FPV, FRC} to the
training data. We consider FRC as combustion model of
highest fidelity but at the expense of highest computational
cost. Therefore, we assign labels in the training set based on
the normalized combustion submodel error e% of quantities
of interest @ € ) between FRC and the models of lower
fidelity (Wu et al.|2015):

1 | aFRC _ ay‘

ey = ¥ Z . with y € {FPV,IM}, (2)
@ )
a€EQ

where the error for considering N = |@Q)| number of quanti-
ties of interest (Qols) is a normalized linear combination of
each individual submodel error. A model of higher fidelity
is assigned when the Qol submodel error eé exceeds a user-
defined threshold 0%, with FRC chosen when all conditions
for selecting FPV and IM are not met.

Thirdly, we construct the feature vector x € X. To this
end, we applied the Maximal Information Coefficient (MIC)
(Reshef et al.[2011) to identify the top six (out of fifteen)
thermophysical quantities with the strongest relationships
with the local combustion submodel error. These six features,
namely mixture fraction, progress variable, density, local
Prandtl number, and Euclidgan norm of the Lnixture frac-
tion gradient, viz., z = [Z,C,p,T, Pra,||VZ||2] are then
selected for constructing the feature set.

Lastly, we train, validate, and test the classification algo-
rithms. In this investigation, we compare the combustion
submodel assignment by neural networks and random forests
in the a priori study. 1 x 10* training points have been ran-
domly sampled from a single simulation snapshot consisting
of 2 x 10° cells. The hyperparameters of a random forest, con-
sisting of twenty decision trees, and maximum depth of ten
nodes, are found using random grid search. Addtionally, the
hyperparameters of a neural network consisting of 4 hidden
dense layers with L2 regularization consisting of 36 nodes
are found using Bayesian optimization.

Results

We first perform an a priori assessment to determine the ac-
curacy of neural network and random forest classification,
as shown in Table[I] on a monolithic FRC simulation test
dataset from an unseen timestep. Temperature and CO mass
fraction fields from the test dataset are shown in fig. [2h. and
. Temperature 7" is chosen as a Qol to describe the combus-
tion efficiency and engine performance. CO mass fraction,
Yco, is chosen to challenge the deficiencies of FPV and IM
in capturing intermediate species (Wu et al.[2019). Through-
out this study we explore cases that use the same threshold
for both IM and FPV, viz., 98’[ = ngv = 0¢ for simplicity.
Classification accuracy range from approximately 0.7 to 0.8,
which is comparable to the use of classifiers in other flow
physics problems (Maulik et al.[2019). We note that while the
combustion submodel assignment accuracy of both classifiers
are comparable, neural networks produce less ‘speckled’ sub-
model assignment. This is an improvement as it reduces the
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Figure 1: Time-averaged temperature and CO mass fraction for monolithic FRC and FPV LES. The location of the stoichiometric
mixture, Z¢; = 0.2, is shown by black lines.

Table 1: A priori analysis of neural networks, summarizing submodel assignment and assignment accuracy.

| Case | 9{T7C0}=0'05 9{T7C0}=0'02 9{T7C0}=0'05 9{T7co}=o.02 |
Classifier Neural network  Neural network Random forest Random forest
IM:FPV:FRC 6:74:20 5:46:49 6:63:31 6:42:52
Classification accuracy 0.773 0.696 0.753 0.734

Model: FRC FPV IM

y [mm]

0 50 100 150 200 250 300

Figure 2: Instantaneous (a) temperature, (b) CO mass fraction, and (c,d) combustion submodel assignment from test set in the a
priori assessment. The location of the stoichiometric mixture, Z5; = 0.2, is shown by black lines.

reconstruction operations between the different combustion

FRC is assigned in fuel-rich regions immediately downstream
submodels at the submodel interface.

of the injectors where intermediate species reactions are not
captured well by tabulated chemistry submodels. Employing
random forest results in 31% FRC assignment within the
domain, while neural network results 20% FRC assignment.

Figure 2. and [2d. demonstrates the a priori combustion
submodel assignment on an unseen FRC-simulation snapshot
for case 07 coy = 0.05 using a neural network and random

forest respectively. For both cases shown, inert mixing (IM) is
assigned in 6% of the domain at the injector and the oxidizer
core, where chemical processes are insignificant. In general,

Figure [Zk. and 2f. demonstrates the a priori combustion
submodel assignment for case 07 coy = 0.02 using a neural
network and random forest respectively. Here, the neural
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Figure 3: Time-averaged temperature, CO mass fraction, along with time-averaged and instantaneous combustion submodel
assignment for a posteriori data-assisted LES using neural-networks. The location of the stoichiometric mixture, Z,; = 0.2, is

shown by black lines.

network fails to recognize that IM should be applied to the
fuel injector, resulting in a lower overall IM assignment of
5%. In addition to the aforementioned fuel rich region, both
classifiers assign FRC to the near wall regions, which are
essential for accurate thermal and species boundary layer
predictions. This results in 49% and 52% FRC assignment
for the neural network and random forest respectively.

Figure 3] shows temperature and CO mass fraction fields
from an a posteriori data-assisted (DA) LES, using model
threshold ;7 coy = 0.02, performed by employing a neural
network classifier in-flight for combustion submodel assign-
ment during simulation runtime. Temperature and CO mass
fraction fields are in good agreement with the monolithic
FRC LES in fig.[I] with thermal boundary layer and CO mass
fraction captured correctly. The corresponding combustion
submodel assignment is also shown in fig. [3] FRC utilization
is at 66%, resulting in 75% FRC cost, or — equivalently — a
reduction in the computational cost by 25%.

Conclusions

This work demonstrates a data-driven modeling approach by
which neural network and random forest classifiers spatially
and dynamically assign three different candidate combustion
submodels. This modeling approach is demonstrated in simu-
lations of a complex rocket combustor. Results demonstrated
that neural networks and random forests showed high clas-
sification accuracy for this task. However, random forests
produce more speckled submodel assignment than neural
networks. A posteriori simulations incorporating neural net-
works showed significant improvements from monolithic
FPV simulations in all quantities at a 25% lower cost than
monolithic FRC calculations. Interesting opportunities for
extending this work include the exploration of convolutional
and recurrent layers in neural networks to better incorporate
spatial and temporal data.
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