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Abstract

We propose a framework for training deep neural net-
works (DNNs) that are coupled with partial differen-
tial equations (PDEs) in a parallel computing environ-
ment. Unlike most distributed computing frameworks
for DNNs, our focus is to parallelize both numerical
solvers and DNNs in forward and adjoint computa-
tions. Our parallel computing model views data com-
munication as a node in the computational graph for
numerical simulations. The advantage of our model is
that data communication and computing are cleanly
separated, which enables better flexibility, modularity,
and testability of the software. We demonstrate our ap-
proach on a large-scale problem and show that we can
achieve substantial acceleration by using parallel nu-
merical PDE solvers while training DNNs that are cou-
pled with PDEs.

Introduction

Deep neural networks (DNNs) have been demonstrated to
be very effective for solving inverse problems in compu-
tational engineering (Raissi, Perdikaris, and Karniadakis
2019; Meng et al. 2020; Pakravan et al. 2020). In our pre-
vious work (Xu, Huang, and Darve 2020; Xu and Darve
2019; Huang et al. 2020; Fan et al. 2020), we successfully
combined numerical solvers and deep neural networks for
data-driven inverse modeling. Mathematically, we consider
an implicit model F'(f,u) = 0 where f is an unknown func-
tion, which we approximate using a DNN. We denote the
DNN Ny, where 0 is the neural network weights and biases;
w is a function which depends on f through F'(f,u) = 0. We
are given some (partial) observations s of the function u,
which are used to optimize # and minimize the difference
between f and Ay. The optimization problem is formulated
as a PDE-constrained optimization problem

mein L(u) (uis indirectly a function of 6)

ey
such that F/(Ny,u) =0

L(u) is a loss function, which measures the discrepancy
between hypothetical and actual observations. For exam-
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ple, in this paper we use the square loss function L(u) =
[lu — uons 3.

One advantage of such a formulation is that the known
physics, such as the physical laws described by PDEs,
are preserved to the largest extent and solved with well-
developed and efficient numerical solvers. Meanwhile, we
can leverage the approximation power of DNNs.

To solve this optimization problem, one can first solve the
physics constraint F'(Ng,u) = 0 in Equation (1) numeri-
cally and then plug the solution u(6) into L(u). This leads
to an unconstrained optimization problem

min £(6) = L(u(6))

We developed a Julia (Bezanson et al. 2017) library, AD-
CME (Xu and Darve 2020a), with a TensorFlow (Abadi
et al. 2016) automatic differentiation backend to solve prob-
lems of this type. ADCME expresses both the numeri-
cal solver and DNNs using computational graphs. There-
fore, the gradient VyL(0) can be calculated automatically
by back-propagating gradients through both the numerical
solvers! and DNNs. In this paper, we use “operator” and
“node” interchangeably to refer to a node in the computa-
tional graph, which is a function that takes incoming edges
(intermediate data) as inputs and outputs outgoing edges (in-
termediate data).

However, one challenge with this approach is that for
large-scale problems, the memory and computational costs
for the numerical solver are prohibitive. The de-facto stan-
dard for solving such large-scale problems on modern dis-
tributed memory high performance computing (HPC) archi-
tectures is the Message Passing Interface (MPI) (Gabriel
et al. 2004; Gropp, Thakur, and Lusk 1999). The TensorFlow
backend used by ADCME was originally designed for deep
learning/machine learning. Despite that there are much work
on extending TensorFlow for distributed training of machine
learning models, some of the key capabilities, such as dis-
tributed linear algebra and domain decomposition, for solv-
ing scientific computing problems are still lacking. This pa-
per is about incorporating MPI functionalities into ADCME
to achieve scalability and flexibility for distributed memory.

"For details on how the gradient back-propagation works for
numerical solvers in ADCME, we refer readers to (Xu and Darve
2020b).



The main idea is to parallelize numerical solvers by split-
ting the mesh or matrices onto different MPI ranks (or pro-
cessors). Then, data communication nodes are inserted into
the computational graph. Because for our computational en-
gineering applications DNNs are typically small, they are
duplicated on each processor. Each computational graph in-
cludes a set of “communication” nodes (Fig. 1-top), which
are absent in a single processor computational graph. These
operators invoke MPI calls and are in charge of data com-
munication between different computer nodes. During the
gradient back-propagation, we need to reverse the data-flow
direction and operation of the data communication operators
(Wang and Pothen 2015; Utke et al. 2009) (Fig. 1-bottom).
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Figure 1: Paradigm for distributed machine learning for
computational engineering. The data communication oper-
ations are treated as nodes in the computational graph. They
are separate from the other computing operators. This makes
it easy to reuse existing serial implementations of the numer-
ical PDE solver.

Distributed Computing Models

There are many existing work and software for distributed
computing with deep neural networks (Griebel and Zum-
busch 1999; Notay 1995; Douglas, Haase, and Langer 2003)
and numerical PDEs (Bekkerman, Bilenko, and Langford
2011; Jordan and Mitchell 2015). The two domains have
quite different distributed computing models due to distinct
features of targeted applications. ADCME MPI embraces a
hybrid model that is suitable for inverse modeling in compu-
tational engineering because our method for solving Equa-
tion (1) requires a combination of the above two models.

In deep learning, one major challenge is that datasets are
too large to fit into memory. Therefore, both datasets and
computational loads are distributed onto different machines

and mini-batch optimization algorithms, such as stochastic
gradient descent (Bottou 2010), are used. Each processor
calculates predictions and gradients, which are aggregated
on one or more processors. To further scale out in a limited
bandwidth environment, parameter servers (Li et al. 2013,
2014), where each server stores a part of the parameters, are
implemented. There are also extensive work on model par-
allism, which parallelizes the computation by splitting the
DNNs into multiple parts (Chen, Yang, and Cheng 2018;
Hewett and Grady II 2020).

The parallel computing model in computational engineer-
ing is quite different from deep learning. The computational
engineering applications feature data communication across
neighboring points in a mesh (domain decomposition) or
different parts of a matrix. In terms of computational graph,
this pattern indicates that there are many more communica-
tions besides the reduction of gradients at the end. This mo-
tivates us to design new distributed computing models for
computational engineering inverse modeling applications.

Methodology

ADCME MPI aims at providing a modular, efficient, and
flexible implementation for distributed computing in inverse
modeling. Conceptually, we can treat data communication
operations as a node in the computational graph: they are
similar to computational nodes (e.g., a linear solver), ex-
cept that their responsibility is to invoke MPI calls and back-
propagate the gradients in the reverse mode automatic differ-
entiation (Baydin et al. 2017). This solution provides an ele-
gant enhancement to the ADCME library because to convert
a single processor program to multiple processor one, users
only need to insert data communication nodes as needed and
most parts of the original codes are unchanged. In this sec-
tion, we briefly describe our contributions in ADCME MPI
to extend its distributed computing capabilities to couple
DNNs and PDE solvers.

MPI APIs

ADCME MPI provides a set of commonly used MPI prim-
itives, such as mpi_bcast, mpi_gather, mpi_send,
etc. These operators are wrappers for standard MPI APIs.
However, these operators are also “differentiable,” in the
sense that they can handle gradient back-propagation. The
gradient back-propagation functionality uses the fact that
there exists one-to-one correspondence between forward
and backward MPI calls. For example, the forward “send”
corresponds to the backward “receive” (Cheng 2006; To-
wara, Schanen, and Naumann 2015).

Halo Exchange

To enable the communication between adjacent patches
in a mesh, ADCME provides efficient implementations of
data communication operators for halo exchange patterns
(Fig. 2). Halo exchange patterns are very common in sci-
entific computing because numerical solvers often involve
communication between neighboring points (Bianco 2014).
We use a nonblocking send/receive strategy. In the gradi-
ent back-propagation phase, this order of send/receive is re-
versed.
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Figure 2: Left: domain decomposition and halo exchange
pattern. Two adjacent patches exchange boundary informa-
tion. Right: using nonblocking sends/receives to avoid dead-
locks.

Matrix Transposition

Sparse matrices are very important tools in computational
engineering. ADCME MPI stores large sparse matrices as
CSR matrices and each MPI processor stores a portion of
rows with continuous row indices.

For reverse-mode automatic differentiation, matrix trans-
position is an operator that is common in gradient back-
propagation. For example, assume the forward computation
is (x is the input, y is the output, and A is a matrix)

y = Ax @

Given a loss function L(y), the gradient back-propagation
calculates

IL(y(x))) _ OL(y) dy(x) _ IL(y)

ox Jdy Ox y A

OL(y)

By is a row vector, and therefore

(522 v (52

requires a matrix vector multiplication, where the matrix is
AT,

The transposition of a distributed sparse matrix is imple-
mented in three steps (Fig. 3):

Here

1. The submatrix owned by each MPI processor is split into
subblocks. Meta information (e.g., number of nonzeros in
each block) is collected.

2. Each block B exchanges the meta information with the
target block, where B should be placed.

3. Each subblock is transposed and the data are transferred
to the target block.

Distributed Optimization

In general, the objective function of our problem can be writ-
ten as a sum of local objective functions

~ N
min L(f) = g £:(6)

where f; is the local objective function, IV is the number of
processors.

MPI_lsend/MPI_Irecv  Transpose Each Block

Original Matrix

Figure 3: Transposition of a distributed sparse matrix. Each
block exchanges nonzero entries with the corresponding
transposed block. The original and resulting matrices are
both stored in CSR formats.

Despite many existing distributed optimization algorithm,
in this work we adopt a simple approach: aggregating gradi-
ents Vo f;(0) and updating 6 on the root processors. Fig. 4
shows how we can convert an existing optimizer to an MPI-
enabled optimizer. The basic idea is to let the root processor
notify worker processors whether to compute the loss func-
tion or the gradient. Then the root processor and workers
will collaborate on executing the same routines and thus en-
suring the correctness of collective MPI calls.

Master Worker

fork=1,2,3, .. :
flag = COMPUTE_OBJ N
mpi_sync!(flag) 1

while true
mpi_sync!(flag)
if (flag==COMPUTE_OBJ)

elseif (flag==COMPUTE_GRAD)

1
1
flag = COMPUTE_GRAD ! compute_gradient(x)
mpi_sync!(flag) /lse
dx = compute_gradient(x) 1 break

end

x =x—alpha * dx end

flag = OPTIMIZATION_STOP
mpi_sync!(flag)

Figure 4: Refactoring a serial optimizer to an MPI-based op-
timizer in our framework.

Numerical Benchmarks
As a demonstration, we present a benchmark result with
ADCME MPI. The example shows that the overhead intro-
duced by ADCME is very small compared to the actual com-
putation.
The governing equation is given by Poisson’s equation
V- (k(x)Vu(x)) = f(x) xe€Q
u(x) =0 x € 092

Here f(x) = 1, and x(x) is approximated by a deep neural
network

3)

k(x) = No(x)
where 0 is the neural network weights and biases. The equa-
tion is discretized using the finite difference method on a
uniform grid and the discretization leads to a linear system
A@)u=f 4)

u is the solution vector and f is the source vector. Note that
A is a sparse matrix and its entries depend on 6.



The sparse matrix is constructed using the differentiable
halo exchange operator and stored as a distributed CSR ma-
trix. Equation (4) is solved using the algebraic multigrid
method in Hypre (Falgout and Yang 2002). During the gradi-
ent back-propagation, we need to solve a linear system with
the coefficient matrix A”". This matrix is obtained using the
technique described in the last section.

In the strong scaling experiments, we consider a fixed
problem size 1,800 x 1,800 (mesh size, which implies the
matrix size is around 32 million x 32 million). In the weak
scaling experiments, each MPI processor owns a 300 x 300
block. For example, a problem with 3,600 processors has the
problem size 90,000 x 3,600 ~ 0.3 billion.

We first consider the weak scaling case. We consider
two cases: each MPI rank has 1 core or 4 cores. In the
latter case, the TensorFlow backend enjoys the benefit of
inter-parallelism, where independent operators in the com-
putational graph can be executed simultaneously. However,
4 cores do not guarantee a 4 times acceleration; the per-
formance depends on the availability of independent tasks,
scheduling conflicts, resource contention, etc. Fig. 5 shows
the runtime for the forward computation as well as the gradi-
ent back-propagation. There are two important observations:

1. By using more cores per processor, the runtime is reduced
significantly. For example, the runtime for the backward is
reduced to around 10 seconds from 30 seconds by switch-
ing from 1 core to 4 cores per processor.

2. The runtime for the backward pass is typically less than
twice the forward computation. Although the backward
pass requires solving two linear systems (one of them is in
the forward computation), the AMG (algebraic multigrid)
linear solver in the back-propagation may converge faster,
and therefore may cost less than during the forward pass.

Additionally, we show the overhead in Fig. 6, which is
defined as the difference between total runtime and Hypre
linear solver time, for both the forward and backward calcu-
lation.

We see that the overhead is quite small compared to the
total time, especially when the problem size is large. This
indicates that the ADCME MPI implementation is very ef-
fective.

In Fig. 7, we consider the strong scaling. In this case, we
fixed the whole problem size and split the mesh onto differ-
ent MPI processors. Fig. 7 shows the runtime for the forward
computation and the gradient back-propagation. We can re-
duce the runtime by more than 20 times for the expensive
gradient back-propagation by utilizing more than 100 MPI
processors. Fig. 8 shows the speedup and efficiency. We can
gee that the 4 cores have smaller runtime compared to 1 core

2Finding a scaling sweet spot for a mixed programming model
(MPI and OpenMP) of Hypre AMG solvers on multicore clusters is
challenging (Baker, Schulz, and Yang 2010). The intra- and inter-
parallelism of the TensorFlow backend also add difficulties to find-
ing a scaling strategy.
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Figure 5: Weak scaling runtime for forward computation and
gradient back-propagation. Top: each MPI processor has 1
core; bottom: each MPI processor has 4 cores. We see a
jump near 64 cores because this is where network commu-
nications start to take place (recall each of our CPUs has 32
cores, and each node has two CPUs). The plots show results
of weak scaling, each MPI processor solves a local problem
of the same size.
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Figure 6: Overhead of ADCME for matrix solving in Hypre.
The top and bottom bar plots correspond to the top and bot-
tom ones in Fig. 5.
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Figure 7: Runtime for forward computation and gradient
back-propagation. The plots show results of strong scaling,
the whole problem size is fixed and we increase the number
of MPI processors (each processor has 1 or 4 cores).
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Figure 8: Speedup and efficiency for parallel computing of
the Poisson’s equation.

Conclusion

We presented the functionalities of ADCME MPI. Our
benchmark results show that the overhead introduced by
ADCME for distributed computing programs is very small
compared with the computing time. The ADCME MPI dis-
tributed computing solution is quite flexible, allowing users
to use custom parallel algorithms or libraries at their discre-
tion. With the advent of experimental techniques that enable
gathering large amounts of data, deep neural network based
data-driven modeling will become essential tools for scien-
tific discovery. The growing dataset and problem size add
another level of challenges. Therefore, ongoing work on dis-
tributed computing in machine learning for computational
engineering remains an important and promising direction
in the foreseeable future.
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