
Towards Modeling Physically-Consistent, Chaotic
Spatiotemporal Dynamics with Echo State Networks

Matthew Ziemann∗†, Alisha Sharma∗‡, Kaiyan Shi∗, and Yiling Qiao∗
∗ University of Maryland, College Park, MD 20742
† Army Research Laboratory, Adelphi, MD 20783
‡ Naval Research Laboratory, Washington, DC 20375
{mrziema2,ajsharma,kshi12,yilingq}@umd.edu

Abstract

This study explores how echo state networks (ESNs) can be
used in time-series forecasting of chaotic physics. We compare
the performance of a basic ESN with two physics-informed
variants, tested on the canonical Lorenz attractor. We then
apply the ESN to a large-scale atmospheric model and a
larger real-world weather dataset to test its ability to scale to
large spatiotemporal systems. We find that a traditional ESN
when properly tuned can outperform our equivalent physics-
informed methods. We also find that the ESN is capable of
accurately predicting the global evolution of the atmospheric
primitive equations over short time frames (∼67 hrs), but
struggles to accurately predict real-world data.

Introduction
Many useful scientific simulations, such as large-scale cli-
mate models (Fig. 1), contain computationally intractable
subroutines that limit the pace and accessibility of research
in critical areas. Neural networks are gaining popularity as
a way of sidestepping these bottlenecks due to their reduced
computational complexity, improved scalability, and low post-
training cost (Frank, Drikakis, and Charissis 2020). However,
they also have some significant disadvantages that prevent
widespread adoption. Notably, they require massive amounts
of data and computational resources to train. Furthermore,
without explicit knowledge of physics, their predictions can
be unreliable and break important physical laws, which can
be disastrous in scientific simulations. This is particularly true
of the difficult regimes that engineers often want to bypass,
such as chaotic, stiff, or multiscale systems.

Echo state networks (ESNs), a simplification of recurrent
neural networks, address several of these challenges. ESNs
are one of the most effective data-driven architectures for
time-series forecasting, particularly for chaotic dynamical
systems (Aggarwal 2018; Jaeger 2001). While they share the
temporal invariance of standard recurrent neural networks,
all parameters aside from the final fully-connected layer are

The first two authors contributed equally to this work.
Distribution A: Approved for public release; distribution unlimited.
Copyright c©2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

Figure 1: Velocity potential computed using the Climate
Forecast System (CFS) (Saha et al. 2010, 2014).

fixed, making them extremely cheap to train. Unfortunately,
while ESNs excel at modeling low dimensional dynamics,
they scale poorly to high-dimensional input (Aggarwal 2018),
which poses a challenge for problems with many degrees of
freedom such as those with spatial parameters. Furthermore,
while they can accurately model complex chaotic systems,
they are purely data-driven: they have no qualms about break-
ing the laws of physics.

Researchers have suggested various methods to overcome
these challenges. Studies suggest that informing neural net-
works with physics-based knowledge can yield reduced re-
quirements for data and training time, as well as signifi-
cantly improving overall performance. Two examples of these
methods include the ”Combined Hybrid/Parallel Prediction”
(CHyPP) method (Wikner et al. 2020), and physics-informed
loss constraints (Raissi, Perdikaris, and Karniadakis 2019;
Doan, Polifke, and Magri 2019). We present a comparative
study of these techniques to better understand their respective
benefits and limitations on the small-scale chaotic systems
and extended these methods to explore their feasibility in
large-scale dynamical systems.



Echo State Networks
Recurrent neural networks (RNNs) are a natural model for dy-
namical systems, but they can be difficult to train in practice.
Echo state networks (ESNs) are a promising simplification
of RNNs: they freeze most of the parameters, swapping a
highly non-convex training process with a simple convex
regression, but still retain much of the sequential structural
and expressive power of general RNNs (Jaeger 2001).

⠇

Input	Scaling		𝑊!" Reservoir	 	𝑊

w

w

w

⠇

Trainable
Readout Layer

𝑊#$%

𝑢% 𝑢2%&'

Skip	connection	 from	input

Previous	step	context

Figure 2: Diagram of a basic echo state network (ESN). The
readout layer is trained by ridge regression to map the non-
linear reservoir projections to the target output state.

Conceptually, ESNs work similarly to other weighted av-
erage methods: they use the architecture of a general RNN
to (a) generate high-dimensional nonlinear projections of the
inputs and (b) learn an optimal weighted average of these
projections to predict the next state (Figure 2). The input scal-
ing and reservoir layers are initialized according to the “echo
state property” (Jaeger 2001) and then are frozen. Learning
the readout layer is a convex minimization problem between
the reservoir outputs and the output state; the global minimum
can be found cheaply through closed-form ridge regression
or by using a convex solver (Jaeger 2001).

Physics Informed Echo State Networks
We focus on two mechanisms for embedding physics into
the basic ESN architecture described above: a physical con-
sistency loss function and a hybrid data-driven/knowledge-
based predictor. These approaches are described in the fol-
lowing sections.

Physical Consistency Loss
A direct way to constrain the network is by explicitly embed-
ding the system’s governing dynamics into the optimization
of the readout layer. Through training, the ESN should learn
to emulate the system’s governing dynamics.

Raissi, Perdikaris, and Karniadakis (2019) introduced an
interesting discrete mechanism for this using Runge-Kutta
solvers, a family of iterative algorithms for numerically solv-
ing systems of ordinary differential equations. Given an initial
value and set of governing equations, Runge-Kutta solvers
estimate the next timestep by taking a weighted average of
several intermediate predictions called stages. This formula-
tion fits naturally with the discrete nature of ESNs.

If we consider the ESN to be a surrogate Runge-Kutta
solver, we can verify its prediction by applying the Runge-
Kutta equations in reverse at each stage. If the ESN is a
good surrogate, this “round trip” will end back at the initial
state. Training minimizes the distance between the true and
calculated initial states, providing a strong error signal and
bringing the ESN predictions closer to the solver.

This physical consistency term has a side effect of making
training harder, turning a convex problem highly nonconvex.

Hybrid Prediction Model
As many systems of interest have known reduced or approxi-
mate formulations, an alternate strategy for improving phys-
ical consistency is based on the idea that correcting similar
(but incorrect) dynamics is easier than learning a system from
scratch. By concatenating steps of a reduced-order or flawed
model of the physical system to the reservoir output, we can
reformulate the learning problem as correcting the flawed
dynamics instead of predicting them from scratch (Wikner
et al. 2020). As in the basic ESN, training is convex.

Preliminary Results
Three echo state network (ESN) configurations were tested:
a basic ESN (BaseESN), an ESN trained with a physical
consistency loss (PhyESN), and a hybrid numerical/data-
driven approach where BaseESN was used to refine a reduced-
order estimate (HyESN). Models were implemented in Julia
using the SciML ecosystem (Martinuzzi 2020).

We first trained our three models to predict the spatiotem-
poral evolution of a simple, well-studied chaotic attractor: the
Lorenz attractor. We then implemented the best performing
ESN with two large-scale dynamical systems of increasing
complexity to evaluate its ability to scale to more difficult
problem sets.

The models were evaluated by two metrics. First, their
relative accuracy was measured by the time-averaged root
mean squared error (RMSE) over a fixed prediction time.
Next, the dynamic stability of a model was measured by
the time horizon, or time for which the normalized error of
the model predictions stays under a specified error tolerance
εmax (Wikner et al. 2020; Doan, Polifke, and Magri 2019).

Lorenz Attractor
The first set of experiments focused on the chaotic Lorenz
attractor, a canonical problem in chaotic dynamics modeling.
The Lorenz attractor is the chaotic regime of a dynamical sys-
tem derived from an atmospheric surface convection model
(Lorenz 1963). The governing equations are given below:

∂u

∂t
=

 σ(u2 − u1)
u1(ρ− u3)− u2
u1u2 − βu3

 (1)



System behavior is controlled by the parameters σ, ρ,
and β, and the most commonly chosen parameters to study
chaotic dynamics are σ = 10, ρ = 28 and β = 8/3.

Numerical results are summarized in Table 1. Results are
calculated for the best models. Each hyperparameter configu-
ration was tested over several thousand random initializations
for BaseESN and HyESN; in contrast, PhyESN was only
tested over 5 initializations per configuration due to the high
training cost. Results are reported in Lyapunov times, the
characteristic timescale of a chaotic system, as in (Wikner
et al. 2020; Doan, Polifke, and Magri 2019).

BaseESN In the first experiment, we modeled the Lorenz
system with a basic ESN (BaseESN). The basic ESN architec-
ture includes an input layer initialized with a random uniform
distribution with values in [−σ, σ], a random sparse reservoir
with average connectivity d and spectral radius α, and a T1
nonlinear transformation of the reservoir output (Chattopad-
hyay, Hassanzadeh, and Subramanian 2020). The readout
layer was trained using ridge regression with regularization
weight β. A skip connection was included from the input to
reservoir output, and the reservoir leaked previous inputs to
the readout layer with leak coefficient a.

Figure 3: BaseESN Lorenz Predictions and Error

The BaseESN predictions diverged from the true system
after approximately 15 Lyapunov times, though the predic-
tions continued to follow a similar chaotic pattern (Figure 3).
BaseESN was also extremely fast to train and predict: training

the network using closed-form ridge regression and predict-
ing 1000 new points (approximately 20 Lyapunov times) each
took≈ 50 ms (Table 1). We also measured training time with
a BFGS solver, an iterative nonlinear minimizer, to provide a
performance baseline for PhyESN; this approach was nearly
4 orders of magnitude slower (≈ 3 s).

PhyESN The second experiment (PhyESN) took the same
baseline ESN architecture and added a physical consistency
loss. This physical consistency loss function was signifi-
cantly more difficult to optimize than the ridge regression
in BaseESN: not only is it non-linear, it is non-convex. To
account for this, the readout layer was trained using BFGS.

Qualitatively, the PhyESN results looked similar to
BaseESN. However, despite the physics embedded in the
loss function, the best PhyESN models had slightly worse ac-
curacy and stability than the BaseESN. Furthermore, training
took significantly more time: BFGS struggled to converge,
taking 5-7 orders-of-magnitude longer (depending on the run)
than the closed-form BaseESN training, and the final solution
was a local (not global) minimum.

HyESN The trained HyESN predictions diverged from the
true system after approximately 9 Lyapunov times (Figure
4), which is worse than the results predicted by BaseESN.
However, HyESN frequently exhibits an interesting recov-
ery behavior: in Figure 4, the dynamics appear to recover
between 11 and 17 Lyapunov times. This can also be seen
in the numerical results: while BaseESN has a substantially
longer time horizon, the error over 20 Lyapunov times is 12%
lower in HyESN.

Figure 4: Hybrid Model (HyESN) Lorenz Predictions

Training time for HyESN was consistently slower than
BaseESN, though they were similar; while they are both
trained with closed-form ridge regression, the HyESN read-
out layer was larger due to the flawed dynamics input.

Weather Forecasting
We took a two-part approach to evaluate the behavior of
ESNs on large-scale systems. First, we trained a BaseESN
(our best-performing ESN) on data generated by a simple
atmospheric model and evaluate its prediction error. Then



Table 1: Best results, Lorenz Models. The best results are in bold font.

Net RMSE (20 λmaxt) Time Horizon (λmaxt) Train Time(s)

BaseESN (literature) 1.69 5.10 1.36e-3 (closed-form)

BaseESN (tuned) 1.09 15.13 1.08e-3 (closed-form)
2.98 (BFGS)

HyESN 8.91e-1 8.97 5.59 (closed-form)
PhyESN 1.8 7.2 3.0e+2 (BFGS)

Figure 5: Plot of BaseESN normalized error over time for the
primitive equations system.

we trained a BaseESN on real-world data from the National
Oceanic and Atmospheric Association (NOAA)’s Climate
Forecast System (CFS) (Saha et al. 2010, 2014) and evaluated
its prediction error.

We begin with the simple atmospheric model. The gov-
erning system of nonlinear, partial differential equations for
atmospheric dynamics—known as the primitive equations—
was numerically solved to generate data for pressure (P ),
temperature (T ), and the latitudinal & longitudinal compo-
nents of wind velocity (u & v) (Ehrendorfer 2011). This
system is commonly called the dynamical core, as it is the
core of most numerical weather models. These four param-
eters were solved on the surface of Earth with a grid of 64
longitudinal points and 32 latitudinal points. We solved u,
v, and T at three altitude levels (surface, mid-, and high-).
The pressure was only solved at the surface, bringing the
total number of ESN input parameters to 20,480, a significant
increase from the 3 input parameters of the Lorenz system. It
was trained over 300 days of data with 20 minute timesteps.

With some tuning, the ESN performed quite well in predict-
ing the evolution of states. With our best-performing model,
the ESN predicted over 200 timesteps (>67 hrs) while re-
maining below the max normalized error cutoff threshold
(0.4), seen in Figure 5. Notably, the ESN predictions grad-
ually accumulate error over time and do not diverge signif-

Figure 6: Plot of BaseESN normalized error over time for the
CFSR data.

icantly. When results finally diverge, the ESN continues to
predict realistic values, though they do not reflect the actual
evolution of the system.

We then trained the BaseESN on real-world data from
the CFS Reanalysis (CFSR). We utilized hourly data from
January 2005 to December 2006, on a 73x144 spatial grid.
Due to memory constraints, we restricted the data to u, v, P,
& T rather than utilizing the full 73 parameters of CFSR, and
again used three altitude levels for u, v, & T . This increased
the number of input parameters to 105,120, approximately 5
times more than required for the dynamical core system.

The BaseESN did not perform as well on the real-world
data as it did on the dynamical core system. As seen in Figure
6, the predictions for the velocity components diverged from
acceptable error levels within four timesteps, likely because
the velocities evolve more quickly. Pressure and tempera-
ture both evolve much more slowly over time, and so the
BaseESN was able to remain within acceptable error levels
for much longer. Despite the quick divergence from real-
world values, the BaseESN continued to make realistic (if
incorrect) predictions until around 300 timesteps, where it di-
verged quite suddenly from realistic values. It’s worth noting
that we were unable to perform significant hyperparameter
tuning on the CFSR system as the computational cost was
quite high, requiring multiple days to train.



Discussion
We found that a highly tuned BaseESN generally out-
performed the physics-informed techniques (PhyESN and
HyESN) on the Lorenz system when measured on predic-
tion accuracy and dynamic stability. This result underscores
the importance of hyperparameter tuning in deep learning
approaches.

The primary advantage to BaseESN is the low cost to find
the global minimum in low-dimensionality systems. Hyper-
parameter selection and reservoir initialization significantly
impacted model performance. The stark difference between
the BaseESN (baseline) and BaseESN (tuned) results in Ta-
ble 1 illustrates this well: the tuned BaseESN is stable for
approximately 3× longer than the baseline BaseESN model,
which uses hyperparameters found commonly in the litera-
ture (Wikner et al. 2020; Doan, Polifke, and Magri 2019).
The BaseESN’s cheap training and prediction cost allow for
extensive parameter searches and repeated trials, even when
on modest hardware.

PhyESN does not share this benefit. Conceptually, physics
constraints were intended to improve the physical consistency
(and thus reliability) of the model; however, the practical
concerns overshadowed any benefit. PhyESN trains by mini-
mizing the residual during a round-trip ODE solver step. In
other words, it takes an easy problem and turns it into a very
hard (nonconvex) one. There is no longer a clear closed-form
solution, and optimizers are more likely to get stuck in bad
local minima. Qualitatively, the loss landscape seemed rough
and difficult to traverse: training times for the network varied
wildly (though all were many orders of magnitude slower
than ridge regression), and first-order gradient descent tech-
niques failed to converge. This technique was a poor match
for this experiment, but it may perform better in different
network architectures or for systems with different dynamics.

Conceptually, HyESN keeps many of the benefits of
BaseESN, including the convex formulation and cheap train-
ing cost; however, the HyESN’s hybrid approach did not
improve the model’s time horizon. This may be because the
Lorenz system is relatively simple and thus does not benefit
from the flawed model’s “hints”. One interesting feature of
HyESN was its recovery ability. As noted previously, HyESN
predictions frequently appeared to recover across reservoir
initializations, which can be seen in the low long-term predic-
tion error reported in Table 1. If this behavior persists in other
systems, this could be a benefit in long-running simulations.

The results from our experiments with the primitive equa-
tions were promising and hint toward the ESN’s ability to
handle high-dimensional inputs better than we anticipated.
However, as expected, the computational cost of training
ESNs and generating predictions does not scale well with
large numbers of inputs, which hurts its feasibility in practice.
The use of ESNs for large-scale systems would benefit from
research to implement feature reduction techniques—for ex-
ample, the use of a convolutional autoencoder to encode

inputs and decode outputs. Faster training and prediction
with ESNs would enable a greater degree of hyperparameter
tuning for large systems which may yield stronger results
for real-world systems. This would also enable the use of
more input data which may lead to further improvements for
real-world systems.

References
Aggarwal, C. C. 2018. Neural Networks and Deep Learning: A
Textbook. Cham: Springer International Publishing. ISBN 978-3-
319-94462-3 978-3-319-94463-0. doi:10.1007/978-3-319-94463-0.

Chattopadhyay, A.; Hassanzadeh, P.; and Subramanian, D. 2020.
Data-Driven Prediction of a Multi-Scale Lorenz 96 Chaotic System
Using Deep Learning Methods: Reservoir Computing, ANN, and
RNN-LSTM. Nonlinear Processes in Geophysics 27(3): 373–389.
doi:10/ghnj74.

Doan, N. A. K.; Polifke, W.; and Magri, L. 2019. A
Physics-Aware Machine to Predict Extreme Events in Turbulence.
arXiv:1912.10994 .

Ehrendorfer, M. 2011. Spectral numerical weather prediction mod-
els. Society for Industrial and Applied Mathematics. ISBN 978-
1611971989.

Frank, M.; Drikakis, D.; and Charissis, V. 2020. Machine-Learning
Methods for Computational Science and Engineering. Computation
8: 15.

Jaeger, H. 2001. The “Echo State” Approach to Analysing and
Training Recurrent Neural Networks - with an Erratum Note. Ger-
man National Research Center for Information Technology GMD
Technical Report 148(34): 13.

Lorenz, E. N. 1963. Deterministic nonperiodic flow. Journal of the
atmospheric sciences 20(2): 130–141.

Martinuzzi, F. 2020. SciML/ReservoirComputing.Jl. SciML Open
Source Scientific Machine Learning.

Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2019. Physics-
Informed Neural Networks: A Deep Learning Framework for Solv-
ing Forward and Inverse Problems Involving Nonlinear Partial Dif-
ferential Equations. Journal of Computational Physics 378: 686–
707. ISSN 0021-9991. doi:10/gfzbvx.

Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.;
Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. 2010. The
NCEP climate forecast system reanalysis. Bulletin of the American
Meteorological Society 91(8): 1015–1058.

Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.;
Behringer, D.; Hou, Y.-T.; Chuang, H.-y.; Iredell, M.; et al. 2014.
The NCEP climate forecast system version 2. Journal of climate
27(6): 2185–2208.

Wikner, A.; Pathak, J.; Hunt, B.; Girvan, M.; Arcomano, T.; Szun-
yogh, I.; Pomerance, A.; and Ott, E. 2020. Combining Machine
Learning with Knowledge-Based Modeling for Scalable Forecast-
ing and Subgrid-Scale Closure of Large, Complex, Spatiotemporal
Systems. Chaos: An Interdisciplinary Journal of Nonlinear Science
30(5): 053111. ISSN 1054-1500. doi:10/ggxrjq.


	Introduction
	Echo State Networks
	Physics Informed Echo State Networks
	Physical Consistency Loss
	Hybrid Prediction Model

	Preliminary Results
	Lorenz Attractor
	Weather Forecasting

	Discussion

