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Abstract

Turbulence models represent the workhorse for academic and
industrial studies involving real life manifestations of fluid
turbulence. However, due to the simplifications inherent in
their formulation, such turbulence models have a high degree
of epistemic uncertainty associated with their predictions. Es-
timating this model form uncertainty is a critical and long
standing problem in turbulence modeling and engineering de-
sign. To this end, the direct application of machine learning
to estimate turbulence model uncertainties ignores physics
based domain knowledge and may even lead to unphysical
results. In this light, we outline a framework that utilizes
data driven algorithms in conjunction with physics based con-
straints to generate reliable uncertainty estimates for turbu-
lence models while ensuring that the solutions are physically
permissible. The trained machine learning model, utilizing
the random forest algorithm, is embedded in a Computational
Fluid Dynamics solver and applied to complex problems to
test and illustrate its efficacy. This library is to be released
as a computational software tool that enables the inclusion of
physics based constraints in applications of machine learning
in turbulence modeling.

Introduction

Fluid turbulence is a central problem across a variety of
disciplines in science and engineering, including Mechani-
cal, Aerospace and Civil Engineering; Biomedical, Oceano-
graphic, Meteorological and Astrophysical Sciences, be-
sides others. The ability to reliably predict the evolution
of turbulent flows would lead to seminal advances across
these fields. However, in spite of over a century of fo-
cused research, no analytical theories to predict the evolu-
tion of turbulence have been developed. With the present
state of computational resources, a purely numerical reso-
lution of turbulent time and length scales encountered in en-
gineering problems is not viable in industrial design prac-
tice. Consequently, almost all investigations have to resort
to some degree of modeling. Turbulence models are consti-
tutive relations attempting to relate quantities of interest to
flow parameters using assumptions and simplifications de-
rived from physical intuition and observations. Reynolds-
averaged Navier-Stokes (RANS)-based models represent the
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pragmatic recourse for complex engineering flows, with a
vast majority of simulations, in both academia and indus-
try, resorting to this avenue. Despite their widespread use,
RANS-based models suffer from an inherent structural in-
ability to replicate fundamental turbulence processes and
specific flow phenomena, as they introduce a high degree
of epistemic uncertainty into the simulations arising due to
the model form(Craft, Launder, and Suga 1996; Schobeiri
and Abdelfattah 2013).

In this light, uncertainty quantification for RANS-based
closures attempts to assess the trustworthiness of model pre-
dictions of quantities of interest and is thus of consider-
able utility in establishing RANS models as reliable tools
for engineering applications. To this end, investigators in
the recent past have utilized data driven machine learning
approaches to engender interval estimates of uncertainty
on turbulence model predictions. Large corpora of avail-
able data from experiments and higher fidelity simulations
present an opportunity to enhance the predictive capabilities
of RANS simulations. Traditionally, data has been used in
the context of turbulence modeling only for model calibra-
tion and to define model corrections. Almost all turbulence
models involve some empirical constants which are tuned
to optimize the RANS predictions with respect to specific
calibration cases (Hanjali¢ and Launder 1972). Over the last
decade, there has been an increasing attempt to utilize data
driven approaches to quantify the epistemic uncertainties in
RANS models.

As illustrative instances, Wang and Dow (2010) studied
the structural uncertainties of the £ — w turbulence model by
modeling the eddy viscosity discrepancy (i.e. the difference
between reference high-fidelity data and RANS predictions)
as a random field. Their approach is based on Monte Carlo
sampling, but given its slow convergence, a considerable
number of simulations are required in order to obtain mean-
ingful uncertainty estimates. Wu, Xiao, and Paterson (2018)
used data driven algorithms to predict Reynolds stress dis-
crepancies. The target of the machine learning model was a
post-hoc, local correction term for the RANS model’s pre-
dictions. Duraisamy, laccarino, and Xiao (2019) provide a
more comprehensive review of how data has been used to
enhance turbulent flow simulations.

However, such direct application of machine learning
models to problems in physical sciences, such as fluid flow



and turbulence modeling, may not completely account for
the domain knowledge and more importantly, all the essen-
tial physics based constraints required. As an illustration,
the Reynolds averaging carried out in turbulence modeling
introduces a term in the momentum equations that requires
further modeling assumptions or simplifications, i.e. it is un-
closed. This term is referred to as the Reynolds stress tensor,
R;; = (u;u;), where u; are components of the fluctuating
velocity field after filtering. This is the key Quantity of In-
terest in turbulence modeling. However, there are essential
physics based constraints that any prediction of the Reynolds
stresses must follow. These are referred to as realizability
constraints. Schumann (1977) was the first to articulate the
realizability constraint in the context of turbulence closures,
requiring models to yield a Reynolds stress tensor that en-
sure that R, > 0, Riﬂ > RaaRpp and det(R) > 0. Un-
less these constraints are explicitly adhered to, model pre-
dictions are unphysical. Furthermore, using machine learn-
ing approaches without physics based constraining, leads
to issues when such data driven models are integrated in
Computational Fluid Dynamics (CFD) software. Unrealiz-
able models can lead to problems in numerical convergence
and even numerical instability. Straightforward application
of machine learning models to problems in turbulence mod-
eling has led to unrealizable predictions and convergence is-
sues when such data driven models are integrated in CFD
software.

In this investigation, we outline a methodology that intro-
duces physics constrained perturbations to estimate struc-
tural uncertainty in turbulence models. Thence, we utilize
machine learning algorithms to infer these perturbations
from labeled data. These two steps together ensure that this
framework is both physics constrained and data driven. Fi-
nally, we integrate this library into CFD software suites and
carry out tests for robustness and reliability.

After an overview of the problem in Section I, we outline
the test problem in Section II. Thence, we outline the physics
constrained perturbation framework which is applied with-
out and with inference from data (data free and data driven).
In the data free results, we utilize the maximum physically
permissible perturbations. In the data driven framework, we
train a random forest regressor to predict the perturbations
using data from other flows and integrate this trained model
in the CFD software suite. We conclude with a summary of
this work and directions for future research.

Baseline Simulation: Turbulent Diffuser

The test case in this work is the turbulent separated flow in
a diffuser. Diffusers are used to decelerate the flow and in-
crease the static pressure of the fluid. The operating principle
is simply a change in cross-sectional area, but space con-
straints and reduction of losses often lead to configurations
that are prone to flow separation. Prediction of the turbulent
flow in a diffuser represents the challenge in this work.

The turbulent flow in planar asymmetric diffuser first de-
scribed by Obi, Aoki, and Masuda (1993) is considered. Fig-
ure 1 shows the setup: A channel is expanded from inflow
width H to outflow width 4.7H. In the expansion section,
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Figure 1: Asymmetric plane diffuser setup. Inflow from the
left, outflow to the right.
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Figure 2: Diffuser simulation. Inflow (green) and mesh
(blue) sensitivities, baseline calculation (black). Profiles of
streamwise velocity at different x locations with experimen-
tal data (red).

the bottom wall is opening up at a 10° angle. The corners at
the beginning and the end of that slope are rounded with a
radius of 9.7H.

The inflow is fully turbulent and has the Reynolds number
20,000, based on the centerline velocity and inflow chan-
nel height H. Interesting features of the resulting flow are
flow separation, flow reattachment, and development of a
new boundary layer. RANS simulations were carried out in
OpenFOAM using the k — e turbulence model. Fully turbu-
lent channel flow was used as inflow condition at x/H =
—10. The outlet was at /H = 60. The baseline calculation
had a structured mesh with 9,472 cells, 148 in the x and 64
in the y direction.

Both a mesh convergence study and an inflow sensitiv-
ity study were performed. For mesh convergence, each two
coarser and two finer grids were used, with the number of
grid cells changing by a factor of 2 between levels. For in-
flow sensitivity, the inlet velocity profile was distorted at
constant flow rate to vary the centerline velocity between
90% and 110% of its nominal value. The results can be
seen in figure 2, where the streamwise velocity component
is plotted at different x locations across the channel height.
All individual mesh and inflow solutions are plotted, giving
impression of the respective sensitivities, as well as the base-



line solution and experimental data from Buice and Eaton
(2000). Very limited sensitivity to boundary conditions and
numerical errors is observed in and after the expanding sec-
tion, providing confidence in the computations. Yet, while
the flow remains attached at all times in the RANS simula-
tions, the experimental data reveals the existence of a large
flow separation that has not been captured by the simulation.
The simulations are overpredicting the streamwise velocity
in the lower half of the channel and underpredicting it in the
upper half.

Data free Uncertainty Quantification

Herein, we outline the physics constrained perturbation
framework that ensures Reynolds stress realizability. Given
an initially realizable Reynolds stress tensor, this framework
ensures that the perturbed Reynolds stresses remain posi-
tive semi-definite. The Reynolds stress tensor can be decom-
posed into the anisotropic and deviatoric components as

Sij
Rij = 2k(b;j + ?f). (1)

Here, k(= £it) is the turbulent kinetic energy and b;;(=
}zkj — 6?) is the Reynolds stress anisotropy tensor. The
Reynolds stress anisotropy tensor can be expressed as
binUni = vinAn;, where vy, is the matrix of orthonor-
mal eigenvectors and A,; is the traceless diagonal ma-
trix of eigenvalues \j. Multiplication by vj; yields b;; =

VinAnivji. This is substituted into Equation (1) to yield

Rij = Qk(vinAnlUjl + %) )
The tensors v and A are ordered such that Ay > Ay > A3,
In this representation, the shape, the orientation and the am-
plitude of the Reynolds stress ellipsoid are directly repre-
sented by the turbulence anisotropy eigenvalues )\;, eigen-
vectors v;; and the turbulent kinetic energy k, respectively.
To account for the errors due to closure assumptions, the
tensor perturbation approach introduces perturbations into
the modeled Reynolds stress during the CFD solution itera-
tions. This perturbed form is expressed as:

Ry, =2k (gj + i, ALvf;) 3

where * represents the perturbed quantities. Thus, £* =
k + Ak is the perturbed turbulent kinetic energy, v}, is the
perturbed eigenvector matrix, and, A}, is the diagonal ma-
trix of perturbed eigenvalues, \;".

In this context, the eigenvalue perturbation can be ex-
pressed as a sum of perturbations towards the 3 corners of
the barycentric map. The corners of that triangle correspond
to limiting states of turbulence with 1, 2, and 3 components,
respectively. The expression for the Reynolds stresses with
only eigenvalue perturbations is given by R;; = 2k(6§j
vinA¥ v15), where A represents the diagonal matrix of per-
turbed eigenvalues. The perturbed eigenvalues can be ex-
pressed by the mapping \; = B~'x*. Here, x* = x +
Ap(x* — x) is the representation of the perturbation in the
barycentric triangle with x being the unperturbed state in
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Figure 4: Data free, uniform eigenvalue perturbation. Pro-
files of streamwise velocity at different x locations.

the barycentric map, x* representing the perturbed position,
x*® representing the state perturbed toward and Ap is the
magnitude of the perturbation. In this context, A} = B~1x*
can be simplified to \} = (1 — Ag)\; + AgB~!x*. Here,
B defines a linear map between the perturbation in the
barycentric triangle and the eigenvalue perturbations. With
the three vertices x1¢ , Ta¢ , and z3¢ as the target states,
we have B lz;c = (2/3,-1/3,-1/3)T , B layc =
(1/6,1/6,—1/3)T , and B~ 'z3c = (0,0,0)T. Figure 3
shows the triangle in the barycentric map as well as one re-
alizable location x coming from a RANS turbulence model.
The eigenvalue perturbations add three perturbed simula-
tions to the baseline calculation, one for each limiting state,
leading to a total of four calculations. The uncertainty es-
timates are constructed by computing the range of values
across the four calculations. The minimum and maximum
values of the range form envelopes for any quantity of inter-
est.

The framework of eigenvalue perturbations is applied to
the present test case. Figure 4 shows the resulting uncer-
tainty envelopes, which cover the experimental results in
most locations. Unlike the mesh study and the inflow sensi-
tivity study from the previous section, this analysis correctly
indicates that there might be a region of flow recirculation at
the bottom wall. The uncertainty estimates, however, go be-
yond the experimental data, in some regions substantially,
in other words seem to overestimate the modeling errors



in some locations. This is expected because the perturba-
tions are targeting all possible extreme states of turbulence
anisotropy without consideration of their plausibility. The
data free framework perturbs the Reynolds stresses every-
where in the domain all the way to the respective limiting
state. Yet, the Reynolds stress predictions of the turbulence
model do not have the same level of inaccuracy throughout
the domain.

Data driven Uncertainty Quantification

We study a data driven approach to predict a local eigen-
value perturbation strength based on mean flow features.
Here, we define the local perturbation strength p as the dis-
tance in barycentric coordinates between the unperturbed
and the perturbed projection of the Reynolds stress. p is pre-
dicted by a machine learning model using physically rele-
vant flow features f; as input. Figure 3 illustrates the mean-
ing of p in the barycentric map. The original location Zp
is perturbed towards the same extreme states as in the data
free approach, but now the perturbed locations, marked by
grey dots, are not more than p away from the original po-
sition. In the example from the illustration, that means the
3-component limiting state is reached, while the perturba-
tions towards the 1- and 2-component limits are smaller. The
perturbation strength p is directly related to the perturbation
magnitude as: Ap = min(p/dy, 1), where d; is the dis-
tance in the barycentric map between the unperturbed state
and the respective corner towards which it is perturbed. The
perturbed locations are still always within the triangle and
therefore within the constraints of realizability. This defini-
tion of the perturbation strength means that the effective per-
turbations cannot be greater than for the data free case, but
they can be smaller.

A random regression forest is chosen as the machine
learning regression model. Random forests are a supervised
learning algorithm. They are ensemble learners, meaning
that they leverage a number of decorrelated simpler mod-
els to make a prediction. In this case of a random forest, the
simpler models are regression trees (Breiman et al. 1984).
Regression trees are able to learn non-linear functions. They
are also robust to extrapolation, since they cannot produce
predictions outside the range of the training data labels, and
to uninformative features (Ling and Templeton 2015; Milani
et al. 2017).

In machine learning models, the mean squared error can
be decomposed into the squared bias of the estimate, the
variance of the estimate, and the irreducible error:

MSE() = (Elf(2)] - f(2))? + E[(f(z) - E[f(@)])’] + oC ,
~—~
squared bias variance irred. err.

where f(z) is the model prediction and f(z) is the true la-
bel. As the name suggests, the irreducible error stems from
noise in the data and cannot be reduced through the model.
Bias is introduced through assumptions that are made in the
model before the training. The more flexible a model is,
the lower is its bias. Variance is related to generalization:
It measures how much the model predictions would change
if trained on different data. High variance indicates strong
overfitting and poor generalization.
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Table 1: Non-dimensional features used for the random re-
gression forest. The following variables are used: the mean
rate of strain and rotation S;; = % (Vuij + Vuj;), Wi =
% (Vu;; — Vuj;); the turbulence time scale 7, = %; the unit
vector along the streamline s; = wu;/u; and the gradient of

the streamline aligned velocity g; = s; g%

In many machine learning models one can vary the model
flexibility. A more flexible model is able to learn more com-
plex relationships and will therefore reduce the bias of the
predictions. At the same time, a more flexible model in-
creases the likelihood of overfitting to the training data and
thereby of increasing the variance. The search for the opti-
mum model complexity to achieve both low bias and low
variance is commonly referred to as the bias-variance trade-
off.

Binary decision trees are very flexible and tend to over-
fit strongly to the training data. Hence, they have a low bias
and a high variance. Random forests base their predictions
on a number of decorrelated decision trees. Decorrelation is
achieved by bagging, which is the training on random sub-
sets of the training data, as well as randomly sampling the
active variables at each split. Since the trees are decorrelated,
the variance of the random forest predictions is reduced and
generalization improved. At the same time, random forests
are able to keep the low bias of the decision trees. This
makes random forests, despite their simplicity, powerful pre-
dictors for a range of applications (Breiman 2001). The ran-
dom forest is implemented using the OpenCV library.

In the present scenarion, i.e. an incompressible turbu-
lent flow, a set of twelve features was chosen. In order to
be able to generalize to cases other than the training data
set, all features are non-dimensional. The first eight features
were non-dimensionalized such that they lie within the inter-
val [—1, 1]. The other ones were non-dimensional quantities
common in fluid mechanics, as well as a marker function in-
dicating regions in which the turbulence model is expected
to be inaccurate (Gorlé et al. 2014). The computation of
the features requires knowledge of the following variables,
which are either constant or solved for during the RANS cal-
culations: the mean velocity and its gradient, the turbulent
kinetic energy as well as its production and its dissipation
rates, the minimum wall distance, the molecular viscosity,
and the speed of sound. A list of features is given in table 1.

The periodic wavy wall case was used to obtain train-
ing data for the random regression forest model. It is de-
fined as a turbulent channel with a flat top wall and a sinu-
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Figure 5: Training error (solid) and validation error (dotted)
vs. number of trees for different maximum tree depth values.
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Figure 6: Training error (solid) and validation error (dotted)
vs. number of trees for different minimum sample counts.

soidal bottom. The ratio of channel height to wave length is
H/X = 1.0, and the ratio of wave height to wave length is
2A/X = 0.1. The wave is repeating periodically, and on its
downward slope a flow separation occurs. An unperturbed
baseline calculation was run using the k—e turbulence model
with periodic inflow and outflow boundary conditions. A
mesh convergence study, as done for the diffuser, suggested
only limited numerical errors. Features for the random for-
est training were computed from the baseline case, and la-
bels were computed from both the baseline case and higher
fidelity data. The labels are defined as the actual distances
in the barycentric domain between the location predicted
by the baseline calculation and the higher fidelity one. The
higher fidelity data is DNS data from Rossi (2006).

Hyperparameters are parameters in machine learning
models that are not learned during model training, but that
are instead set before training and used to define the func-
tional form of the model and control the learning process.
The impact of four different hyperparameters on the learning
of the random regression forest model is studied: the maxi-
mum tree depth, the minimum sample count, the active vari-
able count, and the number of trees. The minimum sample
count is the minimum number of samples required at a par-
ticular tree node in order to do further splitting. The active
variable count is the number of features randomly chose at
each node to find the optimal split.

For each of the first three hyperparameters a couple of dif-
ferent values were tested over a range of 1 to 200 regression
trees. To improve readability, the figures 5 to 7 show the re-
sults for every third number of trees only. The dataset was
split into 80% training set and 20% validation set for this
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Figure 7: Training error (solid) and validation error (dotted)
vs. number of trees for different active variable counts.
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Figure 8: Predictions vs. labels on wavy wall training data.

part. Only after making a choice on the hyperparameters, a
final random forest was trained on the full dataset to achieve
best performance when employed at the test case.

The results from the maximum tree depth study are shown
in figure 5. The training and test errors are plotted in solid
and dotted lines, respectively, against the number of trees.
The tested values are 5, 10, 15, and 20, and best perfor-
mance was achieved for 15 and 20. 15 was chosen, because
a smaller value means smaller computational costs. Figure
6 shows the results from the minimum sample count study.
The tested values are 10, 20, and 30. While the larger val-
ues did slightly better in terms of generalization, 10 over-
all showed the smallest error and was chosen as minimum
sample count. The number of active variables was varied
between 2 and 10 at an increment of 2 as shown in figure
7. Larger numbers of active variables lead to lower training
and test errors, with 8 and 10 yielding the smallest errors.

Only after making a choice on the hyperparameters, a
random forest was trained on the full wavy wall dataset to
achieve best performance when employed at the diffuser
case. Figure 8 shows a scatter plot of predictions vs. labels
for the training data. There is a good agreement between the
predicted and the true perturbation strengths.

The OpenCV library used to train the random regression
forest allows for the computation of feature importance, i.e.
a quantitative assessment of the impact that each feature has
on the final prediction.

The maximal information coefficient (MIC) is a measure
of dependence between variables. It is able to detect both lin-
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ear and more complex relationships, and it has shown good
equitability (Reshef et al. 2016). We can estimate the MIC
between the features and the labels and compare the scores
to the feature importance scores from the random forest. The
MIC was estimated using the tools provided by Albanese
et al. (2018). Figure 9 presents the normalized feature im-
portance scores from the random forest as squares and the
estimated MIC scores as diamonds.

Two of the most important features of the random for-
est are #11 the non-dimensional wall distance and #12 the
marker indicating deviation from parallel shear flow (Gorlé
et al. 2012). The challenging flow features such as flow sep-
aration happen at or near the wall, supporting the signifi-
cance of the wall distance. The marker function was devel-
oped specifically to identify regions where the linear eddy
viscosity assumption becomes invalid. The importance of
this feature indicates that the model was able to recognize
this relationship. The features based on combinations of the
mean rate of rotation were clearly more important than the
ones base on combinations of the mean rate of strain, with
#4 the trace of the squared mean rotation rate tensor being
ranked as second most important feature. Another important
feature is #6 the Q criterion, identifying vortex regions. As
expected #1 the divergence of the velocity is not a signifi-
cant feature for this incompressible flow case. It is important
to point out that the feature importance is strongly related to
the baseline turbulence model.

The feature importance scores show some trends that are
also captured by the MIC, e.g. the ranking between the first
five features. This increases our confidence in the learning of
the machine learning model. At the same time we notice that
there is no perfect agreement. For example, #10 the turbu-
lence intensity was ranked first by the MIC while being not
as important to the random forest predictions as other fea-
tures as. This leaves room for more detailed investigations.

Finally, this new, data driven framework was applied to
the planar asymmetric diffuser. The random forest model
was used to predict a local perturbation strength at every
cell during the RANS calculations. The data driven eigen-
value perturbations lead to an increase in costs for the RANS
simulations. Compared to the calculations with the baseline
k — € turbulence model, the observed runtime increases at a
factor of 2 — 3. There are two reasons for this increase. First,
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Figure 10: Data driven, local eigenvalue perturbation. Pro-
files of streamwise velocity at different x locations.

the calculations associated with the Reynolds stress pertur-
bations took some time; and second, the perturbations had
an effect of the convergence of the solver, resulting in more
iterations that had to be completed depending on the par-
ticular limiting state. The time of computing the Reynolds
stress perturbations was dominated by the evaluation time
of the random forest, which scales linearly with the number
of trees, a number that potentially could be reduced.

As for the data free uncertainty envelopes, three perturbed
calculations were carried out for the three limiting states of
turbulence. Figure 10 shows the results. The uncertainty en-
velopes still display the same general trend, suggesting an
overprediction of the streamwise velocity in the lower half
of the channel. As expected from permitting smaller pertur-
bation strengths, the envelopes are narrower than they are
when using the data free framework from the previous sec-
tion. There are no regions where the uncertainty is substan-
tially overestimated: In most regions, the envelopes reach
justup to or at least very near to the experimental data. Thus,
for the test case the data driven uncertainty estimates give a
reasonable estimate of the modeling errors and therefore the
true uncertainty in the flow predictions.

Conclusion and Future Work

In this investigation, we outline a physics constrained data
driven framework for uncertainty quantification of turbu-
lence models. We outline a methodology that introduces
physics constrained perturbations to estimate structural un-
certainty in turbulence models while retaining the realiz-
ability constraints on the Reynolds stresses. Thence, we uti-
lize machine learning algorithms to infer these perturbations
from labeled data. These two steps together ensure that this
framework is both physics constrained and data driven. Fi-
nally, we integrate this library into CFD software and carry
out tests for robustness and reliability. At present, we are
testing this framework using different baseline flows and
different machine learning algorithms. The software imple-
mentation of this physics constrained machine learning li-
brary for turbulence model uncertainty quantification will be
released soon.
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