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Abstract

Physics-constrained data-driven computing is an emerging
paradigm that directly integrates material database into physi-
cal simulations of complex materials, bypassing the construc-
tion of classical constitutive models. However, most of the
developed data-driven computing approaches are based on
simplistic distance minimization and thus suffer from dealing
with high-dimensional applications and lack generalization
ability. This study proposes a deep learning enhanced data-
driven computing framework to address these fundamental
issues for nonlinear materials modeling. To this end, an au-
toencoder, a special multi-layer neural network architecture,
is introduced to learn the underlying low-dimensional embed-
ding representation of the material database. Incorporating
the offline trained autoencoder and the discovered embedding
space in online data-driven computation enables to search for
the optimal material state from database in low-dimensional
embedding space, enhancing the robustness and predictabil-
ity of data-driven computing on limited material data. To en-
hance stability and convergence of data-driven computing, a
convexity-preserving interpolation scheme is introduced for
constructing the material state on the low-dimensional em-
bedding space given by autoencoders. The effectiveness and
enhanced generalization performance of the proposed ap-
proach are examined by modeling biological tissue with ex-
perimental data.

1 Nonlinear physics-constrained data-driven
modeling

The physical equations governing the deformation of an
elastic solid in a domain ΩX bounded by a Neumann bound-
ary ΓXt and a Dirichlet boundary ΓXu are given as

DIV (F(u) · S) + b = 0, in ΩX ,

E = E(u) = (FTF− I)/2, in ΩX ,

(F(u) · S) ·N = t, on ΓXt ,

u = g, on ΓXu ,

(1)

where u is the displacement vector, E is the Green La-
grangian strain tensor, and S is the second Piola-Kirchhoff
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(2nd-PK) stress tensor. The superscript X denotes the refer-
ence (undeformed) configuration. F is the deformation gra-
dient related to u, defined as F(u) = ∂(X+u)/∂X, where
X is the material coordinate. b, N, t, and g are the body
force, the surface normal on ΓXt , the traction on ΓXt , and the
prescribed displacement on ΓXu , respectively.

To solve the boundary value problem (BVP) in Eq. (1),
material laws describing the stress-strain relation are re-
quired. However, it is difficult to construct phenomeno-
logical material models for complex material systems.
The physics-constrained data-driven computing framework
(Kirchdoerfer and Ortiz 2016; Ibanez et al. 2018; He and
Chen 2020) offers an alternative to directly utilize material
data in physical simulations by formulating the BVP as an
optimization problem under physical constraints.

In this framework, the material behavior is described by
strain-stress pairs, ẑ = (Ê, Ŝ), defined as the material state
given by the material database, E = {ẑI}MI=1 ∈ E , where
M is the number of material data points and E is an ad-
missible set of material database over the domain Ω. The
strain-stress pairs, z = (E,S) ∈ C, that satisfy the physical
equations (Eq. (1)) are defined as the physical state, where
C = {z| Eq. (1)} is a physical admissible set. The data-
driven solutions are obtained by fixed-point global-local it-
erations to minimize the distance between the material and
physical states. In the local step, the material data-driven
local solver searches for the optimal strain-stress pairs ẑ∗

closest to a given physical state z by minimizing a distance
functional defined as follows:

F(z, ẑ∗) = min
ẑ∈E

∫
ΩX

d2
z(z, ẑ)dΩ, (2)

with

d2
z(z, ẑ) = d2

E(E(u), Ê) + d2
S(S, Ŝ), (3a)

d2
E(E(u), Ê) =

1

2
(E(u)− Ê) : Ĉ : (E(u)− Ê), (3b)

d2
S(S, Ŝ) =

1

2
(S− Ŝ) : Ĉ−1 : (S− Ŝ), (3c)

where Ĉ is a predefined symmetric and positive-definite ten-
sor used to properly regulate the distance between z and ẑ.



Given the optimal material data ẑ∗ = (Ê∗, Ŝ∗) obtained
from the local step in Eq. (2), the global step of the data-
driven problem is to search for the closest physical state,
formulated as follows:

min
u,S
F(E(u),S; Ê∗, Ŝ∗)

subject to: DIV (F(u) · S) + b = 0 in ΩX ,

(F(u) · S) ·N = t on ΓXt ,

(4)

which can be solved by the Lagrange multiplier method and
a nonlinear numerical solver. Note that the compatibility
constraint in Eq. (1b) is directly enforced by computing E
from u.

2 Autoencoders for nonlinear material
manifold learning

Autoencoders (DeMers and Cottrell 1993; Hinton and
Salakhutdinov 2006) aim to optimally copy its input to out-
put and retain the most representative features in a low-
dimensional embedding layer. Hence, it allows for effective
noise filtering, dimensionality reduction, and hidden struc-
ture discovery of data. As shown in Fig. 1, an autoencoder
contains an encoder function henc(·;θenc) : Rd → Rp and
a decoder function hdec(·;θdec) : Rp → Rd, such that the
autoencoder is

x̃ = h(x;θenc,θdec) := hdec(·;θdec) ◦ henc(x;θenc), (5)

where d is the input dimension, p < d is the embedding di-
mension, θenc and θdec are the trainable parameters of the
encoder and the decoder, respectively. x̃ is the output of the
autoencoder, a reconstruction of the original input x. With
p < d, the encoder henc is trained to learn an intrinsic repre-
sentation of x ∈ Rd, denoted as the embedding x′ ∈ Rp,
whereas the decoder hdec is trained to reconstruct the in-
put data by mapping the embedding x′ back to the high-
dimensional space x̃ ∈ Rd.

In this study, autoencoders are employed to discover the
intrinsic low-dimensional material embedding of the given
material dataset E = {ẑI}MI=1, where ẑI = (ÊI , ŜI).
The optimal parameters (θ∗enc,θ

∗
dec) of the autoencoder

h(·;θenc,θdec) are obtained by minimizing the following
loss function:

(θ∗enc,θ
∗
dec) = arg min

θenc,θdec

1

M

M∑
I=1

||h(ẑI ;θenc,θdec)− ẑI ||2

+ β

L+1∑
l=1

||W(l)||2F ,

(6)
where L is the number of hidden layers, W is the weight
coefficient of the autoencoder, β is a regularization param-
eter, and || · ||F denotes the Frobenius norm. The first term
in the loss function is the reconstruction error of all training
data and the second term is a L2-norm based weight regular-
ization term used to avoid over-fitting (Goodfellow, Bengio,
and Courville 2016).

With the trained autoencoder h(·;θ∗enc,θ
∗
dec), a low-

dimensional embedding space can be defined, i.e., E ′ =

Figure 1: Schematic of an autoencoder consisting of an en-
coder and a decoder, with the embedding dimension smaller
than the input dimension. The encoder learns an intrinsic
low-dimensional embedding of a high-dimensional input
object, whereas the decoder optimally reconstructs the input
object from the low-dimensional embedding.

{z′ ∈ Rp|z′ = henc(z;θ∗enc),∀z ∈ Z}, in which the material
state is described by a lower-dimensional coordinate system
z′. Here, the prime symbol (·)′ is used to denote the quanti-
ties defined in the embedding space, andZ denotes the high-
dimensional phase space where the material states ẑ and the
physical states z are defined. For example, the embedding
set of the given material data is E′

= {ẑ′I}MI=1 ⊂ E
′
, where

ẑ′I = henc(ẑI ;θ
∗
enc) for ẑI ∈ E.

3 Auto-embedding data-driven (AEDD)
solver

The nonlinear physics-constrained data-driven computing
framework described in Section 1 is conducted in the high-
dimensional phase space Z (called data space), with the
physical state zα ∈ C, the material data ẑα ∈ E , and the
material dataset E defined in Z . The subscript ”α” is used to
denote the quantities at integration points. To enhance solu-
tion accuracy and generalization ability of data-driven com-
puting, deep manifold learning enabled by autoencoders is
introduced into the material data-driven local solver. The au-
toencoders are trained offline and the trained encoder henc
and decoder hdec functions are employed directly in the on-
line data-driven computation. As such, the encoder maps an
arbitrary point from the data space to the embedding space,
i.e. z′α = henc(zα), whereas the decoder performs the re-
verse mapping, i.e. z̃α = hdec(z

′
α).

In the proposed AEDD local solver, the local step defined
in Eq. (2) is reformulated by three steps:

Step 1 : z′α = henc(zα), (7a)

Step 2 : ẑ′∗α = I
(
{ΨI(z

′
α); ẑ′I}I∈Nk(z′

α)

)
(7b)

Step 3 : ẑ∗α = hdec(ẑ
′∗
α ), (7c)



for α = 1, ..., Nint, where ẑ′I ∈ E′
, Nint is the number of

integration points, and I is the convexity-preserving inter-
polation operator defined as

z′recon = I
(
{ΨI(z

′); ẑ′I}I∈Nk(z′)

)
=

∑
I∈Nk(z′)

ΨI(z
′)ẑ′I ,

(8)
where z′recon is the reconstruction of z′, ẑ′I is the material
data embedding in E′, Nk(z′) is the index set of the k near-
est neighbor points of z′ selected from E′. The interpolation
functions are

ΨI(z
′) =

φ(z′ − ẑ′I)∑
J=1 φ(z′ − ẑ′J)

, (9)

where φ(z′ − ẑ′I) = 1/||z′ − ẑ′I ||2 is a positive kernel func-
tion representing the weight on the data set {ẑ′I}I∈Nk(z′).
The positive interpolation functions satisfy the partition of
unity,

∑
I∈Nk(z′) ΨI(z

′) = 1, which ensures transforma-
tion objectivity and convexity of the interpolation scheme,
Eq. (8).

The schematic of data-driven computing with the AEDD
local solver is illustrated in Fig. 2, where the integration
point index α is dropped for brevity. For example, at the
v-th global-local iteration, after the physical state z(v) (the
blue-filled triangle) is obtained from the global step (Eq.
(4)), Step 1 of the local solver (Eq. (7a)) maps the sought
physical state from the data space to the embedding space
by the encoder, z′(v) = henc(z

(v)), depicted by the white-
filled triangle in Fig. 2. In Step 2, k nearest neighbors of
z′(v) based on Euclidean distance are sought in the em-
bedding space and the optimal material embedding solution
ẑ′∗(v) (the red square) is reconstructed by using the proposed
convexity-preserving interpolation (Eqs. (8-9)). Lastly, in
Step 3, the optimal material embedding state ẑ′∗(v) is trans-
formed from the embedding space to the data space by the
decoder, ẑ∗(v) = hdec(ẑ

′∗(v)) (the red star in Fig. 2). Sub-
sequently, this material state ẑ∗(v) from the local solver in
Eq. (7) is used in the next physical state update z(v+1). This
process completes one global-local iteration. The iterations
proceed until the distance between the physical and mate-
rial states is within a tolerance, yielding the data-driven so-
lution denoted by the green star in Fig. 2, which ideally is
the intersection between the physical manifold and material
manifold in the data space.

Here, the nearest neighbors searching and locally convex
reconstruction of the optimal material state are processed in
the filtered (noiseless) low-dimensional embedding space,
resulting in the enhanced robustness against noise and accu-
racy of the local solution.

4 Data-driven biological tissue modeling
The effectiveness of the proposed AEDD computational
framework is evaluated by modeling biological heart valve
tissue with data from biaxial mechanical experiments on one
representative porcine mitral valve posterior leaflet (Jett et
al. 2018), see a schematic in Fig. 3a. There are eleven pro-
tocols, including nine biaxial tension protocols (1–9) with
various biaxial tension ratios and two pure shear protocols

Figure 2: Geometric schematic of the proposed auto-
embedding data-driven computational framework. The ma-
terial data points (the gray-filled circles), ẑI , in the phase
space are related to the material embedding points (the
white-filled circles) ẑ′I via the encoder function. The low-
dimensional embedding manifold is represented by the or-
ange dash line.

(10 and 11). The normal components of the Green strain and
the associated 2nd-PK stress tenors of all protocols are plot-
ted in Fig. 3(c-d). Considering the symmetry of specimen
geometry and loading conditions, a quarter model with sym-
metric boundary conditions is modelled, as shown in Fig. 3b.
The normalized root-mean-square deviation (NRMSD) with
respect to the maximum experimental stress data Struemax is
employed to assess the prediction performance of the meth-
ods, see Eq. (10),

NRMSD =

√√√√Neval∑
i

(SAEDDi − Struei )2

Neval
/Struemax, (10)

where Neval = 200 is the number of evaluation points,
SAEDDi and Struei are the predicted stress and the experi-
mental stress data at the i-th evaluation point, respectively.

It is observed that autoencoders with an embedding di-
mension p ≤ 2 could not capture a meaningful embedding
representation for the material dataset with two-dimensional
strain-stress pairs (d = 6). This is consistent with the ob-
servation in (He and Chen 2020) that the number of nearest
neighbors for local convex reconstruction should be greater
than the intrinsic dimensionality of data, which is 2 for
the two-dimensional strain-stress material dataset. Hence,
the autoencoder with an architecture of ”6-4-3-4-6” is em-
ployed, where the first and the last values are the input and
output dimensions, respectively, and the remaining values
denote the number of neurons in hidden layers in sequence.
Thus, the embedding dimension equals to 3. A hyperbolic
tangent function is adopted as the activation function for
all layers of autoencoders, except for the embedding layer
and the output layer, where a linear function is employed
instead. The regularization parameter β in the loss function



(a) (b)

(c) (d)

Figure 3: (a) Schematic of a mitral valve posterior leaflet
specimen mounted on a biaxial testing system; (b) schematic
of the model of biaxial testing in data-driven computation;
(c) experimental Green strain data of all protocols; (d) ex-
perimental 2nd-PK stress data of all protocols

Eq. (6) is set as 10−5. An adaptive gradient algorithm, Ada-
grad (Duchi, Hazan, and Singer 2011), is employed. The ini-
tial learning rate is 0.1 and the number of training epochs is
2000. The training dataset contains the strain-stress data of
protocols 1, 3, 4, 7, and 8, see Fig. 3(c-d), which are stan-
dardized to have zero mean and unit variance for accelerated
training process.

The autoencoder is trained offline using the open-source
Pytorch library (Paszke et al. 2017) and then applied in the
AEDD solver during online computation of protocol 5. The
data-driven simulation predicts the stress responses of the
model (Fig. 3b) under the displacement-controlled loading
prescribed by the deformation history of protocol 5 (Fig.
3c). As shown in Fig. 4, AEDD achieves a higher predic-
tion accuracy than the local convexity data-driven (LCDD)
computing approach (He and Chen 2020; He et al. 2020),
(NRMSDAEDD = 0.061 < NRMSDLCDD = 0.158). The
results demonstrate better extrapolative generalization abil-
ity of AEDD, which is attributed to the underlying low-
dimensional global material manifold learned by the autoen-
coders. Specifically, AEDD performs local neighbor search-
ing and locally convex reconstruction of optimal material
state based on geometric distance information in the low-
dimensional global embedding space, which contains the
underlying manifold structure of the material data and con-
tributes to a higher solution accuracy and better generaliza-
tion performance. In contrast, LCDD performs local neigh-
bor searching and locally convex reconstruction purely from
the existing material data points without any generalization,
leading to very limited extrapolative generalization ability.

(a) AEDD (b) LCDD

Figure 4: (a) AEDD prediction on Protocol 5; (b) LCDD
prediction on Protocol 5. Protocols 1, 3, 4, 7, and 8 are used
to train the autoencoder applied in AEDD
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