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Abstract

Physics-Informed Neural Networks (PINNs) have
emerged recently as a promising application of deep
neural networks to the numerical solution of nonlin-
ear partial differential equations (PDEs). However, the
solution of more stiff or semi-linear PDEs can con-
tain regions where the gradient and solution changes
rapidly, creating difficulties in training the solution net-
work. It has been recognized that adaptive procedures
are needed to force the neural network to fit accurately
these “stubborn” spots in the solution. To accomplish
that, previous approaches have used fixed weights in
the loss function hard-coded over regions of the so-
lution deemed to be important. In this paper, we pro-
pose a new method to train PINNs adaptively, using
fully-trainable weights that force the neural network
to focus on regions of the solution are difficult, in a
way that is reminiscent of soft multiplicative atten-
tion masks used in Computer Vision. The key idea in
Self-Adaptive PINNs is to make the weights increase
as the corresponding losses increase, which is accom-
plished by training the network to simultaneously min-
imize the losses and maximize the weights, as in aug-
mented Lagrangian and constraint-satisfaction methods
in classical nonlinear optimization. We present numeri-
cal experiments with the Allen-Cahn PDE in which the
Self-Adaptive PINN outperformed other state-of-the-art
PINN algorithms in L2 error, while using a smaller
number of training epochs.

Introduction
As part of the burgeoning field of scientific machine learn-
ing (Baker et al. 2019), physics-informed neural networks
(PINNs) have emerged recently as an alternative to tra-
ditional partial different equation (PDE) solvers (Raissi,
Perdikaris, and Karniadakis 2019; Raissi 2018; Wight and
Zhao 2020; Wang, Yu, and Perdikaris 2020). Typical black-
box deep learning methodologies do not take into account
physical understanding of the problem domain. The PINN
approach is based on constraining the output of a deep neu-
ral network to satisfy a physical model specified by a PDE.
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A great advantage of PINNs over traditional time-
stepping PDE solvers is that the entire spatial-temporal do-
main can be solved at once using collocation points dis-
tributed irregularly (rather than on a grid) across the spatial-
temporal domain, in a process that can be massively paral-
lelized via GPU. As we have continued to see GPU capa-
bilities increase in recent years, a method that relies on par-
allelism in training iterations could begin to emerge as the
predominant approach in scientific computing.

The original continuous PINN in (Raissi, Perdikaris, and
Karniadakis 2019), henceforth referred to as the “baseline
PINN,” is effective at estimating solutions that are reason-
ably smooth, such as Burger’s equation, the wave equa-
tion, Poisson’s equation, and Schrodinger’s equation. On the
other hand, it has been observed that the baseline PINN has
convergence and accuracy problems when solving more stiff
semi-linear PDEs, with solutions that contain sharp and in-
tricate space and time transitions (Wight and Zhao 2020;
Wang, Teng, and Perdikaris 2020). This is the case, for ex-
ample, of the Allen-Cahn and Cahn-Hilliard equations of
phase-field models (Moelans, Blanpain, and Wollants 2008).

To address this issue, various modifications of the base-
line PINN algorithm have been proposed. For example, in
(Wight and Zhao 2020), a series of schemes are introduced,
including nonadaptive weighting of the training loss func-
tion, adaptive resampling of the collocation points, and time-
adaptive approaches, while in (Wang, Teng, and Perdikaris
2020), a learning rate annealing scheme was proposed. The
consensus has been that adaptation mechanisms are essen-
tial to make PINNs more stable and able to approximate well
difficult regions of the solution.

This paper introduces Self-Adaptive PINNs, a simple so-
lution to the adaptation problem for solving partial differ-
ence equations (PDEs), which uses trainable weights as a
soft multiplicative mask reminiscent of the attention mecha-
nism used in computer vision (Wang et al. 2017; Pang et al.
2019). The weights are trained concurrently with the ap-
proximation network. As a result, initial, boundary or col-
location points in difficult regions of the solution are auto-
matically weighted heavier in the loss function, forcing the
approximation to improve on those points. Experimental re-
sults show that Self-Adaptive PINNs can solve the tradition-
ally “stiffer” Allen Cahn PDE accurately. The Self-Adaptive



PINN displayed more accurate results than other state-of-
the-art PINN adaptive training algorithms, while using a
smaller number of training epochs.

Background
Overview of Physics-Informed Neural Networks
Consider a general nonlinear PDE of the form:

ut +Nx[u] = 0 , x ∈ Ω , t ∈ [0, T ] , (1)
u(x, t) = g(x, t) , x ∈ ∂Ω, t ∈ [0, T ] , (2)
u(x, 0) = h(x) , x ∈ Ω , (3)

where x ∈ Ω is a spatial vector variable in a domain
Ω ⊂ Rd, t is time, and Nx is a spatial differential oper-
ator. Following (Raissi, Perdikaris, and Karniadakis 2019),
let u(x, t) be approximated by the output uθ(x, t) of a deep
neural network with inputs x and t. Define the residual as:

rθ(x, t) :=
∂

∂t
uθ(x, t) +Nx[uθ(x, t)] , (4)

where all partial derivatives can be computed by auto-
matic differentiation methods (Baydin et al. 2017; Paszke
et al. 2017). The parameters θ are trained by back-
propagation (Chauvin and Rumelhart 1995) on a loss func-
tion that penalizes the output for not satisfying (1)-(3):

L(θ) = Lr(θ) + Lb(θ) + L0(θ) , (5)
where Lr is the loss corresponding to the residual (4), Lb
is the loss due to the boundary conditions (2), and L0 is the
loss due to the initial conditions (3):

Lr(θ) =
1

Nr

Nr∑
i=1

r(xir, t
i
r)

2, (6)

Lb(θ) =
1

Nb

Nb∑
i=1

|u(xib, t
i
b)− gib|2, (7)

L0(θ) =
1

N0

N0∑
i=1

|u(xi0, 0)− hi0|2, (8)

where {xi0, hi0 = h(xi0)}N0
i=1 are the data at time t = 0,

{xib, tib, gib = g(xib, t
i
b))}

Nb
i=1 are the data at the boundary,

{xir, tir}
Nr
i=1 are collocation points randomly distributed in

the domain Ω, and N0, Nb and Nr denote the total number
of initial data, boundary data, and collocation points, respec-
tively. The parameters θ can be tuned by minimizing the total
training loss L(θ) via standard gradient descent procedures
used in deep learning.

Related Work
The baseline PINN algorithm can be unstable during train-
ing and produce inaccurate approximations around sharp
space and time transitions in the solution of semi-linear
PDEs. Much of the recent literature on PINNs has been de-
voted to mitigating these issues by introducing modifications
to the baseline PINN algorithm that can increase training
stability and accuracy of the approximation, mostly via at-
tempting to mitigate spectral bias inherent to neural network
approximations. We mention some of these approaches be-
low.

Nonadaptive Weighting. In (Wight and Zhao 2020), it
was pointed out that a premium should be put on forcing
the neural network to satisfy the initial conditions closely,
especially for PDEs describing time-irreversible processes,
where the solution has to be approximated well early. Ac-
cordingly, a loss function of the form L(θ) = Lr(θ) +
Lb(θ) + C L0(θ) was suggested, where C � 1 is a hy-
perparameter.

Learning Rate Annealing. In (Wang, Teng, and
Perdikaris 2020), it is argued that the optimal value of the
weight C in the previous scheme may vary wildly among
different PDEs so that choosing its value would be difficult.
Instead they propose to use weights that are tuned during
training using statistics of the backpropagated gradients of
the loss function. It is noteworthy that the weights them-
selves are not adjusted by backpropagation. Instead, they
behave as learning rate coefficients, which are updated af-
ter each epoch of training.

Adaptive Resampling. In (Wight and Zhao 2020), a strat-
egy to adaptively resample the residual collocation points
based on the magnitude of the residual is proposed. While
this approach improves the approximation, the training pro-
cess must be interrupted and the MSE evaluated on the resid-
ual points to deterministically resample the ones with the
highest error. After each resampling step, the number of
residual points grows, increasing computational complexity.

Time-Adaptive Approaches. In (Wight and Zhao 2020),
another method is suggested, which divides the time axis
into several smaller intervals, and trains PINNs separately
on them, either sequentially or in parallel. This approach is
time-consuming due to the need to train multiple PINNs.

Neural Tangent Kernel (NTK) Weighting. Most re-
cently, (Wang, Yu, and Perdikaris 2020) introduced weights
on the collocation and boundary losses, which are updated
via neural tangent kernels. This approach derives a deter-
ministic kernel which remains constant or is updated peri-
odically at preset time intervals during training.

Methods
While the methods outlined in the previous section pro-
duce improvements in stability and accuracy over the base-
line PINN, they are either nonadaptive or require brute-force
adaptation at increased computational cost. Here we propose
a self-adaptive procedure that uses fully-trainable weights to
produce a multiplicative soft attention mask, in a manner
that is reminiscent of attention mechanisms used in com-
puter vision (Wang et al. 2017; Pang et al. 2019). This is
in agreement with the neural network philosophy of self-
adaptation: instead of hard-coding weights at particular re-
gions of the solution, the adaptation weights are updated by
backpropagation together with the network weights.

The proposed Self-adaptive PINN utilizes the following
loss function

L(w,λr,λb,λ0) =

Lr(w,λr) + Lb(w,λb) + L0(w,λ0) , (9)

where λr = (λ1r, . . . , λ
Nr
r ), λb = (λ1b , . . . , λ

Nb

b ), and λ0 =

(λ10, . . . , λ
N0
0 ) are trainable, nonnegative self-adaptation



weights for the initial, boundary, and collocation points, re-
spectively, and

Lr(w,λr) =
1

Nr

Nr∑
i=1

g(λir) r(x
i
r, t

i
r;w)2 (10)

Lb(w,λb) =
1

Nb

Nb∑
i=1

g(λib)(u(xib, t
i
b;w)− gib)2 (11)

L0(w,λ0) =
1

N0

N0∑
i=1

g(λi0)(u(xi0, 0;w)− hi0)2. (12)

where the self-adaptation mask function g is a nonnegative,
differentiable, strictly increasing function. The key feature
of self-adaptive PINNs is that the loss L(w,λr,λb,λ0) is
minimized with respect to the network weights w, as usual,
but is maximized with respect to the self-adaptation weights
λr,λb,λ0, i.e., the objective is:

min
w

max
λr,λb,λ0

L(w,λr,λb,λ0) . (13)

Consider the updates of a gradient descent/ascent approach
to this problem:

wk+1 = wk − ηk∇wL(wk,λkr ,λ
k
b ,λ

k
0) (14)

λk+1
r = λkr + ηk∇λr

L(wk,λkr ,λ
k
b ,λ

k
0) (15)

λk+1
b = λkb + ηk∇λb

L(wk,λkr ,λ
k
b ,λ

k
0) (16)

λk+1
0 = λk0 + ηk∇λ0

L(wk,λkr ,λ
k
b ,λ

k
0) . (17)

where ηk is the learning rate at step k, and

∇λr
L =

[
g′(λk,1r ) r(x1

r, t
1
r;w

k)2 · · ·

g′(λk,Nr
r ) r(xNb

r , tNr
r ;wk)2

]T
(18)

∇λb
L =

[
g′(λk,1b )(u(x1

b , t
1
b ;w

k)− g1b )2 · · ·

g′(λk,Nb

b )(u(xNb

b , tNb

b ;wk)− gNb

b )2
]T

(19)

∇λ0L = ′(λk,10 )(u(x1
0, 0;wk)− h10)2 · · ·

g′(λk,N0

0 )(u(xN0
0 , 0;wk)− hN0

0 )2
]T

(20)

Hence, if g′(λ) > 0, i.e. the mask function is strictly in-
creasing, then∇λr

L,∇λb
L,∇λ0

L ≥ 0, and any of the gra-
dients is only zero if the corresponding unmasked loss is
zero; e.g.,∇λ0L = 0 if and only u(xib, t

1
b ;w

k) = gib, for all
i = 1, . . . , N0, i.e., the neural network approximation satis-
fies the initial condition perfectly (at all given points). This
shows that the sequences of weights {λkr ; k = 1, 2, . . .},
{λkb ; k = 1, 2, . . .}, {λk0 ; k = 1, 2, . . .} (and the associated
mask values) are monotonically increasing, provided that
the corresponding unmasked losses are nonzero. Further-
more, the magnitude of the gradients ∇λr

L,∇λb
L,∇λ0

L,
and therefore of the updates, are larger if the correspond-
ing unmasked losses are larger. This progressively penal-
izes the network more for not fitting the residual, bound-
ary, and initial points closely (the self-adaptive weights, i.e.,

Figure 1: Mask function examples. From the upper left to the
bottom right: polynomial mask, q = 2; polynomial mask,
q = 4; smooth logistic mask; sharp logistic mask.

the amount of penalty, is are typically initialized to small
nonzero values). We remark that any of the weights can be
set to fixed, non-trainable values, if desired. For example, by
setting λkb ≡ 1, only the weights of the initial and colloca-
tion points would be trained.

The shape of the function g affects mask sharpness and
training of the PINN. Examples include polynomial masks
g(λ) = cλq , for c, q > 0, and sigmoidal masks. See Figure 1
for a few examples. In practice, the polynomial mask func-
tions have to be kept below a suitable (large) value, to avoid
numerical overflow. The sigmoidal masks do not have this
issue, and can also be used to produce sharp masks.

Results

In this section, we report experimental results obtained with
the Allen-Cahn PDE using a simple quadratic mask, which
contrast the performance of the proposed Self-Adaptive
PINN algorithm against the baseline PINN and two of the
PINN algorithms mentioned in Section , namely, the non-
adaptive weighting and time-adaptive schemes (for the lat-
ter, Approach 1 in (Wight and Zhao 2020) was used). The
main figure of merit used is the L2-error, similar to related
work in this area, for a direct comparison of the efficacy of
our technique. The code for these examples was written in
Tensorflow 2 and is available on Github1, where all the im-
plementations details are publicly available for reproduca-
bility.

Allen-Cahn Equation

The Allen-Cahn reaction-diffusion PDE is typically encoun-
tered in phase-field models, which can be used, for instance,
to simulate the phase separation process in the microstruc-
ture evolution of metallic alloys (Moelans, Blanpain, and
Wollants 2008; Shen and Yang 2010; Kunselman et al.
2020). The Allen-Cahn PDE considered here is specified as

1https://github.com/levimcclenny/SA-PINNs



Figure 2: Top: Plot of the approximation u(x, t) via the self-
adaptive PINN. Middle: Snapshots of the approximation
u(x, t) vs. the high-fidelity solution U(x, t) at various time
points through the temporal evolution. Bottom left: Residual
r(x, t) across the spatial-temporal domain. As expected, it
is close to 0 for the whole domain Ω. Bottom right: Abso-
lute error between approximation and high-fidelity solution
across the spatial-temporal domain.

follows:

ut − 0.0001uxx + 5u3 − 5u = 0 ,

x ∈ [−1, 1], t ∈ [0, 1] , (21)

u(x, 0) = x2cos(πx) , (22)
u(t,−1) = u(t, 1) , (23)
ux(t,−1) = ux(t, 1) . (24)

The Allen-Cahn PDE is an interesting benchmark for
PINNs for multiple reasons. It is a stiffer semi-linear PDE
that challenges PINNs to approximate solutions with sharp
space and time transitions, and is also introduces periodic
boundary conditions (23, 24). In order to deal with the lat-
ter, the boundary loss function Lb(θ,wb) in (11) is replaced
by

Lb(θ,wb) =
1

Nb

Nb∑
i=1

wib(|u(1, tib)− u(−1, tib)|2+

|ux(1, tib)− ux(−1, tib)|2) (25)

The neural network architecture is fully connected with
layer sizes [2, 128, 128, 128, 128, 1]. (The 2 inputs to the
network are (x, t) pairs and the output is the approximated
value of uθ.) This architecture is identical to (Wight and
Zhao 2020), in order to allow a direct comparison of perfor-
mance. We set the number of collocation, initial, and bound-
ary points to Nr = 20, 000, N0 = 100 and Nb = 100,

respectively (due to the periodic boundary condition, there
are in fact 200 boundary points). Here we hold the boundary
weights wib at 1, while the initial weights wi0 and collocation
weights wir are trained. The initial and collocation weights
are initialized from a uniform distribution in the intervals
[0, 100] and [0, 1], respectively. Training took 13ms/iteration
on an Nvidia V100 GPU.

Numerical results obtained with the Self-Adaptive PINN
are displayed in figure 2. The average L2 error across 10 runs
with random restarts was 2.1% ± 1.21%, while the L2 error
on 10 runs obtained by the time-adaptive approach in (Wight
and Zhao 2020) was 8.0% ± 0.56%. Neither the baseline
PINN nor the nonadaptive weighted scheme, with fixed ini-
tial condition weight C = 100, were able to solve this PDE
satisfactorily, with L2 errors 96.15% ± 6.45% and 49.61%
± 2.50%, respectively — these numbers matched almost ex-
actly those reported in (Wight and Zhao 2020).

The plot in Figure 3 is unique to the proposed self-
adaptive PINN algorithm. It displays the trained weights for
the collocation points across the spatio-temporal domain.
These are the weights of the multiplicative soft attention
mask self-imposed by the PINN. This plot stays remarkably
constant across different runs with random restarts, which is
an indication that it is a property of the particular PDE be-
ing solved. We can observe that in this case, more attention
is needed early in the solution, but not uniformly across the
space variable. In (Wight and Zhao 2020), this observation
was justified by the fact that the Allen-Cahn PDEs describes
a time-irreversible diffusion-reaction processes, where the
solution has to be approximated well early. However, here
this fact is “discovered” by the self-adaptive PINN itself.

Figure 3: Learned weights across the spatio-temporal do-
main. Brighter colors and larger points indicate larger
weights.

Conclusion
In this paper, we introduced a novel PINN algorithm based
on self-adaptation. This approach uses a conceptual frame-
work that is reminiscent of soft attention mechanisms em-
ployed in Computer Vision, in that the network identifies
which inputs are most important to its own training. Ex-
perimental results with the Allen-Cahn PDE system indicate
that Self-Adaptive PINNs allows for more accurate solutions



of PDEs with smaller computational cost than other state-
of-the-art PINN algorithms. We believe that self-adaptive
PINNs open up new possibilities for the improvement and
implementation of PINN solvers for complex nonlinear,
semi-linear, and stiff PDEs in engineering and science.
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