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Abstract

Rapid materials development utilizes deep generative models
to suggest candidate compounds with desirable properties be-
fore actual experiments. Such models successfully generate
novel candidates with improved properties in some cases, but
they usually require a large experimental dataset which is dif-
ficult to obtain. We propose MatVAE-two nested VAEs inde-
pendently trained on different datasets. The first VAE, which
is trained on a huge open dataset, is a universal generator of
chemical structural formulae, and the second VAE, which is
trained on a small experimental dataset, learns the structure—
property relation. This training framework can be understood
as a semi-supervised learning, which is expected to enhance
model transferability. We verified that MatVAE generates five
times more valid candidate compounds than the conventional
un-nested single VAE model.

Introduction

Determining the optimal combination of ingredients and
parameters can be a costly and time-consuming process
in product development. Materials informatics (MI) is an
emerging field that integrates informatics and materials sci-
ence with the goal of greatly reducing the resources and
risks involved in discovering, investing in, and deploying
new materials (Curtarolo et al. 2013). Recently, artificial in-
telligence (Al has led to improvements in MI; experimental
candidates can be narrowed down without unnecessary trial
and error before actual experiments to discover or create new
materials with desirable property values.

Statistically modeling the relationship between descrip-
tors and property values of a compound is a widely used
method for predicting the property values of candidate com-
pounds without conducting experiments. In drug discovery,
this relationship is referred to as the quantitative structure—
activity relationship (QSAR). In general, such methodol-
ogy is based on two processes; calculating descriptors from
the chemical structure by extracting structural features and
building a model integrating the descriptors and the property
values. The constructed statistical model can be used to pre-
dict property values from the chemical structures. Recently,
machine learning techniques have been widely used to build
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statistical models. However, there are two problems when
solving the inverse problem to obtain the chemical structure
with desired properties. The first problem is that a statistical
model is generally a complex nonlinear function, so an in-
verse function that yields a descriptor from a property value
cannot be obtained explicitly. The second problem is that
even if a descriptor is obtained, it is difficult to construct a
chemical structure containing that descriptor.

In recent years, an approach that has been extensively
studied is to use deep generative models to directly obtain
chemical structures that have desirable properties without
calculating the descriptors. Previously, methods for training
a generative adversarial network (GAN) with the reinforce-
ment learning (RL) framework have been reported (Olive-
crona et al. 2017; De Cao and Kipf 2018). The major differ-
ence between them is the representation of the compounds;
REINVENT (Olivecrona et al. 2017) and MolGAN (De Cao
and Kipf 2018) use text-based and graph-based representa-
tions, respectively. In RL, the atoms are attached to the main
chain in order to attain more optimal property values. How-
ever, such a sequential method of generation is considered
to be challenging to apply because the property values of a
chemical substance can change significantly with or without
local substructures, such as functional groups.

Another approach uses variational autoencoder (VAE)
models; for example, JT-VAE using graph-based represen-
tation (Jin, Barzilay, and Jaakkola 2018) and Chemical VAE
using text-based representation (Gémez-Bombarelli et al.
2018). With VAEs, the chemical structure can be directly
obtained by specifying one point in its latent space. Stud-
ies have shown that it is possible to optimize the property
values by searching the latent space because of the conti-
nuity of the space. However, it is important to note that the
previous studies required huge training datasets. Chemical-
VAE and REINVENT were trained using supervised learn-
ing with 250,000 and 350,000 compound data extracted
from the ZINC database, respectively. In most cases, when
developing industrial chemical products, only a few hundred
or thousand supervised training data, i.e., data with property
values measured by experiments, are available for a single
product family.

The purpose of this study is to propose a method for sug-
gesting viable candidate compounds with improved proper-
ties even with a small amount of experimental data. In addi-
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Figure 1: Diagram of the proposed nested variational autoencoders used for molecular generation.

tion, great attention should be paid to the transferability of
the trained model because training deep generative models is
costly in general. Hitachi, Ltd. provides such MI solutions,
such as a cloud-based IT platform for non-experts (Osak-
abe, Asahara, and Morita 2020), to several material manu-
facturers. The proposed method is based on semi-supervised
learning so that the trained model can be reused in different
projects, which is advantageous to such business.

Related Works
Variational Autoencoder for Molecular Generation

Deep neural networks (DNNs) can be used to represent
highly nonlinear relationships. They have outperformed
other methods in various fields on regression and classi-
fication tasks. Recently, DNNs have been utilized to gen-
erate a novel sample similar to the training data, i.e., a
deep generative model. The deep generative model assumes
that the observed data x is generated from an unobserved
latent variable z and aims to learn a transformation rule
p(z|z). One of the deep generative models is the varia-
tional autoencoder (VAE), which contains two neural net-
works, an encoder network, and a decoder network. The
VAE assumes a continuous latent variable z to be a mul-
tidimensional Gaussian distribution. The encoder is trained
to convert a data x to a latent variable z, and the decoder
is simultaneously trained to convert z back to xz. Gémez-
Bombarelli et al. integrated this VAE framework into au-
tomatic molecular design, namely ChemicalVAE (Gémez-
Bombarelli et al. 2018). Starting from a discrete molecular
representation such as a SMILES string (Weininger 1988),
the Chemical VAE encoder converts this discrete represen-
tation = of a molecule into a real-valued continuous vector
z, and its decoder converts z back to the discrete molecular
representation z. With ChemicalVAE, the encoder utilizes
a one-dimensional convolutional neural network (CNN) to
convolve strings, and the decoder utilizes a recurrent neural
network (RNN) to generate SMILES strings. By selecting a
point in the latent space and passing it through the decoder,
the corresponding SMILES can be obtained directly.

Two approaches can be used to generate a candidate
molecule with the desired property values. One is to only
use the trained VAE to generate the novel structure and pre-
dict the property values by calculating the descriptors with
the conventional QSAR framework. The other approach is

to build a new regression model with the latent variable
and the property values. ChemicalVAE follows the second
approach. To ensure the VAE generates effective candi-
date molecules that have improved property values, Chem-
icalVAE has an additional network, the predictor network,
which estimates property values from the latent continu-
ous vector z. Because of the continuity of the latent space,
ChemicalVAE can automatically generate novel chemical
structures by simple operations in the latent space, such as
decoding random vectors, sampling the neighbors of known
chemical structures, or interpolating between molecules.
However, the continuity of the latent space is only guar-
anteed around the points of the known molecules, and the
effectiveness of searching for novel candidates expected to
have more optimal property values depends on the perfor-
mance of the predictor network. In general, such a predic-
tor requires a large amount of training data including both
SMILES and corresponding property values. In most cases,
it is difficult to prepare a large experimental dataset.

Semi-supervised Learning for VAE

A conditional VAE (CVAE) has been developed as an exten-
sion of VAE, which takes into account the objective variable
y in the formulation of the latent variable z. Kingma et al.
proposed a deep generative model called the M1+M2 model,
based on CVAE architectures. The M1 model is trained with
a large amount of unlabeled data which lacks information on
the objective variable y, and then the M2 model is trained
with the latent variable z by mixing a few labeled data and
a large amount of unlabeled data. This model achieved 96%
correctness in a handwriting image recognition task using
MNIST where only 100 images out of 70,000 images were
given the labels (correct answers). This approach can be un-
derstood as semi-supervised learning and is expected to be
effective in generating molecules when limited by a small
amount of experimental data. However, both the M1 and M2
models require a large amount of unlabeled data for training.
When replacing the experimental data, the M2 model has to
be trained again, which is not desirable in terms of compu-
tation time and diversion of the trained model.

Proposed Method

In this paper, we propose a generative model consisting of
two nested VAEs by introducing semi-supervised learning
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Figure 2: Diagram of learning steps; (a) steps 1 and 2 for training the outer VAE, and (b) step 3 for training the inner VAE.

similar to the M1+M?2 model. To account for the diversion of
the trained model, the two VAEs are trained independently
on different datasets. Figure 1 shows the diagram of the pro-
posed model, MatVAE. The first VAE (outer VAE) is trained
to learn structure characteristics using a huge compound
structure dataset without property values, such as an open
dataset. The second VAE (inner VAE) is trained to learn the
relation between the structure characteristics and the prop-
erty values to be improved using an experimental dataset
that includes both structure information and its property val-
ues. Unlike the M1+M2 model, the costly training with the
huge dataset only needs to be done once for the outer VAE,
and there is no need to replace the trained outer VAE if the
experimental data changes. This model is expected to gener-
ate candidate compounds with improved property values by
giving a vector similar to the existing top-level compounds
paired with the desired property values.

Molecular Representations

SMILES (Weininger 1988) is a common format for repre-
senting molecules as a character sequence. With advances in
natural language processing, this text-based format is widely
used in MI applications such as predicting (Schwaller et al.
2018, 2019a; Coley et al. 2019; Bradshaw et al. 2019) and
classifying (Schwaller et al. 2019b) chemical reactions. To
make SMILES capable of inputting to VAE architectures,
the SMILES strings are encoded into one-hot vectors made

#1 #2 #3 #4 #5 #06 #7 #8
P c[1{0]1[1]{1]1[1]0
1{0]1({0{0|0[0|0|1

Benzene SMILES One-hot vectors

Figure 3: Example of SMILES representation and one-hot
vectors for benzene. For simplicity, only two characters are
shown in the one-hot encoding. In practice, one-hot vectors
forms M x N matrix, where M is the number of SMILES
symbols and N is the maximum length of SMILES strings.

up of M x N matrix, where M is the number of SMILES
symbols and NV is the maximum length of SMILES strings.
In our experiment, M is 101 and N is 90. The one-hot
vector indicates the presence and absence of each symbol
within a sequence, as illustrated in Fig. 3. InChl (Heller
et al. 2013) is another common representation of molecules,
but Gémez-Bombarelli et al. reported that it is less effective
than SMILES with VAE architectures (Gémez-Bombarelli
et al. 2018). Note that SELFIES (Krenn et al. 2020) is an-
other text-based representation based on the combination of
strings and graph expressions of molecules. SELFIES was
found to be highly robust against mutations in sequences
and outperformed other representations (including SMILES
strings) in terms of diversity, validity, and reconstruction
accuracy when applied to sequence-based VAEs. SELF-
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Figure 4: Diagram of the generation phase for MatVAE.

IES is compatible with SMILES and can be handled with
one-hot encoding similarly to SMILES. We have confirmed
that SELFIES improves the validity of generated molecu-
lar strings with MatVAE, but in this paper SMILES is used
as an input format to clarify whether the proposed nested
VAESs are more effective than the conventional single VAE
model (Gémez-Bombarelli et al. 2018) for generating can-
didate compounds.

Outer VAE

The purpose of the outer VAE is to prepare a general gener-
ative model for creating a one-hot vector that can be trans-
formed into corresponding valid SMILES strings. Since the
outer VAE does not need property value information, the
SMILES training dataset can be easily curated from any
open dataset such as ZINC (Irwin et al. 2012). All of the
SMILES are converted into one-hot vectors before they are
input to the outer VAE.

The structure of the outer VAE network is based on Chem-
icalVAE (Gomez-Bombarelli et al. 2018) as follows: the
outer encoder utilizes the three one-dimensional convolu-
tional layers to convolve strings, where the filter sizes are
9,9, 10 and the convolution kernels are 9, 9, 11, followed by
one fully connected layer of dimension L; = 196, where
L, is the size of the latent space of outer VAE. The de-
coder utilizes three layers of gated recurrent unit (GRU) net-
works (Chung et al. 2014) with a hidden dimension of 488.
The final layer of the decoder outputs a probability distribu-
tion over all possible symbols at each position in a SMILES
string. As a result, the same point in latent space can be
decoded into a different SMILES string, and the generated
string may be invalid. Similarly to (Gémez-Bombarelli et al.
2018), the GRU layer is updated to improve its performance
by using additional input (Williams and Zipser 1989).

Inner VAE

The purpose of the inner VAE is to learn the structure—
property relations. By using the latent vector of the trained
outer VAE instead of one-hot vectors to express molecular

structure, the inner VAE should be able to extract such rela-
tions more easily because the input dimension is reduced.

The input of the inner VAE is a vector concatenated with
a latent vector of the outer VAE and a vector consisting of
property values. Therefore, the input size can be L; + P,
where P is the number of the target properties to be im-
proved or optimized, as shown in Fig. 2 (b).

The structure of the inner VAE network is as follows: both
the inner encoder and decoder comprise multiple fully con-
nected layers with the latent space of width Ls. Therefore,
the number of nodes in each layer is automatically deter-
mined to be equal to the ratio between L; + P and Ls. In
this report, the latent space dimension Lo is defined to be
128, and the inner encoder and decoder are both defined to
have three layers.

Learning and Generating Procedures

The inner and the outer VAEs are trained independently.
Again, the required datasets for training the two VAEs are
(1) the structure dataset containing only SMILES and cu-
rated from open datasets, and (2) the experimental dataset
containing both SMILES and experimental property values.

Figure 2 shows the following three steps which make up
the learning procedure:

Step 1 Train outer VAE with structure dataset

Step 2 Train outer VAE with SMILES in experimen-
tal dataset

Step 3 Train inner VAE with experimental dataset

At a glance, Step 2 appears to be redundant. However, it is
necessary to ensure the continuity in the latent spaces even
around compounds in the experimental dataset. Unlike the
M1+M2 model, the inner VAE is only trained on the labeled
data with the experimental dataset. Hence, if the outer VAE
does not learn those compounds, the two VAEs cannot work
together in the generation phase. In fact, the generation of
candidate compounds with the nested VAEs without Step 2
resulted in almost no valid SMILES generated.

Figure 4 illustrates the generation phase. To generate the
candidate compounds expected to have improved proper-



Role | Size | Components | SA Score Range
Structure 500k | SMILES -

Experimental | 1k SMILES, SA Score | s; > 2.05
Top-level 0.1k | SMILES 2.05 > s; > 2.00

Table 1: Overview of the training datasets in the experiment.

ties, we use the vector with the width L; 4+ P consisting
of the latent vector similar to the existing top-level com-
pounds paired with the desired property values. Candidate
compounds can then be generated more efficiently by com-
prehensively combining multiple values for a single latent
vector within a range close to the target property value.

Experiment
Setup

Candidate compounds generated by MatVAE are not guar-
anteed to be synthesizable even if they are valid according
to the SMILES grammar. In this experiment, the synthetic
accessibility (SA) score (Ertl and Schuffenhauer 2009) is
used instead of the actual chemical properties so that the true
value for the unknown SMILES can be calculated without
conducting actual experiments. The SA score is an index of
ease of fabrication and is uniquely determined for any valid
SMILES.

One of the objectives of MatVAE is to generate can-
didate compounds that have improved property values. In
other words, the model is expected to generate SMILES
with property values outside the range of the given experi-
mental dataset. To evaluate MatVAE, we deliberately limited
the range of SA scores included in the experimental train-
ing dataset, as shown in Table 1. The experimental dataset
is limited to include compounds in which s; is larger than
2.05, where s; denotes the SA score of the i-th compounds
in the dataset. This means that the inner VAE cannot learn
the structure—property relation in the range below 2.05. One
hundred compounds with 2.05 > s; > 2.00 were curated
for a top-level compounds dataset used as the VAE input in
the generation phase. Note that all of the compounds in this
experiment were curated from the ZINC database.

For the evaluation, the proposed model generated candi-
date compounds repeatedly until valid SMILES are gener-
ated, and the number of the generated compounds with SA
scores below 2.0 was counted. If MatVAE is able to gener-
ate such compounds, it would be confirmed that the model
successfully suggests unknown compounds that exceed the
existing top-level compounds.

Results

Figure 5 shows the number of valid, optimal compounds
from the 100 suggested valid candidates, and the red line
indicates the performance of MatVAE. Even when the ex-
perimental dataset is small, MatVAE successfully generates
valid SMILES with an improved SA score, though the ratio
is not high. The blue line indicates the performance of the
conventional method, Chemical VAE, which is considerably
lower than that of the original results, though all parame-
ters and hyperparameters are the same as those of the orig-

-e-ChemicalVAE (1k Exp. Data)
--MatVAE (1k Exp. Data)

# of optimal candidates
D

0 25 50 75 100
# of valid (suggested) candidates

Figure 5: The number of optimal and valid candidates gen-
erated by the conventional Chemical VAE and the proposed
MatVAE.

inal model. This is because Chemical VAE is not intended
to be trained on such a small amount of experimental data.
In fact, when the number of experimental data is increased
to at least 5000, Chemical VAE outperforms MatVAE. Thus,
for a small amount of experimental data, MatVAE can pro-
duce more than five times as many optimal compounds as
Chemical VAE.

Conclusion

We have proposed a new deep generative model, MatVAE,
for producing molecules with optimal property values. The
model consists of two variational autoencoders which are
trained independently on different datasets. The first (outer)
VAE aims to capture the structure characteristics according
to the grammar of a text-based representation of molecules
such as SMILES. Even if the type of target properties
changes, this VAE does not need to be replaced, making it
transferable to other applications. The second (inner) VAE
can learn structure—property relations directly using the ex-
perimental dataset because the first VAE extracts structural
features of molecules by reducing the dimensions of the
one-hot vectors converted from SMILES. Therefore, it can
generate new molecule representations by inputting existing
top-level compounds structure data paired with the desired
property values. Compared with the common optimization
methodology for VAE, which utilizes gradient-based search
in its latent space, the proposed search method is more
straightforward and user-friendly.

There are a number of possible improvements that can be
made to MatVAE. In this study, we used text-based molec-
ular encoding and a GRU decoder. Such architecture may
make it unnecessarily difficult to produce valid SMILES
strings. It is possible to use a graph-based representation in-
stead of text-based, or to change the sequence-based VAE
to graph-based. However, even without changing the net-
work configuration, converting SMILES to one-hot vectors
via SELFIES representation could prevent the generation of
invalid SMILES. We have already verified the effectiveness
of this approach in other experiments.



Generated compounds are likely to have similar substruc-
tures, such as carbon chains, because VAEs tend to produce
frequent patterns in the training dataset. In fact, MatVAE is
more likely to produce compounds with a simple structure
and a low SA score than compounds with a complex struc-
ture and a high SA score. To generate useful and novel can-
didate compounds while maintaining structural diversity, it
will be necessary to modify the loss function in the future to
include restrictions.
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