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Abstract

Symmetries are ubiquitous in physics problems and these
should be taken into account when neural networks are
used to approximate their solutions. Embedding symmetries
within the neural networks by using equivariant layers has
been shown to be efficient from an accuracy standpoint.
Building equivariant structures also appears appealing from
the robustness standpoint since the use of correct-by-design
algorithms alleviates the verification step, which is a prereq-
uisite to any critical applications such as safety and military
related tasks. However, generically enforcing equivariance
in neural networks requires the use of cumbersome oper-
ators such has group-based convolution kernels, for which
the outputs may be hard to interpret. In this paper, we in-
troduce EqPdeNet, an alternative method in which equiv-
ariant partial differential equations are embedded within the
first layer of a neural network. This approach provides ap-
proximate equivariance with respect to any Lie group action
and allows combining several types of equivariance within
the same network. Moreover, the structure of the associated
partial differential equations can be directly related to the
physical nature of the input data, making this approach par-
ticularly appealing from an interpretability standpoint when
compared to the use of group-based convolution kernels.

Introduction
Symmetries are ubiquitous in physics with finite groups of
symmetries such as the hexagonal lattice of the graphene and
continuous groups such as Lorentz group in particle physics.

Highlighted by their successes in image and speech recog-
nition (Szegedy et al. 2017), (Xiong et al. 2016), neu-
ral networks are now used in various physics fields such
as fluid mechanics (Raissi, Perdikaris, and Karniadakis
2019), (Raissi, Yazdani, and Karniadakis 2020), high en-
ergy physics (Baldi, Sadowski, and Whiteson 2014) or
condensed matter physics (Carrasquilla and Melko 2017),
(Van Nieuwenburg, Liu, and Huber 2017).
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Convolutional Neural Networks (CNN) (LeCun et al.
1998) have demonstrated the efficiency of embedding trans-
lation symmetries into the design of a neural network for im-
age processing taks. More generally, directly encoding the
required symmetries into the algorithm design decreases the
number of parameters and increases the robustness. Using
algorithms in which given properties are enforced through
their specification (correct-by-design algorithms) has also
the advantage of being more amenable to critical appli-
cations such as safety and military related tasks. In re-
gards to the diversity of symmetries occurring in physics,
a generic approach for embedding the symmetry groups into
the neural networks design is needed. Group-Convolutional
Neural Networks (G-CNN), firstly introduced by (Cohen
and Welling 2016), have been recently extended to generic
groups of symmetries (Finzi et al. 2020) and achieve this
purpose. However, they rely on a cumbersome specification
and are hard to interpret.

In this paper, we introduce the EqPdeNet neural net-
work by leveraging on the differential invariants of Lie
group actions. Within EqPdeNet, equivariant inner repre-
sentations of the input data are built through the first layer
of the neural network and are then processed by deeper fully
connected layers, following the hierarchical structure of the
usual CNN. This hybrid approach applies to any Lie group
without requiring the group action to act transitively on the
input manifold and increases the accuracy and the robust-
ness by achieving approximate equivariance. In addition,
the structure of the associated Partial Differential Equations
(PDE) can be directly related to the physical nature of the in-
put data, making this approach particularly appealing from
an interpretability standpoint when compared to the use of
group-based convolution kernels.

Related Work and Contribution
We review in the following the related work by first focusing
on G-CNN and then highlight the existing duality between
neural networks and PDE.

Group-Convolutional Neural Networks
The success of CNN for image processing task has moti-
vated several works with respect to the generalization of
their translation equivariant layers to other type of trans-
forms. In this context, (Cohen and Welling 2016) introduced



the concept of Group-Convolutional Neural Network (G-
CNN) by extending the principle of weights sharing to sat-
isfy other symmetries than translations and focuses on dis-
crete groups such as p4 and p4m. Other works were devel-
oped focusing on specific groups of symmetry such as the
permutations group (Zaheer et al. 2017), some discrete sub-
groups of the 2-dimensional rotation group SO (2) (Mar-
cos, Volpi, and Tuia 2016), SO (2) itself (Oyallon and Mal-
lat 2015), (Worrall et al. 2017), (Weiler, Hamprecht, and
Storath 2018), the 3-dimensional translation and rotation
groups (Cohen et al. 2018), (Esteves et al. 2018).

These approaches were later generalized to more general
sets of transforms and in particular, to those arising from a
transitive action of a Lie group (Gens and Domingos 2014),
(Huang et al. 2017), (Bekkers 2019). Recently, a generic ap-
proach was proposed (Finzi et al. 2020) without requiring
the group action to be transitive.

All these works aim at generalizing the usual CNN struc-
ture by building equivariant layers to make the overall net-
work equivariant. Our approach rather aims at achieving ap-
proximate equivariance through the use of one PDE layer
and does not use group-based convolution kernels.

PDE-Based Neural Networks
Motivated by the universal approximation theorem (Hornik
et al. 1989), neural networks have been used to approximate
the solutions of PDE. A major work in this area is the in-
troduction of the Physics Informed Neural Network (PINN)
approach (Raissi, Perdikaris, and Karniadakis 2019) as an
alternative to the usual finite difference methods.

(Chen et al. 2018) emphasizes that a residual neural net-
work can actually be seen as some discretization of an un-
known Ordinary Differential Equation (ODE) and they show
how to efficiently learn the ODE parameters from the data by
using adjoint techniques and classical ODE solvers. Build-
ing on similar ideas, (Ruthotto and Haber 2019) uses the
ODE formulation of the neural network to introduce induc-
tive bias, such as parabolic or hyperbolic properties to en-
force respectively robustness to perturbations and low mem-
ory usage. The use of differential equation formulation to
embed desired properties into the neural network is a com-
mon feature with our work. However the question of sym-
metry is not considered in this work.

The use of PDE has also appeared useful for build-
ing equivariant structures. (Shen et al. 2020) introduces an
equivariant kernel to the isometry group SE(2) from differ-
ential operators approximated through usual kernel convo-
lutions. In (Smets et al. 2020), a neural network equivariant
to a generic transitive Lie group action is proposed by using
several layers of equivariant PDE, the training of the algo-
rithm consisting in finding the parameters of the PDE. Less
recently, but closer to the present work, (Fang et al. 2017)
have used a single PDE to extract equivariant features for a
linear classifier by leveraging on differential invariants the-
ory.

The hybrid approach we are proposing is applicable to
any Lie group action provided that a generating set of dif-
ferential invariants can be efficiently computed and it allows
for several group actions to be considered simultaneously.

Also, thanks to a convolution-based integration of the PDE
layer, an end-to-end training can be performed within some
automatic differentiation framework such as TensorFlow or
PyTorch.

Contribution
The main contributions of this paper are the following:
• We introduce the EqPdeNet hybrid architecture featur-

ing a first equivariant PDE layer by leveraging on the
differential invariants of Lie group actions, followed by
usual fully connected layers. Our approach in particular
allows considering several types of equivariance within
the first layer PDE layer.

• We give some numerical evidence to support the interest
of our approach from both performance and robustness
standpoints by performing some comparisons with the be-
havior of some usual neural networks on the ROTMNIST
dataset (Larochelle et al. 2007).

• We provide a numerical integration scheme for arbitrary
PDE by using some discrete convolution operators, mak-
ing the EqPdeNet approach compatible with an end-
to-end training through back-propagation within an auto-
matic differentiation framework.

Invariance and PDE
By leveraging on the formalism introduced in (Olver 1993),
we give in the following some general background about in-
variance theory for PDE. This will allow us to introduce the
notion of differential invariants of a Lie group action, which
is central to our work, and to explain how to build equivari-
ant representations of input data by solving a specific type
of PDE.

Symmetry Group
Formally, we will see a PDE of order n in p independent
variables x = (x1, ..., xp) ∈ X and one dependent variable
u = u (x1, ..., xp) ∈ U as an equation involving x, u and
uα = ∂αu, for α ∈ Nk, k ≥ 0 and |α| ≤ n. A PDE solution
will be of the form u = f (x).

In the following, we denote by X = Rp, with coordinates
(x1, ..., xp) , the space of the independent variables and by
U = R, with coordinates u, that of the dependent variable.
Let’s then consider a Lie group G of dimension m acting as
g. (x, u) on a sub-manifoldM⊆X ×U , with its Lie algebra
g generated by the vector fields ζ1, ..., ζm. For instance, G
could be the 2-dimensional rotation group SO(2) acting on
X × U ' R2 with the infinitesimal generator ζ1 = −u∂x +
x∂u.

We can define the transform of a function u = f(x) un-
der the action of G by identifying f with its graph Γf =
{(x, f (x)) , x ∈ Ω ⊆ X} ⊆ X × U and by defining g.f =
fg , where the function fg is the function associated with the
transformed graph g.Γf defined as it follows for g ∈ G:

g.Γf = {g. (x, f (x)) , (x, f (x)) ∈ Γf} = Γfg (1)

These notions of transformed function and group action on
functional graphs are illustrated on Figure 1 where the graph



Figure 1: Action of an element g in the 2-dimensional rota-
tion group SO(2) on the graph Γf of a function f : R→ R

of a function f : R → R (left) is transformed according to
the action of a group element g ∈ SO(2) by simple rotation
(right).

With this formalism, a symmetry group G of the consid-
ered PDE is a group G acting ofM⊆ X ×U in such a way
that if f is a solution, then its transformed fg by the group
action is also a solution.

Differential Invariants We call n−order jet space J (n)

the cartesian product between the space of the independent
variablesX and enough copies of the space of the dependent
variable U to include coordinates for each partial derivative
of order less or equal than n:

J (n) = X × U × ....× U︸ ︷︷ ︸
(p+n

n )

(2)

In the above definition, the binomial coefficient
(
p+n
n

)
cor-

responds to the number of partial derivatives of the function
f (assumed to be smooth enough) with order less or equal
than n. A function f : X → U represented as u = f(x) can
naturally be prolonged to a function u(n) = f (n)(x) from X
to J (n) by evaluating f and the corresponding partial deriva-
tive, so that u(n) = {uα, |α| ≤ n}.

According to the considered formalism, a generic PDE
could therefore be written as it follows,

∆
(
x, u(n)

)
= 0 (3)

where ∆ is an operator from the n−order jet space J (n)

to R. We then denote by pr(n)G the prolongation of the
group action of G to J (n) for which a prolonged transform
g(n), for g ∈ G, sends the graph Γf(n) onto Γ(g.f)(n) , and
by pr(n) ζ1, ...,pr(n) ζm the corresponding prolonged vector
fields.

In the following, we will be interested in operators ∆ as-
sociated with the PDE havingG as a symmetry group. These
operators are called the differential invariants of the action
of G and are the algebraic invariants of the prolonged group
action pr(n)G, for n ≥ 0. They can be obtained by leverag-
ing on the infinitesimal invariance criteria pr(n) ζi∆ = 0 for
i = 1, ...,m (Olver 2016) and (Hubert 2009).

A set of differential invariants of order n will be generi-
cally denoted by ∂φGu,n in the sequel.

Examples We have chosen to work with image classifica-
tion to illustrate our approach and we have considered the
action of the 2 dimensional special euclidean group SE(2)
and that of the group ΛR∗

+
(2) of the scaled translations on

X ⊆ R2 (p = 2), which can be seen as actions on X ×U by
considering a trivial component for the U part.

Using the infinitesimal invariance criteria allows writing
corresponding sets of differential invariants as it follows:

∂φ
SE(2)
u,2 =


u,

u2
x + u2

y,
uxx + uyy,

u2
xuxx + 2uxuyuxy + u2

yuyy,
u2
xx + 2u2

xy + u2
yy

 (4)

∂φ
ΛR∗

+

u,2 =

{
u2
x

uxx
,
u2
x

uxy
,
u2
x

uyy
,
u2
y

uxx
,
u2
y

uxy
,
u2
y

uyy

}
(5)

Equivariant Representations
A map ψ : A → B is said to be equivariant with respect
to the action of a group G if ψ (g.a) = g.ψ (a), ∀a ∈ A
and ∀g ∈ G. Leveraging on the differential invariants theory
previously introduced, we build from d ∈ I representations
which are equivariant to the action of a given groupG, where
I refers to the input space.

To do so, we consider that a data point d ∈ I can be
represented by the graph of a function fd from X to U , so
that d = {(x, fd (x)) , x ∈ X} . With this formalism, a gray
scale image such as one of the ROTMNIST samples consid-
ered in our numerical experiments can be represented by the
graph of the function associating each position to its pixel
value.

Following similar ideas to (Fang et al. 2017) and (Smets
et al. 2020), we model the representation learning process
by the following PDE:{

∂tu = F
(
∂φGu,n

)
ut=0 = fd

(6)

F is a function from the set of the differential invariants to
R and F

(
∂φGu,n

)
is therefore also a differential invariant,

any function of the differential invariants being a differential
invariant itself.

It therefore means that for g ∈ G, g.uT will also be a solu-
tion so that the learned representation of the data is actually
equivariant with respect to the action of G in the sense that
g.uT (fd) = uT (g.fd), where uT (f0) corresponds to the
solution of (6) with initial condition f0. Hence, as illustrated
in Figure 2 in the case of SE(2), diffusing the PDE (6) al-
lows for extracting similar representations (features maps on
the right) from the inputs fd (upper left) and g.fd (lower
left).

Different functions F of the differential invariants lead
to different equivariant representations by diffusing the cor-
responding PDE. As equivariance only is not enough for a
representation to be discriminative (e.g., black areas in the
corner of the MNIST samples), we will then use a learn-
ing approach to identify the representations conveying some



Figure 2: Extraction of an SE(2)- equivariant representa-
tion of an MNIST sample I0 with the heat equation ∂tu =
uxx + uyy, ut=0 = I0. The equivariant property makes the
associated diagram commutative, for g ∈ SE(2).

meaningful information about the input data through the in-
ference of the function F .

More precisely, we will assume that F belongs to a para-
metric space, so that F = Fθ, for θ ∈ Θ ⊆ Rk. In the fol-
lowing, F will be chosen to be linear as in (Fang et al. 2017)
or more generally, as a multivariate polynomial in the dif-
ferential invariants. The corresponding vectorial parameter
θ will be part of the trainables parameters of our approach.
In the following, we will denote uθT the representation ex-
tracted by solving the PDE (6) with F = Fθ. The explicit
reference to the initial condition is made by writing uθT (fd)
when needed but it will be generally dropped to ease the ex-
position.

An Hybrid Approach
We introduce in this section a generic hybrid approach com-
bining the previously introduced PDE based equivariant rep-
resentations learning with some fully connected feed for-
ward layers, following the intuition behind of the hierarchi-
cal structure of usual CNN.

EqPdeNet Structure
We introduce the EqPdeNet structure depicted with 2-
dimensional data on Figure 3, in which ne PDE are used
to extract the equivariant representations uθ1T ,...,uθne

T . A di-
mension reduction layer (e.g., pooling, linear combination,
etc.) is then combined with deeper fully connected layers to
produce the outputs. An output ỹd ∈ Y of EqPdeNet cor-
responding to the input fd is then computed according to the
following formula:

ỹd = Nω
(
φδ

(
uθ1T (fd) , .., u

θne

T (fd)
))

(7)

where Nω refers to the prediction function of the fully con-
nected layers with weights ω and δ to the parameters of the
dimension reduction layer. Denoting by L : (Y × Y)

nt →
R, for nt ≥ 1, a relevant loss function for the considered
learning task, the training of the algorithm therefore consists
in finding an approximate solution to the following mini-
mization problem,

Figure 3: EqPdeNet structure combining a first equivari-
ant PDE layer, a dimension reduction layer and deeper fully
connected layers

min
θ1,...,θne ,ω,δ

L

(
nt∏
i=1

{ỹdi , ydi}

)
(8)

where the (fdi , ydi)
nt

i=1 refers to the training samples.

PDE Integration
In order to efficiently find some numerical approximations to
the equivariant PDE and to train the entire architecture from
end-to-end, we propose an integration method compatible
with the backpropagation technique within some automatic
differentiation frameworks such as TensorFlow or PyTorch.

Convolution Approach Following (Ruthotto and Haber
2019) and (Long et al. 2018), our approach consists in ap-
proximating the PDE integration operator with some usual
convolution layers built from well chosen kernels. More pre-
cisely, we consider the explicit Euler discretization of (6),
which we write as it follows:{

u`+1 = u` + ∆t× Fθ
(
∂φGu,n

)
u0 = fd

(9)

where u` = u`∆t, ∆t > 0 is a discretization parame-
ter and 0 ≤ ` ≤ `T , with `T =

⌊
T
∆t

⌉
. We then consider

that each iteration of the above Euler scheme corresponds
to a layer of a neural network with input u` and outputs
u`+∆t×Fθ

(
∂φGu

)
. Our approach called EulerConv (Fig-

ure 4) then consists in implementing this layer by approxi-
mating the differential operator ∂α required for building the
differential invariants ∂φGu with some appropriate convolu-
tion filters.

For each differentiation index α, it is therefore possible to
write

∂αU` = Kα ? U` (10)

whereU` is a tensor referring to a discretization of u` over
the domain X , Kα is a constant convolution kernel and ? is
the discrete convolution operator (Differential convolution
layer on Figure 4). The differential invariants can then be
obtained from the values ∂αU` which correspond to the ap-
proximate values of the differential ∂αu`, computed by finite
differences through the convolution kernel Kα (Differential
invariants layer on Figure 4). The corresponding output (Up-
date layer on Figure 4) is the result of one step of the Euler
scheme (9). The unit allowing to perform the entire Euler



Figure 4: EulerConv unit allowing to perform one step in
the explicit Euler scheme by approximating the differential
operators ∂α with appropriate convolution kernels

Figure 5: ConvInt unit allowing to integrate the PDE
using an explicit discretisation scheme using several
EulerConvunits

scheme is referred to as ConvInt (Figure 5) and is a con-
catenation of EulerConv layers for the appropriate number
of time steps.

About Numerical Accuracy The above convolution ap-
proach to the PDE integration can actually be seen as a
specific explicit finite difference scheme, therefore raising
some natural questions about consistency, stability and con-
vergence. Even for simple choices of the function Fθ, the
theoretical analysis of this scheme is not an easy task to per-
form due to the strong non-linearity introduced by the dif-
ferential invariants and we therefore defer it to some further
work.

It is however possible to comment on some practical tools
that can be used to control the numerical accuracy of the dis-
cretization scheme. Considering the time dimension only, it
holds that ‖u`∆t

− ut‖
∆t→0

= o (∆t) so that we can make
the time discretization error arbitrarily small by decreasing
the parameter ∆t and adding some more EuleurConv units
accordingly in the ConvInt units. With respect to the space
dimension, the discretization error can be controlled by in-
creasing the number of sampling points when building U`
from u`∆t.

In some practical situations such as image processing
tasks, the input data lies in a discrete manifold so that the
smooth functional representation that was previously intro-
duced does not directly apply. In this case, interpolation
methods such as the functional convolution can be used to
obtain some continuous inputs (Simard et al. 1998).

Numerical Experiments
We provide in this section the results of numerical experi-
ments we have conducted on the 2-dimensional problem of
image classification. However, as generically applicable to
symmetric learning tasks on smooth functional data, our ap-
proach is not specific to image classification and could for
instance be instantiated to predict the evolution of a physi-

EqPdeNet
#param Test iso sca
13033 70.7(2.7) 37.3(1.6) 23.1(1.3)

26537 77.9(0.6) 39.6(1.3) 24.2(1.1)

55081 82.7(0.7) 43.8(0.9) 25.8(1.4)

118313 86.8(0.6) 48.8(1.1) 28.2(1.0)

269353 89.9(0.8) 53.0(0.9) 30.2(1.1)

Table 1: Accuracy of the EqPdeNet network in several
scenarios after training on the original ROTMNIST training
samples

cal system with symmetries (Noether’s theorem) as long as
a generating set of differential invariants can be efficiently
computed for the corresponding symmetry group.

Following the line of existing work with respect to the
testing of equivariant algorithms, we have structured our
numerical from the ROTMNIST dataset and we emphasize
here that we did not use any kind of data augmentation tech-
nique for the training step. More precisely, the ROTMNIST
dataset was built in (Larochelle et al. 2007) from the orignial
MNIST digits by applying to the original samples random
rotations with angles sampled uniformly in [0, 2π]. In the
following, algorithms have been trained on the 12k training
samples and all results have been obtained with a Tensor-
Flow based implementation of our approach running on a
GeForce RTX 2080 Nvidia card.

We have used a EqPdeNet network with a PDE layer
aiming to build equivariant data representations with respect
to the translation group, and either the rotation or the scal-
ing group. More precisely, the PDE layer includes two PDE
built from the differential invariants ∂φSE(2)

u,2 and two others

combining those of ∂φ
ΛR∗

+

u,2 , whose outputs are then linearly
combined.

To illustrate the benefits of our approach when compared
to corresponding fully connected neural networks (FCNN)
from both accuracy and robustness standpoints, we have
built several scenarios from the original ROTMNIST testing
set, namely
• iso: a random isometry, i.e. a combination of a random

translation of (th, tv) pixels and a random rotation of θ
degrees, where th ∼ U (−2, 2), tv ∼ U (−2, 2), and
θ ∼ U (−30, 30), is applied to each of the original testing
samples.

• sca: a random scaling transform x, y → (λx, λy) with
parameter λ ∼ U

(
2
3 , 1
)
is applied to each of the original

testing samples.
where U (a, b) refers to the uniform distribution on the
interval[a, b].

The accuracy results in each scenario obtained after av-
eraging over 10 instances of testing to smooth out the sta-
tistical noise are given in tables 1 and 2, together with the
corresponding standard deviation as subscripts.

We see that the accuracy on the testing set is consis-
tently higher with our approach than with the corresponding
FCNN, for all the considered numbers of parameters. With



FCNN
#param Test iso sca
13002 65.5(1.5) 36.7(1.4) 23.5(0.6)

26506 73.4(0.9) 37.9(1.2) 23.4(0.7)

55050 80.8(0.5) 42.4(1.0) 25.0(1.2)

118282 85.7(0.4) 47.0(0.8) 26.9(0.9)

269322 87.7(0.5) 49.5(0.6) 28.3(0.8)

Table 2: Accuracy of FCNN in several scenarios after train-
ing on the original ROTMNIST training samples

respect to robustness, higher accuracies are reached with our
approach in the iso and sca testing scenarios as the number
of parameters increases, consistently with the increase of the
overfitting risk.

Hence, although less performant than using G-CNN
which are able to achieve a testing accuracy of almost
99% with SE(2) equivariance (Finzi et al. 2020) because
of a simpler structure and approximate equivariance, our
EqPdeNet approach does provide material improvements
with respect to the usual FCNN, from both accuracy and ro-
bustness standpoints.

Conclusions and Further Work
In this paper we proposed an hybrid architecture with a first
PDE based layer made equivariant to generic group actions
by leveraging on differential invariants theory. This struc-
ture allows achieving simultaneous approximate equivari-
ance with respect to several group actions by aggregating the
learned inner representations through a dimension reduction
layer feeding deeper fully connected layers.

In order to make the approach practical, we have specified
an end-to-end training method compatible with the usual au-
tomatic differentiation frameworks in which the numerical
approximations to the several PDE solutions are obtained
through the use of fixed weights convolution operators.

We have performed some numerical testing on the
ROTMNIST dataset and have shown the superiority of our
approach from both accuracy and robustness standpoints,
when compared to fully connected neural networks. Our re-
sults are however below those reported for G-CNN as our
approach is simpler and does not ensure strict equivariance.
However, the PDE built from the differential invariants are
easier to interpret than group-based convolution kernels.

Although we believe the approach and our preliminary
numerical results to be promising, additional work is needed
for deriving rigorous rules with respect to hyperparameters
setting. In particular, a theoretical analysis of the conver-
gence of the discretization units for several Lie groups and
PDE types would be valuable.

Finally, by leveraging on the interpretability feature of our
approach, we plan to conduct analysis of the learned equiv-
ariant representations as to refine the choice of the paramet-
ric form of the PDE to be considered, to study the oppor-
tunity to use partial specification techniques and to discuss
some safety and certification aspects. Also, as done in (Finzi
et al. 2020) to model convolution kernels, using a small neu-

ral network instead of a multivariate polynomial for the pa-
rameterization of the differential invariants through the func-
tion Fθ may help improving the expressiveness of our ap-
proach.
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