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Abstract  
The paper deals with the learning process of Mamdani-type fuzzy systems with fuzzy inputs. 

Parallel computing technologies are used to speed up this process. The paper pro-poses an 

evolutionary algorithm that allows you to train a neuro-fuzzy system on a graphics processor 

unit. Including a model computational experiment. 
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1. Introduction 

The paper considers fuzzy models of the Mamdani type [1] with many fuzzy inputs. The inference 

method generally has an exponential computational complexity. The proposed approach and the 
presented models are based on a fuzzy truth value and a measure of possibility. An evolutionary strategy 

(μ, λ) [2] is presented as a tuning algorithm. The implementation of this algorithm on a graphics 

processor is presented. The adequacy of the developed methods and algorithms has been proven during 
computational experiments. 

The first section presents the statement of the problem and the estimation of the complexity of fuzzy 

inference. In the second section, the inference of the output value for the rule base is considered based 

on the decomposition theorem for a multidimensional membership function. The third section is about 
setting up and developing a machine learning algorithm. In the fourth section, an implementation of a 

training algorithm for a neuro-fuzzy system using parallel technologies is presented and a computational 

experiment is described. 
 

2. Definition of the linguistic model 

Define the linguistic model as a base of fuzzy rules 𝑅𝑘, 𝑘 =  1, 𝑁̅̅ ̅̅ ̅: 
𝑅𝑘 : 𝐼𝑓 𝑥1 𝑖𝑠 𝐴1𝑘#𝑥2 𝑖𝑠 𝐴2𝑘#…# 𝑥𝑛 𝑖𝑠 𝐴𝑛𝑘 , 𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝐵𝑘 𝑤𝑖𝑡ℎ 𝑤𝑘 ,  (1) 

where N is a number of fuzzy rules, 𝐴𝑖𝑘 ⊆ 𝑋𝑖, 𝑖 = 1, 𝑛̅̅ ̅̅ ̅, 𝐵𝑘 ⊆ 𝑌 are fuzzy sets that are described by 

membership functions 𝜇𝐴𝑖𝑘(𝑥𝑖) and 𝜇𝐵𝑘(𝑦) respectively. 𝑥1, 𝑥2, … , 𝑥𝑛 are input variables of the 

linguistic model, and [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇 = 𝒙 ∈ 𝑋1 × 𝑋2…×𝑋𝑛. Characters 𝑋𝑖, 𝑖 = 1,𝑁̅̅ ̅̅ ̅ and Y denoted 

respectively domain range of the input and output variables. In (1), linguistic bindings "AND" or "OR", 
denoted by «#». 

In following notation 𝑿 = 𝑋1 × 𝑋2…× 𝑋𝑛 and 𝑨𝒌 = 𝐴1𝑘 × 𝐴2𝑘 × …× 𝐴𝑛𝑘 , the rule (1) represented 
as a fuzzy implication 

𝑅𝑘 :  𝑨𝒌
            
→   𝐵𝑘 , 𝑘 = 1,𝑁̅̅ ̅̅ ̅. 

                                                   
Russian Advances in Fuzzy Systems and Soft Computing: Selected Contributions to the 10th International Conference «Integrated Models 

and Soft Computing in Artificial Intelligence» (IMSC-2021), May 17–20, 2021, Kolomna, Russian Federation 

EMAIL: vgsinuk@mail.ru (A. 1); panchenko.maks@gmail.com (A. 2)  

ORCID: 0000-0002-0856-6637 (A. 1); 0000-0001-9032-2203 (A. 2) 

 
©️  2021 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 



𝑅𝑘 can be formalized as a fuzzy relation defined on a set 𝑿 × 𝑌, that is 𝑅𝑘 ⊆ 𝑿 × 𝑌 is fuzzy set with 
membership function: 

𝜇𝑅𝑘(𝒙, 𝑦) = 𝜇𝑨𝒌
            
→    𝐵𝑘(𝒙, 𝑦). 

The Mamdani model defines the function assignment like 𝜇𝑨𝒌
            
→    𝐵𝑘(𝒙, 𝑦) based on known 

membership functions 𝜇𝐴𝑘(𝑥) and 𝜇𝐵𝑘(𝑦) in the following way [2, 6] 

 

𝜇𝑨𝒌
            
→    𝐵𝑘

(𝒙, 𝑦) = 𝑇1 (𝜇𝐴𝑘(𝑥), 𝜇𝐵𝑘(𝑦)) = 𝜇𝑨𝒌(𝑥) ∗
𝑇1
𝜇𝐵𝑘(𝑦) 

(2) 

  

where ∗
𝑇1

 is an arbitrary t-norm that is used as a parameter. 

When training a system presented as (1), the fuzzy inference is 𝐵𝑘
′ ⊆ 𝑌  if the inputs are fuzzy sets 

𝑨′ = 𝐴′1 × 𝐴′2 ×. . .× 𝐴′𝑛 ⊆ 𝑿 or  𝑥1 𝑖𝑠 𝐴′1 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴′2 𝑎𝑛𝑑 …  𝑎𝑛𝑑 𝑥𝑛 𝑖𝑠 𝐴′𝑛  with the 

corresponding membership function 𝜇𝑨′(𝑥). In accordance with the generalized fuzzy modus ponens 

rule [2], fuzzy set 𝐵′𝑘 determined by the composition of a fuzzy set 𝑨′ and relation 𝑅𝑘, such 

𝐵′𝑘 =  𝑨′ ∘ (𝑨𝒌 → 𝐵𝑘) 
or using the membership functions: 

𝜇𝐵′𝑘(𝑦) = 𝑠𝑢𝑝
𝑥∈𝑋
 {𝜇𝑨′(𝑥) ∗

𝑇2
(𝜇𝑨𝒌(𝑥) ∗

𝑇1
𝜇𝐵𝑘(𝑦))} 

(3) 

where ∗
𝑇2

 can be any t-norm. Complexity of the expression (3) is exponential 𝑂(|𝑋|n ∙ |𝑌|). 
 

3. Inference method for the rule base with the center of sums defuzzification  

To remove the exponential complexity problem of the (3), we use the following theorem. This 

theorem can be used under the condition that modeling the linguistic binding "AND" in the antecedent 

of rule (1) is used with t-norm "MIN", and for linguistic binding "OR" is used t-conorm "MAX". 

Theorem 

If 𝑇(𝜇𝐴𝑖𝑘(𝑥𝑖), 𝜇𝐵(𝑦)), 𝑖 = 1, 𝑛
̅̅ ̅̅ ̅ not increasing by argument 𝜇𝐴𝑖𝑘(𝑥𝑖), then: 

in case of linguistic binding "𝐴𝑁𝐷": 

𝑇 (𝜇𝐴𝑘(𝑥), 𝜇𝐵(𝑦)) = 𝑇 (𝑚𝑖𝑛𝑖=1,𝑛̅̅̅̅̅
{𝜇𝐴𝑖𝑘(𝑥𝑖)}, 𝜇𝐵(𝑦)) = 𝑚𝑖𝑛𝑖=1,𝑛̅̅̅̅̅

{𝑇 (𝜇𝐴𝑖𝑘(𝑥𝑖), 𝜇𝐵(𝑦))}, 

in case of linguistic binding “𝑂𝑅”: 

𝑇 (𝜇𝐴𝑘(𝑥), 𝜇𝐵(𝑦)) = 𝑇 (𝑚𝑎𝑥𝑖=1,𝑛̅̅̅̅̅
{𝜇𝐴𝑖𝑘(𝑥𝑖)}, 𝜇𝐵(𝑦)) = 𝑚𝑎𝑥𝑖=1,𝑛̅̅̅̅̅

{𝑇 (𝜇𝐴𝑖𝑘(𝑥𝑖), 𝜇𝐵(𝑦))}. 

Proof  

Consider the proof of the first property. 

Function 𝑇(𝜇𝐴𝑖𝑘(𝑥𝑖), 𝜇𝐵(𝑦)) is non-decreasing in argument 𝜇𝐴𝑖𝑘(𝑥𝑖), if ∀ 𝜇𝐵(𝑦) ϵ [0,1] from the 

condition 𝜇𝐴𝑖𝑘(𝑥𝑖
′) ≤ 𝜇𝐴𝑖𝑘(𝑥𝑖

′′) follows inequality: 

𝑇(𝜇𝐴𝑖𝑘(𝑥𝑖
′), 𝜇𝐵(𝑦)) ≥ 𝑇(𝜇𝐴𝑖𝑘(𝑥𝑖

′′), 𝜇𝐵(𝑦))   (4) 

This property is valid for any t-norm, according to their definition [6] 

Assume any of the values 𝜇𝐵(𝑦) ϵ [0,1].  Let also (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑋1 × 𝑋2…× 𝑋𝑛 and define: 

𝜇𝐴𝑖𝑘(𝑥𝑒) = 𝑚𝑖𝑛𝑖=1,𝑛̅̅̅̅̅
{𝜇𝐴𝑖𝑘(𝑥𝑖)}.     (5) 

This implies:  𝜇𝐴𝑖𝑘(𝑥𝑒) ≤ 𝜇𝐴𝑖𝑘(𝑥𝑖)  ∀𝑖 = 1, 𝑛
̅̅ ̅̅ ̅, in accordance with (4): 

T(𝜇𝐴𝑖𝑘(𝑥𝑒), 𝜇𝐵(𝑦)) ≤ T(𝜇𝐴𝑖𝑘(𝑥𝑖), 𝜇𝐵(𝑦))  ∀𝑖 = 1, 𝑛
̅̅ ̅̅ ̅ ,  (6) 

then taking into account (5): 



T(𝜇𝐴𝑖𝑘(𝑥𝑒), 𝜇𝐵(𝑦)) = 𝑚𝑖𝑛𝑖=1,𝑛̅̅̅̅̅
{𝑇(𝜇𝐴𝑖𝑘(𝑥𝑖), 𝜇𝐵(𝑦))}.   (7) 

Since T(𝜇𝐴𝑖𝑘(𝑥𝑒), 𝜇𝐵(𝑦)) exists at the right part of the expression (7) and taking into account (5): 

T(𝑚𝑖𝑛
𝑖=1,𝑛̅̅̅̅̅

{𝜇𝐴𝑖𝑘(𝑥𝑖)}, 𝜇𝐵(𝑦)) = 𝑚𝑖𝑛𝑖=1,𝑛̅̅̅̅̅
{𝑇(𝜇𝐴𝑖𝑘(𝑥𝑖), 𝜇𝐵(𝑦))} 

The first property of the theorem is proved. The second property is proved similarly. 

When the condition of the theorem on the decomposition of the multidimensional membership 
function (3) is fulfilled and when the linguistic binding "AND" is used in (1) , it will take the 

form: 

𝜇B𝑘
′ (𝑦) = min

𝑖=1,𝑛̅̅ ̅̅̅
{ sup
𝑥𝑖∈𝑋𝑖

{𝜇𝐴𝑖
′(𝑥𝑖) ∗

𝑇2
𝑇1 (𝜇𝐴𝑖𝑘(𝑥𝑖) ,  𝜇𝐵𝑘(𝑦))}} , 𝑘 = 1, N

̅̅ ̅̅ ̅ (8) 

Note that expression (8) is characterized by complexity of the order 𝑂(|𝑣𝑖| ∙ |𝑌| ∙ 𝑛) i.e. corresponds to 

polynomial. 

The membership function of one of the inputs can be defined as: 
𝜇𝐴𝑖

′(𝑥𝑖) = 𝜏𝐴𝑖𝑘/𝐴𝑖
′(𝜇𝐴𝑖𝑘(𝑥𝑖)) 

where 𝜏𝐴𝑘/𝐴′(·) is a fuzzy truth value of a fuzzy set 𝐴𝑘 in relation to 𝐴′, representing the 

compatibility membership function  𝐶𝑃(𝐴𝑘 , 𝐴′) 𝐴𝑘 towards 𝐴′, and 𝐴′ is considered reliable [4]: 

𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) = 𝜇𝐶𝑃(𝐴𝑖𝑘 ,𝐴𝑖

′) (𝑣𝑖) = sup
𝜇
𝐴𝑖
′(𝑥𝑖)=𝑣𝑖

𝑥𝑖∈𝑋𝑖

{𝜇𝐴𝑖𝑘(𝑥𝑖)} , 𝑣𝑖 ∈ [0,1]. 

Moving from variable x to variable v, denoting 𝜇𝐴𝑘(𝑥) = 𝑣: 

𝜇𝐴𝑖
′(𝑥𝑖) = 𝜏𝐴𝑖𝑘 𝐴𝑖

′⁄ (𝜇𝐴𝑖𝑘(𝑥𝑖)) = 𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖). 

Then (8) can be represented through the fuzzy value of the degree of truth: 

𝜇B𝑘
′ (𝑦) = min

𝑖=1,𝑛̅̅ ̅̅̅
{ sup
𝑣𝑖∈[0,1]

{𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇2
(𝑣𝑖 ∗

𝑇1
 𝜇𝐵𝑘(𝑦))}} , 𝑘 = 1, N

̅̅ ̅̅ ̅. (9) 

If  𝑇1 = 𝑇2 = 𝑇, then considering the t-norm property of associativity, (9) can be converted to: 

𝜇B𝑘
′ (𝑦) = min

𝑖=1,𝑛̅̅ ̅̅̅
{ sup
𝑣𝑖∈[0,1]

{𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇
(𝑣𝑖∗

𝑇
 𝜇𝐵𝑘(𝑦))}} = 

= min
𝑖=1,𝑛̅̅ ̅̅̅

{ sup
𝑣𝑖∈[0,1]

{(𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇
𝑣𝑖)∗

𝑇
 𝜇𝐵𝑘(𝑦)}} = (10) 

= min
𝑖=1,𝑛̅̅ ̅̅̅

{ sup
𝑣𝑖∈[0,1]

{𝜏𝐴𝑖𝑘 𝐴𝑖
′⁄ (𝑣𝑖) ∗

𝑇
𝑣𝑖} ∗

𝑇
 𝜇𝐵𝑘(𝑦)} = 

min
𝑖=1,𝑛̅̅ ̅̅̅

{П𝐴𝑖𝑘 𝐴𝑖
′⁄ ∗
𝑇
 𝜇𝐵𝑘(𝑦)} , 𝑘 = 1, 𝑛

̅̅ ̅̅ ̅, 

where 

П𝐴𝑖𝑘 𝐴𝑖
′⁄ = sup

𝑣𝑖∈[0,1]
{𝜏𝐴𝑖𝑘 𝐴𝑖

′⁄ (𝑣𝑖) ∗
𝑇
𝑣𝑖} 

∏𝐴𝑖𝑘/𝐴𝑖
′  is a scalar value and a possibility measure of 𝐴𝑖𝑘 corresponds to the input 𝐴𝑖

′  or vice versa 

[5]. 

Taking into account the above transformations, we will get a crisp output value using the method of 
defuzzification by the center of sums [3]. In this case, the output value can be calculated as: 

𝑦̅ =

∑ 𝑦̅𝑘. 𝑤𝑘 ∙ 𝜇𝐵𝑘
′ (𝑦̅𝑘)

𝑘=1,𝑁̅̅ ̅̅ ̅

∑ 𝑤𝑘 ∙ 𝜇𝐵𝑘
′ (𝑦̅𝑘)

𝑘=1,𝑁̅̅ ̅̅ ̅

, (11) 

where  𝑦̅ is a crisp output value of system consisting of N rules (1); 𝑦̅𝑘 are centers of membership 

functions 𝜇𝐵𝑘(𝑦), 𝑘 = 1, N
̅̅ ̅̅ ̅: 

𝜇𝐵𝑘(𝑦̅𝑘) = 𝑠𝑢𝑝
𝑦∈𝑌
{𝜇𝐵𝑘(𝑦)} = 1. (12) 

Since t-norms by definition satisfies the boundary condition 𝑇(𝑎; 1) = 𝑎, then substituting (10) into 

(11), considering (12), we will get: 

𝑦̅ =

∑ 𝑦̅
𝑘к=1,𝑁 . 𝑤𝑘.𝑚𝑖𝑛

𝑖=1,𝑛
{П
𝐴𝑖𝑘 𝐴𝑖

′⁄
}

∑ 𝑤𝑘. 𝑚𝑖𝑛
𝑖=1,𝑛

к=1,𝑁 {П
𝐴𝑖𝑘 𝐴𝑖

′⁄
}
. (13) 



4. Configuration of fuzzy model and learning algorithm 

We define the training and test sample, respectively, as a set of pairs of input and output values 

(𝑋𝑟 , 𝑦𝑟), 𝑟 = 1,𝑀,  

where 𝑋𝑟 = (𝑥1
𝑟 , 𝑥2

𝑟 , . . . , 𝑥𝑛
𝑟) is an input vector in r-pair, 𝑦𝑟 is a corresponding output. 

The input values can be crisp values, which are then fuzzy using fuzzification before output, or fuzzy 

values specified by terms, for example, "low", "medium", "high", etc., which are defined in the 

knowledge database. When using fuzzy values, the inputs will be unchanged throughout the training; 
when using numerical values opposite, the inputs can change during training when changing the 

parameters that define the terms of the membership functions. 

Tuning a fuzzy model consists in finding its parameters that minimize deviations between the desired 

and actual behavior of the model. It is assumed that the desired behavior of the model is given by a 
fuzzy training sample. 

Denote 𝜇𝐴𝑖𝑗(𝑥𝑖) the function of membership of the input to the fuzzy term 𝐴𝑖𝑗, where 𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅ ̅. 

The membership function is defined on the domain of the linguistic variable. 

An example of table styling. It is recommended to add cross references to tables, i.e., please, check 
Table 1. The style should be switched to Normal. 

The Gaussian function will be used to describe the membership function: 

𝜇𝑇(𝑥) = 𝑒
−
(𝑥−𝑏)2

2𝑐2 , (14)
where b and c are the coordinate of the maximum and the concentration coefficient of the membership 
function of the fuzzy set T. 

In the implemented inference method, it is possible to use different t-norms. During training, it is 

also possible to select the most suitable t-norm. 
The parameters b and c of the membership functions of all terms of the system, the weighting 

coefficients of the rules, as well as the type and parameter of the t-norm will be adjusted during the 

training of the system. 
Let's define a fuzzy model of the object 𝑦 =  𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛  ) in the following form: 

𝑦 =  𝐹(𝑋, 𝐵, 𝐶,𝑊, 𝑡, 𝛾), 
where 𝑋 =  (𝑥1, 𝑥2, … , 𝑥𝑛 ) is an input vector; 𝐵 =  (𝑏1, 𝑏2, . . . , 𝑏𝑞  ) and 𝐶 =  (𝑐1, 𝑐2 , . . . , 𝑐𝑞  ) are 

vectors of the membership functions parameters (14) of fuzzy terms from the knowledge base; 𝑊 =
 (𝑤1 , 𝑤2, . . . , 𝑤𝑁  ) is the vector of weighting coefficients of fuzzy rules (1);  

N – the total number of rules (1); 
q – total number of terms; 

𝑡, 𝛾 – type and parameter of t-norm; 

F – the Input / Output communication function corresponding to the (13). 
The setting of the fuzzy model is formulated as follows optimization problem [2]: find a vector (B, 

C, W, t, γ) 

𝑅 = √
1

𝑀
∑ [𝑦𝑟 − 𝐹(𝑋𝑟, 𝐵, 𝐶,𝑊, 𝑡, 𝛾)]2𝑟=1,𝑀 → 𝑚𝑖𝑛. (15) 

An evolutionary strategy (μ, λ) [2] is used for training, since when it is used, the probability that the 
local minimum from the search for solutions will be issued as a solution of the problem is reduced. 

In this case, an individual is a genotype that consists of two chromosomes. Chromosome x contains 

N genes-parameters of the system, and chromosome σ contains the values of standard deviations used 

in the process of mutation of the corresponding genes of chromosome x. The tuning algorithm can be 
described in the following sequence of steps: 

1. the parental population P is formed, which contains μ individuals with chromosome x, 

containing the system parameters set by the expert, the genes of the σ chromosome in all individuals 
are equal to 1; 

2. reproduction is performed to form a temporary population T of size λ, with λ> μ, from the 

parental population P; 
3. a population of seeds O is formed by mutation of the temporary population T; 

4. the population O is estimated. To estimate the individual, a system is constructed with the 

parameters recorded in the x chromosome. Further, for each pair of "inputs-output" from the training 



sample, the square of the difference between the output of the system, which receives the input, and 
the "output" is calculated. The sum of the obtained squares is the estimate of the given individual; 

5. a new parental population P is formed from μ of the best individuals of the population of seeds 

O; 

6. the condition of the completion of the algorithm is checked and if it is not met, then it is 
necessary to repeat steps 2-6 with the new parent population P; 

7. the best individual is displayed. 

Let us consider some of the steps of the algorithm. When the first parental individual is generated, 
the σ chromosome is filled with single values and then changes them only by mutation. All individuals 

of the population undergo mutation operations, and each separately. Both chromosomes mutate, but the 

mutation process is different. The chromosome 𝜎 =[𝜎1
2, … , 𝜎𝑛

2]𝑇 mutates first according to the 
expression: 

𝜎𝑖
′ = 𝜎𝑖 exp(𝜏

′𝑁(0,1) + 𝜏𝑁𝑖(0,1)), 
where i = 1, ..., n, n is the length of the chromosome; N (0,1) - a random number with a normal 

distribution (generated once for the entire chromosome); Ni (0,1) - random number with normal 

distribution (generated for each gene separately); τ' and τ are parameters of the evolutionary strategy 
that affect the convergence of the algorithm. In the literature, there is a form where C most often equal 

to 1: 

𝜏′ = 
𝐶

√2𝑛
, 𝜏 = 

𝐶

√2√𝑛
. 

New values of the mutation  𝜎𝑖
′ affect the change in the value of xi, as follows: 

𝑥𝑖
′ = 𝑥𝑖 + 𝜎𝑖

′𝑁𝑖(0,1), (16) 
where 𝑁𝑖(0,1) is a normally distributed random number, 𝑖 =  1, . . , 𝑛 [2]. 

The operation of mutation of the chosen evolutionary strategy was improved by adding restrictions 
on the values that the genes of the x chromosome can take. For each gene of the chromosome, before 

the start of the algorithm, the minimum and maximum possible values are selected. If during the 

mutation the value of a gene or allele goes beyond the specified range of possible values, the new value 
is calculated as: 

𝑥𝑖′′ = {
𝑎𝑚𝑎𝑥 − 𝑐, 𝑥𝑖′ > 𝑎𝑚𝑎𝑥 ,

𝑎𝑚𝑖𝑛 + 𝑐, 𝑥𝑖′ < 𝑎𝑚𝑖𝑛,
 

where xi is the value of the gene obtained by the mutation operation; amin and amax are the minimum 

and maximum possible values of the gene, respectively; c is a correction value equal to 

𝑐 = |𝑥𝑖′ − [𝑥𝑖′/(𝑎max − 𝑎𝑚𝑖𝑛)]|. 
After changing the property of the gene, the corresponding gene of chromosome σ should also be 

changed using (16): 

𝜎𝑖′′ = (𝑥𝑖
′′ − 𝑥𝑖)/𝑁𝑖(0,1). 

Thus, as a result of the mutation operation, the values of the genes are 𝑥𝑖
′′and  𝜎𝑖

′′. 

Applying this algorithm for training a fuzzy system, function (15) acts as an objective function. The 

best is an individual whose objective function value is less than that of other individuals in the 

population. 
The condition for the completion of the algorithm can be the number of individuals or the 

achievement of a specified estimate by an individual of the population P. 

5. Implementation of the learning algorithm on a graphic processor and 
computing experiment 

Learning operations were carried out on a graphics processor using OpenCL technology [6]. 
The population consists of a number of individuals. In computer memory, the population is 

represented as an array, the element of which is an individual. 

For the reproduction operation, a temporary population was generated in the form of an array of size 

λ, containing numbers from 0 to (μ-1) (μ is the size of the parental population). This array defines the 
indices of individuals that will be included in the new temporary population T. 

The mutation operation is performed for each individual of the temporary population separately. The 

mutation algorithm of the evolutionary strategy provides for the use of normally distributed random 



numbers. This is an expensive operation on the GPU and requires the creation of a random number 

generator, so an array of random numbers of size 𝜆 ∗ 2 ∗ 𝑛 is pre-generated.  

A block diagram of the mutation operation for each individual is shown in Fig. 1, where orgs is an 

array of individuals in the population, i is the index of an individual undergoing mutation, t and t1 are 

parameters of the evolutionary strategy, rands is an array of random numbers, limitations is an array of 
restrictions for the values of genes, mutated_orgs is an array of modified individuals. 

 
Figure 1: Mutation flow chart 

The modified individuals are estimated according to (15), the output of the fuzzy system is also 
calculated on the graphics processor. This process is described in [7]. 

The selection operation is organized by sorting the individuals in ascending order of the obtained 

estimates and the subsequent selection of the first μ individuals. If the condition for the completion of 
the algorithm is the achievement of a certain average score, then the average score is calculated for the 

selected individuals. 

To implement a computational experiment, we consider an object with two inputs 𝑥1, 𝑥2  ∈  [0 , 10] 
and one output y given by the relation: 

𝑦 = (𝑥1 − 7)
2 ∙ sin(0.61 ∙ 𝑥2 − 5.4) . (17) 

The task was set according to the graph of the reference dependence shown in Fig. 2, create a fuzzy 
model and tuning it using a fuzzy training sample. The adequacy of the fuzzy model must be checked 

by criterion (15) on a test sample of randomly generated input-output pairs. 



 
Figure 2: Model of nonlinear dependency (17) 

The fuzzy knowledge base was visually generated by an expert based on Fig. 2. It consists of seven 

rules, which are summarized in table. 1 For the linguistic assessment of the input variables x1 and x2 
and the output variable y, the terms "Low" (L), "Below Average" (BA), "Medium" (M), "Above Average" 

(AA) and "High" (H ). In this case, the value of criterion (15) on the test sample is 11.25 (Fig. 3a). The 

weight coefficients (W) of the rules of these fuzzy models are shown in Table 1. Testing of the trained 
fuzzy models (Fig. 3b) indicates an acceptable quality of identification of the nonlinear dependence 

(17). 

To study the process of tuning a fuzzy model, training samples of 10, 20, …, 100 pairs of "inputs-

outputs" were used. The training sample was generated as randomly selected input values from the 
domain of their definition and the output values calculated according to (17), which were then used to 

evaluate the identification accuracy criterion. To turn this training sample into a fuzzy one, the 

generated clear values of the input variables were estimated in terms of linguistic variables before the 
model was tuning, the output values remained unchanged (crisp). 

 

Table 1 
Fuzzy knowledge base 

𝒙𝟏 𝒙𝟐 𝒚 𝑾 
before 
tuning 

after 
tuning 

low low high 1 0.61 
low average low 1 0.63 
low high high 1 0.20 

average — average 1 0.99 
high low above average 1 0.10 
high average below average 1 0.21 
high high above average 1 0.01 

 
Fig. 4 shows the learning curves of fuzzy models. They reflect the dependence of identification 

errors (15) on the size (M) of the training sample itself on the training and test samples. The tuning was 

carried out using an evolutionary strategy (𝜇, 𝜆), 𝜇 = 40, 𝜆 = 160 over 100 iterations. Each point on 

the learning curves (Fig. 4) was calculated as the average of the experimental results for 10 different 

training samples. With an increase in the size of the fuzzy training sample, the residual on the test 
sample decreases, and the difference between the residuals on the training and test sample decreases. 



 
Figure 3: Test of the fuzzy system 

 
Figure 4: Learning curves 

6. Conclusion 

The article presents an inference method for Mamdani-type systems with fuzzy inputs with 

polynomial computational complexity. An algorithm for training such systems using a fuzzy training 

sample and using parallel technologies has been developed. The conducted computer experiments show 
that the fuzziness in the experimental data reduces the training efficiency, but with an increase in the 

training sample, the training accuracy increases. 
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