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Abstract  
Describes the DARPA Explanatory Artificial Intelligence (XAI) program, which seeks to create 
artificial intelligence systems whose learning models and solutions can be understood and properly 

validated by end users. DARPA considers XAI as artificial intelligence systems AI that can explain 

their decision to a human user, characterize their strengths and weaknesses, and how they will 

behave in the future. To achieve this goal, methods have been developed for constructing 

explainable models of intelligent systems that are effective explanatory interfaces and 

psychological models of users for effective explanation. The XAI development teams are described 

that solve these three problems by creating and developing explainable machine learning (ML) 

technologies, developing principles, strategies, and methods of human-computer interaction for 

obtaining effective explanations and applying psychological explanatory theories to assess the 

quality of XAI systems. 
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1. Introduction 

 

Major advances in artificial intelligence (AI), machine learning and especially deep learning neural 
networks have led to a new wave of AI systems (transport, security, medicine, mechanical engineering, 

defense). Often these systems offer solutions that are superior in quality to human ones but cannot 

explain their decisions and actions to users. This disadvantage is especially significant for military 
applications, which require the development of increasingly intelligent and autonomous. The DARPA 

Explanatory Artificial Intelligence (XAI) Program seeks to create artificial intelligence systems whose 

learning models and solutions can be understood and properly validated by end users. Achieving this 
goal requires building new generations of explainable models, developing effective explanatory 

interfaces, and building user models for more effective explanation. Explainable AI is needed for users 

to understand, trust, and effectively manage their smart partners. DARPA views XAI as AI systems that 

can explain their decision to a human user, characterize their strengths and weaknesses, and predict 
their future behavior. The goal of DARPA is to create more human-readable artificial intelligence 

systems using effective explanations. XAI development teams create and develop Explainable Machine 

Learning (ML) technologies, developing principles, strategies, and methods for human-computer 
interaction to generate effective explanations. The development teams are also evaluating how well 

XAI system explanations improve user experience, confidence, and productivity. 

Russia also pays great attention to the direction of explainable artificial intelligence. So Nizhny 

Novgorod State University in 2020 became the winner in the competition of large scientific projects 
from the Ministry of Education and Science of the Russian Federation with the project "Reliable and 
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logically transparent artificial intelligence: technology, verification and application for socially 
significant and infectious diseases." The main result of the project should be the development of new 

methods and technologies that allow to overcome two main barriers of machine learning and artificial 

intelligence systems: the problem of errors and the problem of explicitly explaining solutions. Today 

these problems do not have a satisfactory solution and require new developments. The project manager, 
Professor Alexander Gorban, explained the main idea of the project: “These problems are closely 

related: without the possibility of logical reading, the errors of artificial intelligence will remain 

inexplicable. Additional training of the system within the framework of existing methods can damage 
existing skills and, on the other hand, can require huge resources, which is impractical in serious tasks. 

For example, the well-known IBM Watson cognitive computing system has failed in the personalized 

medicine market due to systematic errors in diagnosing and recommending cancer treatments that could 
not be found and eliminated". 

2. Technologies and standards related to XAI 

The main trend in Hype Cycle 2020 (Fig. 1) is a shift in focus from robotics and hardware to 

artificial intelligence, including explainable and interpretable artificial intelligence. 

 

Figure 1: Gardner's Hypercycle for Emergent Technologies 2020. 

On the 2020 hypercycle, the following Explainable AI technologies can be noted: 

• Generative AI. Generative AI refers to programs that can use existing content, such as text, audio 
files, or images, to create new believable content. Various techniques exist for this, such as generative 

adversarial networks (GANS), transformers, and variational autoencoders. 

• Adaptive ML. Adaptive machine learning - algorithms that are retrained as new data becomes 

available. 



• Augmented Intelligence. Artificial intelligence that helps a person and does not replace him in 
decision-making processes. Contrasted with the general term "Artificial Intelligence" as a collective 

term for "Human Intelligence + AI". 

• Transfer Learning. An approach in machine learning, when the accumulated experience in solving 

one problem is used to accelerate the learning of another similar problem (Wikipedia) 
• Emotion AI AI that recognizes human emotions 

• Responsible AI. Responsible AI is focused on ensuring the ethical, transparent, and accountable 

use of AI technologies in accordance with user expectations, organizational values, and social laws and 
regulations. Responsible AI ensures that automated decisions are justified and explainable and helps 

maintain user trust and personal privacy. 

• Explainable AI. AI techniques and techniques that explain AI results to living experts. Contrasted 
with the concept of "AI as a black box", when it is impossible to understand the essence of the 

algorithms used and the relationships found. 

The National Institute of Standards and Technology (NIST) has published a draft list of 

principles for Explainable Artificial Intelligence (XAI) [1]. AI systems with an emphasis on human-
computer interaction. The document defines four principles underlying explainable AI: 

1. Explanation. AI systems should provide reasons and circumstances based on which certain 

decisions were made. The principle of explanation obliges the AI system to provide an explanation in 
the form of "evidence or justification for each outcome." 

2. Significance. Explainable AI systems must provide explanations that are understandable to 

individual users. The principle of significance states that the recipient of the explanation must be able 
to understand the explanation. The explanations should be tailored to the audience, both at the group 

and individual level. 

3. Accuracy of explanation. The explanation must reliably reflect the nature of the processes 

that the AI system produces to generate the results. This principle is a detailed explanation of how the 
system generated the final result. The application of this principle also depends on the context and the 

end user. Thus, different measures of explanation accuracy will be presented for different types of 

groups and users. 
4. Limits of knowledge. The system works only under the conditions for which it was designed, 

or when the system achieves adequate confidence in its results. The principle of knowledge limits 

requires the system to note any cases for which it was not designed. 

These four principles show that AI-based solutions must have the necessary transparency and 
explainability in order to generate credibility in their functioning and confidence in the conclusions of 

the system. 

In 2021, the IEEE Society for Computational Intelligence and the Committee on Standards (CIS 
/ SC) launched the project "Standard for XAI - Explainable Artificial Intelligence - to Achieve Clarity 

and Interoperability in the Design of Artificial Intelligence Systems" [2]. 

This standard defines mandatory and optional requirements and constraints that must be met 
for an AI method, algorithm, application, or system to be considered explainable. Both partially 

explainable and fully or strictly explainable methods, algorithms and systems are defined. There is no 

standard today that provides a single high-level methodology for classifying AI products as partially or 

fully explicable, but there is a great need for it (for example, in the Defense Advanced Research Projects 
Agency's DARPA program). Today, scientists and engineers developing artificial intelligence systems 

are limited by their specific products, customers, and conflicting interests. The problem becomes more 

acute when interoperability comes into play. A single standard allows you to optimize requirements and 
quality, increase productivity, improve the quality of the final product, and satisfy the needs of 

customers. 

3. Development and progress of the XAI DARPA program  

This section describes the DARPA XAI development teams that create and develop Explainable 
Machine Learning (ML) technologies, developing principles, strategies, and methods for human-

computer interaction to generate effective explanations. Development teams also evaluate how well 

XAI system explanations improve user experience, confidence, and productivity. 



Table 1 and Figure 2 show the 11 XAI technical domain teams and a team from the Florida Institute of 
Human and Machine Cognition (IHMC) that are developing a psychological model of explanation. 

Three teams are working on both research areas of concern (autonomy and data analysis), three are 

working only on the first, and five are working on only the second. They all explore different methods 

for developing explainable models and explanatory interfaces [3]. 

 

. 

Figure 2: XAI developers and their technical approaches 

 
Table 1. 
XAI Program Development Teams. [3]. 

 

Team Explained model Explaining 
interface 

Tasks to be solved 

1.University 

of Berkeley 

( UCB) 

Explaining ex post facto by 

training additional DL models. 

Explicit Introspective 
Explanations (NMN) 

Reinforcement Learning 

(Informative Deployments, 
Explicit Modular Agent) 

Reflexive explanations 

(derived from the 

model). Rational 
explanations (based on 

reasoning about the 

user's beliefs) 

Autonomy: vehicle 

control 

(BDD - X , CARLA ), 
strategy games 

(StarCraft II ) . 

Analytics: visual quality 
control and task filtering 

(VQA - X , ACT - X , 

,xView, DiDeMo ) 

2. Charles 
River 

Analytics 

(CRA) 
  

Experiment with a trained model 
to create an explainable causal 

programming model. 

  

Interactive 
visualization based on 

the generation of 

temporal, spatial 
narratives from causal, 

probabilistic models 

Autonomy: Atari , StarCr
aft II  

Analytics: Pedestrian 

Detection ( INRIA ), 
Activity Recognition 

( ActivityNet ) 

3.University 

of Los 
Angeles 

(UCLA) 

  

Interpreted representations: 

STC-AOG (spatial, temporal, 
causal models), STC - ZP 

(interpretation and analytics of 

scenes and events) 

Three-level 

explanation of 
concepts, causal and 

counterfactual 

reasoning, the 

Autonomy: The robot 

performs daily tasks in a 
physically realistic virtual 

reality platform for 



explanation of the 

usefulness 

autonomous driving 

(GTA5 game engine) 

4. Oregon 

State 

University 
(OSU) 

xDAP, a combination of 

adaptive programs, deep 

learning and explainability 

It provides visual 

alternation and NL 

explained interface for 
acceptance test 

pilots - verifiers based 

on IFT 

Autonomy: the same real-

time strategies based on a 

specially designed game 
engine that supports 

explanations; Starcraft 

5. PARC Three-level architecture: 
learning level, cognitive level, 

explanation level 

Interactive 
visualization of states, 

actions, strategies, 

quantities 

Autonomy: shell 
MAVSim in the 

simulation 

environment ARduPilot  

6. Carnegie 
Mellon 

University 

  

New scientific discipline 
for XRL   with work on new 

algorithms and representations 

Interactive 
explanations of 

dynamical 

systems. Human-
machine interaction 

for increased 

productivity 

Autonomy: OpenAI Gym, 
grid autonomy, mobile 

service robots, self-

improving educational 
software 

7. SRI Multiple DL machinery, 
mechanisms, based on the 

attention, composite NMN, 

GAN. 

DNN visualization. A 
response to a query 

explaining DNN 

solutions. Generation 

of NL justifications. 

Analytics: VQA  Visual 
Gnome. Flick30), 

MovieQA 

8. Raytheon 

BBN 

DNN semantic markup. Create 

DNN audit trail 

Gradient-weighted 

display of class 

activation 

Analytics for images and 

videos 

9. UTD Controlled Probabilistic Logic 
Models (TPLM) 

Allows users to 
explore and correct the 

baseline model, and 

add baseline 
knowledge 

Analytics: explanation 
action system in a multi-

modal data (video and 

text), biological data and 
data sets culinary scenes 

with text annotations 

10. Texas 

A&M 
University 

(TAMU) 

The simulation learning 

framework combines DL models 
for prediction and shallow 

models for explanations. 

Interpretable learning algorithms 
extract knowledge 

from DNN for appropriate 

explanations. 

Interactive 

visualization of 
multiple news stories 

using heatmaps and 

topic modeling 
clusters to display 

predictive functions 

Analytics: Multiple tasks 

using data from Twitter, 
Facebook, ImageNet, and 

news sites. 

11. Rutgers 
  

Selection of optimum examples 
to explain the model solutions 

based on Bayesian their 

reasoning 

Explanation of the 
complete model based 

on examples; 

examples provided 

by the user 

Analytics: image 
processing, text corpus, 

VQA, movie events 

 

Below is a more detailed description of the activity of the commands. 

3.1. Deep Explainable AI (DEXAI).  

The University of California Berkeley (UCB) team (including researchers from Boston University, 
University of Amsterdam, and Kitware) is developing an artificial intelligence system that is 

understandable to humans through explicit structural interpretation [4] and introspective explanation 



[5] that has predictable behavior and high confidence in the result [6]. The key challenges of Deep 
Explainable AI (DEXAI) are generating accurate explanations of the model's behavior and choosing 

those that are most useful to the user. UCB addresses the first problem by creating implicit or explicit 

explanation models: they can implicitly represent complex hidden representations in understandable 

ways, or they can build explicit structures. These DEXAI models create a set of possible explainable 
actions. For the second problem, UCB proposes rational explanations that use the user's belief model 

in decision making to select explanatory actions. UCB is also developing an explain interface based on 

the principles of iterative design. DEXAI's autonomy is demonstrated in vehicle handling (using the 
Berkeley Deep Drive dataset and CARLA simulator) [7] and in strategy game scenarios (StarCraft II). 

For analytics, DEXAI uses visual question answers (VQA) and filtering techniques, for example using 

large datasets such as VQA-X and ACT-X for VQA and activity recognition tasks [8]. 

3.2. Causal models to explain machine learning. 

 The goal of the Charles River Analytics (CRA) team (including researchers from the University of 

Massachusetts and Brown University) is to create and provide causal explanations for machine learning 

using causal models to explain the Learning Approach (CAMEL). CAMEL explanations are presented 
to the user as stories in an interactive, intuitive interface. CAMEL includes a framework for causal 

probabilistic programming that integrates concepts and teaching methods from causal modeling [9] with 

probabilistic programming languages [10]. Generative probabilistic models, presented in a probabilistic 

programming language, naturally express cause-and-effect relationships. CAMEL builds a causal 
model of their impact on the operation of a machine learning system by conducting experiments in 

which areas of agreement are systematically included or removed. After training, he uses causal models 

to derive explanations for the predictions or actions of the system. In the field of analytics and data 
analysis, CAMEL is solving the problem of pedestrian detection (using the INRIA pedestrian dataset) 

[11], and the CRA is working on the problems of activity recognition (using ActivityNet). CAMEL's 

autonomy is demonstrated in the Atari Amidar game, and CRA is working to demonstrate it in StarCraft 
II. 

3.3. Learning and communicating explainable views for analytics and 
autonomy. 

The University of California Los Angeles (UCLA) team (including researchers from Oregon State 

University and Michigan State University) develops interpretable models that combine representational 

paradigms, including interpreted DNNs, compositional graphical models such as AND / OR graphs, 
and models that produce explanations at three levels (i.e., compositionality, causality, and utility). The 

UCLA system includes an execution module, which performs tasks with multimodal inputs, and an 

explain module, which explains its perception, cognitive reasoning, and decisions to the user. The 
execution engine outputs interpreted representations in the form of a graph of spatial, temporal and 

causal analysis (STC-PG) for 3D scene perception (for analytics) and task scheduling (for autonomy). 

STC-PG are compositional, probabilistic, interpretable and based on DNN techniques and are used for 

image and video analysis. The explain module displays an explanatory syntactic graph during the 
dialogue [12], localizes the corresponding subgraph in the STC-PG and determines the user's intentions. 

For data analytic analysis, UCLA applied its system to a network of video cameras to understand the 

meaning of the scene and analyze the events. UCLA has demonstrated the autonomy of the system in 
scenarios using robots performing tasks on virtual reality platforms and in a game with driving an 

autonomous vehicle. 

 

3.4. Acceptance testing of deep adaptive programs with sound information 

Oregon State University (OSU) develops tools to explain the actions of trained agents that perform 

consistent decision making and identifies the best principles for developing user interfaces with 



explanations. The OSU Explainable Agent Model uses Explainable Deep Adaptive Programming 
(xDAP), which combines adaptive programming, deep reinforcement learning (RL), and explainability. 

With xDAP, programmers can create agents that represent solutions that are automatically optimized 

through deep RL when interacting with the simulator. For each selection point, deep RL connects a 

trained deep decision-making neural network (dNN), which can provide high performance, but is 
inherently inexplicable. After initial xDAP training, the xACT deep adaptive acceptance testing system 

trains an explanatory neural network [13] for each dNN. They provide a set of explain functions (x-

functions) that encode properties of the dNN decision logic. Such x-functions, which are neural 
networks, are not originally interpretable by humans. To solve this problem, xACT allows domain 

experts to attach interpretable descriptions to x-functions, and xDAP programmers to annotate 

environment reward types and other concepts that are automatically embedded in dNNs as “annotation 
concepts” during training. OSU has demonstrated xACT in scripts using a custom-built real-time game 

engine. Pilot studies have provided information to explain user interface design by describing how users 

navigate in an AI game and explain game decisions. 

 
 

3.5. General training and explanation. 

A Palo Alto Research Center (PARC) team (including researchers from Carnegie Mellon University, 

the Army CyberInstitute, the University of Edinburgh, and the University of Michigan) is developing 
an interactive reasoning system that could explain the capabilities of the XAI system, which controls a 

simulated unmanned aerial system. Explanations of the XAI system should communicate what 

information it uses to make decisions, how the system itself works and its goals. To this end, the PARC 
(COGLE) general learning and explanation system and its users establish a common basis for defining 

which terms to use in explanations and their meanings. This is provided by the PARC introspective 

discourse model, which alternates between learning and explanation. 
COGLE's layered architecture separates information processing into comprehension, cognitive 

modeling, and learning. The learning layer uses repetitive and hierarchical DNNs with limited 

bandwidth to create abstractions and compositions on the states and actions of unmanned aerial systems 

to support understanding of generalized patterns. 
COGLE's two explanatory interfaces support performance analysis, risk assessment, and training. 

The first is a map that tracks the actions of unmanned aerial systems and divides actions or decisions in 

flight into explainable segments. Second interface tools allow users to explore and assess system 
competencies and make predictions about mission performance. COGLE is being demonstrated on the 

ArduPilot Software-in-the-Loop Simulator and on the discrete abstract simulation test bed. Its quality 

is evaluated by drone operators and analysts. Competency-based assessment will help PARC determine 

how best to develop suitable models that are understandable for the domain. 

3.6. Explainable reinforcement learning. 

Carnegie Mellon University is creating a new direction of explainable RL to enable dynamic human-

machine interaction and adaptation. It has two goals: to develop new methods for learning explainable 
RL algorithms, and to develop strategies that can explain existing black box algorithms. To achieve the 

first goal, Carnegie Mellon is developing methods to improve model learning for RL agents to take 

advantage of model-based approaches while combining them with the benefits of model-free 

approaches. Methods are used that gradually add states and actions to models of the world after hidden 
information is discovered, study models through end-to-end training on complex optimal control 

algorithms, study general DL models that use rigid body physics [15] and predict states using iterative 

architectures [16].  Carnegie Mellon University is also developing methods that can explain the actions 
and plans of RL black box agents. This includes answering questions such as “Why did the agent choose 

a particular action?” or “What training data influenced this choice the most?” To this end, Carnegie 

Mellon University has developed methods that generate NL descriptions of agents from behavior logs 



and detect outliers or anomalies. Carnegie Mellon has demonstrated XRL in several scenarios including 
OpenAI Gym, Atari games, autonomous vehicle simulations, mobile service robots. 

3.7. Explainable generative adversarial networks. 

The SRI International team (including researchers from the University of Toronto, the University of 

Guelph, and the University of California, San Diego) is developing an explainable machine learning 
framework for multimodal data analysis that generates understandable explanations with rationale for 

decisions, accompanied by visualizations of input data used to generate inferences. The Deep Attention-

Based Representation System for Explainable Generative Adversarial Networks (DARE / X-GANS) 

uses DNN architectures like models of attention in visual neuroscience. It identifies, extracts, and 
presents evidence to the user as part of the explanation. Attention mechanisms provide the user with 

the means to explore the system and work together. DARE / X-GANS uses generative adversarial 

networks (GANs) that learn to understand data by creating it while learning representations with 
explanatory power. GANs become explicable with interpreted decoders. This includes generating visual 

evidence for given text queries using chunked text generation [17], with chunks being interpreted 

features such as human poses or bounding boxes. The system presents explanations of its answers based 
on visual concepts extracted from multimodal input data and queries to the knowledge base. Asking 

explanatory questions, she provides the rationale and visual evidence used to make decisions and a 

visualization of the inner workings of the system. SRI focuses on the data analytics problem area and 

has demonstrated DARE / X-GAN work using VQA and multimodal QA tasks with image and video 
datasets. 

3.8. A system of answers to explainable questions. 

The Raytheon BBN Technologies team (including researchers from Georgia Institute of 

Technology, Massachusetts Institute of Technology, and the University of Texas at Austin) is 
developing a system that answers any natural language (NL) questions users ask about media and 

provides interactive possible explanations as to why he got this answer. Explainable Answer to 

Questions System (EQUAS) studies explainable DNN models in which internal structures (eg, 
individual neurons) are aligned with semantic concepts [18]. EQUAS also uses neural imaging 

techniques to highlight the input areas associated with neurons that most influenced its decisions. To 

express case-based explanations, EQUAS stores indices and extracts cases from its training data that 
support its selection. The four modes of explanation correspond to the key elements of argument 

building and interactive pedagogy: didactic statements, visualizations, cases, and rejection of 

alternatives. The EQUAS explain interface provides iterative and controlled collaboration, allowing 

users to dig deeper into corroborating evidence from each category of explanation. Raytheon BBN, 
demonstrated the initial capabilities of EQUAS for VQA tasks for image analysis, exploring how 

various explanation methods allow users to understand and predict the behavior of the underlying VQA 

system. 

3.9. Controlled probabilistic logical models. 

 A team at the University of Texas at Dallas (UTD) (including researchers from UCLA, Texas A&M, 

and Indian Institute of Technology Delhi) is developing a unified approach to XAI using controlled 

probabilistic logic models (TPLM). TPLM is a family of representations that includes decision trees, 
binary decision diagrams, section networks, maximal decision diagrams, first-order arithmetic schemes, 

and controlled Markov logic [19]. UTD extends TPLM to generate explanations of query results. For 

scalable inference, the system uses new algorithms to answer complex explanatory queries using 
techniques such as generalized inference, variational inference, and combinations thereof. It uses 

discriminatory techniques to quickly and improve training accuracy, deriving algorithms that make up 

NN and support vector machines with TPLM. These approaches are then extended to handle real-world 

situations. The UTD explain interface displays interpreted views with multiple related explanations. Its 



interactive component allows users to debug the model and provide alternative explanations. UTD 
focuses on the analytics problem area and is demonstrating its human activity recognition system in 

multimodal data (video and text) such as a text annotated cookery scene dataset. 

3.10.  Interpretable Deep Learning. 

A team at Texas A&M University (TAMU) (including researchers from Washington State 
University) is developing an interpretable DL framework that uses simulation learning to use explicable 

shallow models and facilitates domain interpretation with visualization and interaction. Simulation 

learning bridges the gap between deep and shallow models and provides interpretability. The system 

also extracts informative patterns from raw data to improve interpretability and learning efficiency. 
Interpretable system learning algorithms extract knowledge from DNN for appropriate explanations. Its 

DL module connects to the template generation module using the interpretability of shallow models. 

The TAMU system processes image data [20] and text [21] and it is applied in the XAI analytics 
problem domain. It provides efficient interpretation of detected inaccuracies from a variety of sources 

while maintaining competitive detection performance. The system has been deployed to address 

multiple challenges using data from Twitter, Facebook, ImageNet, CIFAR-10, online health forums 
and news websites. 

3.11. Explaining the model using the optimal choice of training examples. 

 Rugers University is expanding the capabilities of Bayesian learning to enable automatic 

explanation by choosing the subset of the data that is most representative of the model's inference. 
Rugers' approach allows one to explain the conclusions of any probabilistic generative and 

discriminative model, as well as DL models [22]. Rudgers also develops a formal theory of human-

machine interaction and supports interactive explanations of complex compositional models. Common 

among these is a basic approach based on human learning models that promote explainability and 
carefully controlled behavioral experiments to quantify explainability. Explaining with Bayesian 

Learning introduces a dataset, a probabilistic model, and an inference method, and returns a small subset 

of examples that best explain the inference of the model. Using composition and co-modification of 
machine learning models, Rudgers offers a general approach to understanding through guided 

exploration. Interaction occurs through an interface that exposes the structure of the model and explains 

each data component. It has been demonstrated that Ruggers' approach facilitates understanding of large 
corpora, as measured by a person's ability to accurately compose corpus summaries after short, guided 

explanations. Rudgers focuses on the data analysis problem area and has demonstrated his approach in 

images, text, combinations of both (such as VQA) and structured modeling using a temporal causal 

structure. 

4. Methods for extracting rules from neural networks 

The development of explicable artificial intelligence methods was largely preceded by methods for 

extracting rules from neural networks. In artificial intelligence, neural networks and rule-based learning 

methods are two approaches to solving classification problems. Both methods are known variants of 
learning models that predict classes for new data. For many tasks, rule-based neural network learning 

methods are very accurate. However, neural networks have one major drawback: the ability to 

understand the conceptual essence of trained models is weaker in the neural network than in the rule-
based approaches. The concepts gained from training neural networks are difficult to understand 

because they are represented using a large set of parameters [23]. 

Increasing the transparency of neural networks by extracting rules from them has two main 
advantages. This gives the user some insight into how the neural network uses the input variables to 

decide allows the hidden features in the neural networks to be revealed when rules are used to explain 

individual neurons. Identifying critical attributes or identifying the causes of neural network errors can 

be part of the understanding. To make opaque neural networks more understandable, rule extraction 



techniques are bridging the gap between precision and clarity [23,24]. For a neural network, for 
example, to be used in mission-critical applications such as airplanes or power plants, a clearer form is 

required. In these cases, it is extremely important that the user of the system can check the output values 

of the artificial neural network under all possible input conditions [25]. 

To formalize the task of extracting rules from a neural network, you can use the following definition: 
"Given a trained neural network and the data on which it was trained, create a description of a network 

hypothesis that is understandable, but approximates the behavior of a given network." To distinguish 

between different approaches to rule extraction from neural networks, a multidimensional taxonomy 
was introduced in [25]. The first dimension it describes is the expressive power of the extracted rules 

(for example, IF-THEN rules or fuzzy production rules). The second dimension is called transparency 

and describes the strategy followed by the rule extraction algorithm. If a method uses a neural network 
only as a black box, regardless of the architecture of the neural network, we call it a pedagogical 

approach. If instead the algorithm considers the internal structure of the neural network, we call this 

approach decomposition. If an algorithm uses components of both pedagogical and decomposition 

methods, then this approach is called eclectic. The third dimension is the quality of the extracted rules. 
Since quality is a broad term, it is divided into several criteria, namely neatness, accuracy, consistency, 

and intelligibility. While accuracy measures the ability to correctly classify previously unseen 

examples, accuracy measures the degree to which rules can mimic neural network behavior well [24]. 
Precision can be thought of as precision in relation to the output of the neural network. Consistency can 

only be measured when the rule extraction algorithm involves training a neural network instead of 

processing an already trained neural network. The extracted rule set is considered consistent when the 
neural network generates rule sets that correctly classify test data for different training sessions. 

Comprehensibility is considered here as a measure of the size of the rules, that is, short rules are 

considered more comprehensible when there are fewer rules. An overview of many methods for 

extracting rules from neural networks based on this taxonomy is given in [26]. 
The most interesting from the point of view of this study is rule extraction using neuro-fuzzy models. 

Fuzzy rule-based systems (FRBS) developed using fuzzy logic have become a field of active research 

over the past few years. These algorithms have proven their strengths in tasks such as managing 
complex systems, creating fuzzy controls. The relationship between both worlds (ANN and FRBS) has 

been thoroughly studied and shown to be equivalent [27]. This provides important insights. First, we 

can apply what was found for one of the models to the other. Second, we can translate the knowledge 

embedded in the neural network into a more cognitively acceptable language - fuzzy rules. In other 
words, we get a semantic interpretation of neural networks [28,29]. 

5. Conclusion 

Advances in machine learning and the rise in computing power have led to the development of 

intelligent systems that can be used to recommend a movie, diagnose cancer, make investment 
decisions, or drive a car without a driver. However, the effectiveness of these systems is limited by the 

inability to explain decisions and actions to the user. The XAI DARPA program develops and evaluates 

a wide range of new machine learning methods: modified DL methods that study explainable functions; 
methods that explore more structured, interpretable causal patterns; and model induction methods that 

derive an explainable model from any black box model. The technologies and results obtained show 

that these three broad strategies deserve further study and will provide future developers with design 
options that increase productivity and explainability. A very important special case of explainable 

artificial intelligence is rule extraction from neural networks. For this, experience, and knowledge in 

the field of fuzzy logic is well suited for modeling ambiguities in big data, modeling uncertainty in 

knowledge representation, and providing learning with non-inductive inference. 
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