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Abstract 
A computer model of learning and evolution of autonomous agents, genotypes and phenotypes 

of which are determined by Kauffman’s NK-networks, has been built and investigated. The 

interaction between learning and evolution for such networks has been investigated. The 

possibility of observing three effects of interaction between learning and evolution was 

analyzed. These effects are 1) the effect of genetic assimilation, 2) the hiding effect, 3) the 

effect of learning load. Simulations have shown that only the hiding effect is observed in the 

current model. However, the effect of genetic assimilation and the effect of learning load are 

not observed in the current model. This is due to the absence of an explicit correlation between 

the genotypes and phenotypes of the agents in the current model. The correlation between 

genotypes and phenotypes of agents can be of great importance for understanding the 

mechanisms of interaction between learning and evolution for biological organisms. 
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1. Introduction 

In this work, a computer model of learning and evolution of autonomous agents is constructed. The 
genotypes and phenotypes of agents are encoded by Stuart Kauffman's NK-networks [1, 2]. A model 

of interaction between learning and evolution for such networks is constructed and investigated. NK-

network consists of N logical elements, each of which has K inputs, N >> 1. The connections between 

the elements and the logical elements themselves are random. There are no external inputs to the 
network. 

At K ~ 2, NK-networks can be considered as a model of molecular-genetic control systems of 

biological cellular organisms [1, 2]. 
Previously, the interaction between learning and evolution in populations of autonomous agents was 

studied in works [3-6]. These works demonstrated the main effects of the interaction between learning 

and evolution: 

1. The genetic assimilation of skills acquired as a result of individual learning over a number of 
generations of the evolutionary process. 

2. The hiding effect, which means that strong learning inhibits the evolutionary search for the 

optimal genotype. 
3. The effect of the learning load, which leads to the acceleration of the evolutionary process of 

finding the optimum. 

In works [5. 6], the quasispecies model was used [7, 8], and simpler cases as compared with NK-
networks were considered. In [5], the distance to the single optimum of the fitness function of agents 

was minimized, while the process of decreasing the Hamming distance to this optimum was considered. 
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In [6], the energy of the spin-glass determined by the Sherrington – Kirkpatrick model [9, 10] was 
minimized. In these cases, the genotype and phenotype of agents were determined by simple chains of 

binary symbols that are equal to 0 or 1 (for the model with Hamming distance) or bipolar symbols that 

are equal to +1 or -1 (for the model based on spin-glasses). In the current work, a much more complex 

representation of the genotypes and phenotypes of agents is used. Now, both the genotype and 
phenotype of the agent are encoded using NK-networks. Note that in [5. 6], only one significant variable 

was used in the processes of evolution and learning (the Hamming distance to the optimum or the energy 

of the spin-glass). In the present model, one essential variable (the number of attractors M of the 
analyzed NK-networks) is also used. 

2. Computer model of evolution and learning that is based on NK-networks 

We consider the following model. There is an evolving population of self-learning agents. The 

number of agents in the population is n. An agent has a genotype and phenotype that have the same 
structure. Both genotype and phenotype are encoded by NK-networks. The number of logical elements 

in the network is N. The number of inputs of each element is equal to K = 2. 

The outputs of each logical element of the network are equal to 0 or 1. During the functioning of the 
NK-network, the set of the outputs of its elements changes and converges to a certain attractor. We 

assume that the number of attractors in the NK-network characterizes the fitness of the agent (see below 

for details). 

We believe that the genotypes of agents are optimized through evolution, and the phenotypes are 
optimized through learning. 

The evolution of the population of agents is as follows. There are generations of evolution. In the 

initial generation, the genotype of each agent is encoded by a random NK-network: both logical 
elements and connections between elements are random. During a generation, the genotypes of agents 

are not changed, the phenotypes are changed via learning. In the initial moment of the generation, the 

genotypes of the agents are transferred from the parent agents of the previous generation to the 
descendant agents of the current generation. The selection of parent agents is carried out in accordance 

with agents' fitness. In the initial moment of the generation, the phenotypes of agents are also formed; 

at this moment of time, the phenotype of each agent is equal to the genotype of this agent. 

The phenotypes are changed over a generation via a trial and error method of learning. The 
phenotype of the agent is modified and this modification is checked every step of the agent's lifetime, 

during the entire generation. The modification is the trial. The trial is carried out for each logical 

element. During the trial, the considered logical element of the NK-network of the phenotype is replaced 
by another random logical element, and the input connections of this logical element are also randomly 

changed. If after the trial, the number of attractors of the phenotype NK-network is increased, then the 

new logical element and its new connections in the phenotype NK-network are conserved. If after the 

trial, the number of attractors of the NK-network of the phenotype is decreased, then the old logical 
element and its connections are restored. Thus, during learning, the number of attractors of the NK-

network of the phenotype gradually increases. 

At the end of a generation, the fitness of agents is determined by the number of attractors of NK-
networks of final phenotypes. The fitness of the k-th agent is 

 

)exp( kk Mf   (1) 

where β is the selection intensity parameter, Mk is the number of attractors of the NK-network of the 

phenotype of the k-th agent at the end of the generation (after learning), k = 1,2,…, n. The selection of 

agents for the new generation is carried out by the well-known roulette method. The probability to select 

the k-th agent into the new generation is proportional to its fitness fk . As a result of this selection, the 
number of agents of the population in all generations is constant and is equal to n. 

The genotypes of agents selected for the new generation mutate. Mutations are carried out in the 

same way as learning trials. With probability PM , a logical element of the NK-network of the agent's 
genotype is selected and this element is replaced with another random logical element, and the input 

connections of this logical element are also randomly changed. PM is mutation intensity. 



3. Results of computer simulation 

The simulation included the following computer experiments. Initially, the simulation was carried 

out separately for 1) the processes of evolution of the population of agents and 2) the processes of 

learning of one agent. After that, the interaction between learning and evolution was analyzed. 
The following parameters were used in the simulation: the number of logical elements in the NK-

network N = 10, the number of inputs of each logical element K = 2, the population size n = 10, the 

selection intensity parameter β = 1, the mutation intensity PM = 0.1. 
The simulation results showed that evolution without learning and learning of one agent lead to 

qualitatively similar results: the number of attractors of NK-networks of genotypes (for evolutionary 

processes) or phenotypes (for learning processes) changes from values Mk that are approximately equal 

to 1.5 to values Mk that are approximately equal 6-8. The characteristic time of evolutionary 
optimization was 100 generations, the characteristic time of optimization by learning one agent was 

1000 time moments. 

After checking evolution and learning separately, we simulated the interaction between learning and 
evolution. Attempts have been made to demonstrate all three effects observed in [3-6]: 1) the effect of 

genetic assimilation, 2) the hiding effect, 3) the effect of the learning load. It turned out that only the 

hiding effect was observed in our simulation. The effects of genetic assimilation and learning load were 

not observed in our simulation. The obtained simulation results are demonstrated in Figures 1-4. 

3.1. Attempt to model genetic assimilation 

As in the works [5,6], the fitness function was modified to model genetic assimilation. To the fitness 

function, defined by expression (1), a large term was added, which suppresses evolutionary selection: 
 

Lkk DMf  )exp(  (2) 

where DL = 1000. As shown in [5,6], without learning, such a term leads to the suppression of evolution, 

and learning leads to the fact that at the end of a generation the number of attractors of phenotypes 
increases, and due to this, the role of the first term in expression (1) increases. 

The results of the works [5, 6] demonstrate that a) agents with good phenotypes are selected for the 

next generation, and b) because genotypes are close enough to phenotypes, then good agent genotypes 
are selected into the next generation. However, the simulation for the current model showed that 

condition b) poorly fulfilled in our model, and therefore genetic assimilation is not observed. This fact 

is illustrated in Figures 1 and 2. 

Figure 1 shows the dependence of the number of attractors Mk for NK-networks of phenotypes on 
the learning time TL during the first generation of evolution. It can be seen that the number of attractors 

for phenotypes during learning clearly grows, and the first term in (2) makes a significant contribution 

to the fitness of agents. 
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Figure 1: The dependence of the number of attractors Mk for NK-networks of phenotypes during the 
first generation of evolution on the learning time TL . The results are averaged over 10 different 
calculations 
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Figure 2: The dependence of the number of attractors Mk for NK-networks of genotypes on the 
generation number G. The results are averaged over 10 different calculations 

 

Figure 2 shows the dependence of the number of attractors Mk for NK networks of genotypes on the 

generation number G. It can be seen that the number of attractors for genotypes does not increase, i.e. 
genetic assimilation is not observed. 

Note that the considered approach to modeling genetic assimilation is exactly the same as in [5, 6], 

only in that works, learning of phenotypes led to a shift in the space of genotypes to an area in which 
the optimization of genotypes via selection occurs. So, learning shifts the population into an area of 

effective selection. A similar shift to the area of efficient selection by means of learning was observed 

in [3]. However, in the current model, the shift to an area of effective selection via learning is not 
observed. In our opinion, this is due to the weak correlation between genotypes and phenotypes that are 

encoded by NK-networks. 

Let us note that in works [5,6], a strong correlation between genotypes and phenotypes is clearly 

visible: both genotypes and phenotypes are encoded by simple strings of binary or bipolar symbols. 
This is significantly different from the coding of genotypes and phenotypes by means of NK-networks. 

3.2. Modeling of the hiding effect 

The meaning of the hiding effect is the following. If the selection of agents is made in accordance 

with the final phenotypes obtained as a result of learning, then strong learning can inhibit the 
evolutionary optimization of genotypes. Strong learning leads to the fact that the final phenotype may 

be weakly dependent on the genotype, so a good genotype is not very important for optimizing 

phenotypes. The hiding effect in this model is demonstrated in Figure 3, which shows the dependence 
of the number of attractors Mk for NK networks of genotypes on the generation number of evolution in 

the absence (curve 1) and in the presence (curve 2) of learning. The fitness of agents is determined by 

expression (1). The agents' lifetime is equal to 100 time moments, i.e. the learning is strong enough. 
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Figure 3: Dependence of the number of attractors Mk for NK-networks of genotypes on the generation 
number G. The evolution without learning (curve 1) and the evolution combined with learning (curve 
2) are considered. The results are averaged over 100 different calculations 

 



It can be seen that in the presence of learning, the genotypes of agents are not optimized: successful 
phenotypes during learning are formed for different genotypes, i.e. optimization of genotypes is not 

required for agents. Note that a strong correlation between genotypes and phenotypes is not essential 

for this effect. The only important thing is that the selection is carried out in accordance with the final 

phenotypes obtained by learning.  

3.3. Attempt to model a learning load 

An attempt was also made to simulate the effect of the learning load. For this, it is assumed that the 

learning of agents does not necessarily occur every time moment for all logical elements of phenotypes, 

but such learning is carried out with a certain probability PL every time moment. 
The learning load is determined by the total number of trials NT that occurred for the considered 

agent during learning. It is assumed that the more the number of trials NT is, the greater the learning 

load is. The fitness of the k-th agent is determined by the expression: 
 

)exp()exp( Tkk NMf    (3) 

where γ is a parameter that takes into account the learning load, NT is the number of trials that took 
place for the k-th agent during learning. If γ = 1, then the learning load is taken into account, if γ = 0, 

then this load is not taken into account. The results taking into account the load (γ = 1) and not taking 

into account the load (γ = 0) are shown in Figure 4. The small difference in curves in Figure 4 is due to 

small errors during simulation (errors were approximately 3%). The probability of learning in both 
cases was PL = 0.1. Figure 4 shows that the effect of the influence of learning load in the current model 

is not observed. Figure 4 also shows that the hiding effect is significantly weakened in comparison with 

Figure 3; this is due to the fact that for the results shown in Figure 4, learning is significantly weakened 
(PL = 0.1). The possibility of detection of the learning load was also analyzed at an increased probability 

of learning, at PL = 0.5. However, in this case, the effect of the influence of the learning load was not 

observed too.  
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Figure 4: Dependence of the number of attractors Mk for NK-networks of genotypes on the generation 
number G. The possible effect of the learning load is analyzed. The results are averaged over 100 
different calculations 

 

4. Conclusion 

Thus, we have analyzed a model of evolution and learning of agents whose genotypes and 

phenotypes are encoded by Kaufman’s NK-networks. The specificity of the interaction effects between 

learning and evolution for such agents was also analyzed. The possibility of observing three main effects 
of interaction between learning and evolution was analyzed. These effects are 1) the effect of genetic 

assimilation, 2) the hiding effect, 3) the effect of learning load. 

The performed simulations demonstrated that only the hiding effect is observed in the current model. 
However, the effect of genetic assimilation and the effect of the learning load for the current model, in 

which the genotypes and phenotypes of agents are encoded by Kaufman’s NK-networks, are not 



observed. This sharply distinguishes the results of this work and the results of our previous works [5, 
6], in which all three indicated effects were observed. Apparently, this difference is due to the fact that 

the structure of the genotype and phenotype in [5, 6] was encoded by simple chains of binary (in [5]) 

or bipolar (in [6]) symbols, and there was a clear correlation between the genotypes and phenotypes of 

agents. In the present model, there is no such clear correlation between the genotypes and phenotypes 
of agents; therefore, the effects of genetic assimilation and the effect of the learning load are not 

observed. This dependence on the correlation between genotypes and phenotypes of agents can be of 

great importance for understanding the mechanisms of interaction between learning and evolution for 
biological organisms. Therefore, this question deserves a more detailed further study. 

Note that for the hiding effect, the correlation between genotype and phenotype is not significant. It 

is only important that the selection is carried out according to the final phenotypes obtained as a result 
of learning. Strong learning leads to the fact that the final phenotype can be weakly dependent on the 

genotype, so a good genotype is not very important for optimizing phenotypes. As a result, strong 

learning inhibits the evolutionary optimization of genotypes. 

Also, note that genetic assimilation can depend on the ecological niche that organisms fall into. 
Learning can help to find a certain good niche for organisms. Then, over many generations, evolution 

can rediscover this successful niche, as a result of this rediscovery, organisms can be adapted to this 

niche from birth, and this is beneficial for organisms [11]. Of course, this question also deserves further 
study.  
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