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Abstract  
A new algorithm of metaheuristic programming with gene expression based on various nature-

inspired algorithms as a search engine for solving the problem of automatic synthesis of 

nonlinear models in an analytical form is proposed. We show that the proposed algorithm is 

superior to the standard gene expression programming algorithm.  
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1. Introduction 

The problem of generating and optimization of nonlinear models in the form of mathematical 
expressions using given sets of variables, basic functions, operations and experimental data is 

considered. It is necessary to find a mathematical expression f based on given sets of input Y and output 

Z experimental data, i.e. it is necessary to find a function 𝑍 =  𝑓(𝑌) to represent the dependence of Z 

on Y with minimal error. This problem is also called symbolic regression or system identification. 
The search for the expression f is performed based on the specified terminal set of variables and 

constants 𝑇1 =  {𝑥𝑖 , 𝑐𝑖} and the specified set of basic functions and operations 𝐹1 =  {𝑓𝑖 | 𝑖 ≥ 1 }. These 

sets are used to automatically generate analytical expressions (formulas) that represent the model. Let 
the objective function (fitness function) FF calculates the sum of the squares of the deviations of the 

given reference values 𝑍𝑖  from the output of the expression f for certain subsets input data of expression 

𝑌𝑖  , 1 ≤ i ≤ N:  

𝐹𝐹 =  ∑(𝑓 (𝑌𝑖) −  𝑍𝑖)2

 𝑁

𝑖=1

 
 

where N is the number of experimental data. For the automatically generated analytical expressions it 

is to determine the minimum of the residual: 𝑚𝑖𝑛𝑓∈ 𝐷 (𝐹1,𝑇1)𝐹𝐹 (𝑓) where 𝐷 (𝐹1, 𝑇1) is a set of 

expressions defined by a set of variables and basic functions. 

Genetic Programming (GP) is one of the known approaches to this problem. They are focused 

primarily on automatic synthesis of programs based on training data using for search a genetic algorithm 
based on chromosomes with tree structures that, upon interpretation, represent some expressions. Gene 

Expression Programming (GEP) [1] is a member of the genetic programming family that is widely used 

in knowledge discovery and discovery of functions. GEP has a linear chromosome containing terminal 
and function characters in a fixed length string called a K-expression. K-expression can be translated 

into an individual phenotype as an expression tree using breadth-first traversal. The GEP search engine 

                                                   
Russian Advances in Fuzzy Systems and Soft Computing: Selected Contributions to the 10th International Conference «Integrated Models 

and Soft Computing in Artificial Intelligence» (IMSC-2021), May 17–20, 2021, Kolomna, Russian Federation 

EMAIL: monakhov@rav.sscc.ru (A. 1) 

ORCID:  

 
©️  2021 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 



is a genetic algorithm that works on the chromosomes of GEP to create new individuals through 
crossover, mutation and transposition operations. 

In this work, we use a new approach of metaheuristic programming (MP) with gene expression for 

the synthesis of nonlinear models, which is based on the use of: (1)  the genotype of nonlinear models 

is represented by a simple vector of real numbers (we do not use complex structures such as trees, 
networks or programs traditional for genetic programming), (2) new algorithms for transforming these 

vectors (genotype) into phenotype (in K-expressions, as in GEP, to represent a nonlinear model), (3) 

almost any metaheuristic, nature-inspired algorithm of the continuous global optimization [2, 3, 4] with 
simple search operators (rather than specialized operators for more complex structures) for search of 

optimal model, (4) a method of multi-variant coding of several solutions in one genotype. 

Note that the MP method is a generalization and further development of the method of the 
multivariant evolutionary synthesis (MVES), proposed by the author [5]. The MP method is (1) more 

unified and versatile for use with many metaheuristic (bio- and nature-inspired) algorithms, and not 

only uses one discrete genetic algorithm (GA) or only one differential evolution (DE) as the MVES 

method, (2) uses a vector of real numbers as chromosome to represent phenotype with gene expressions, 
rather than in the form of a sequence of instructions, as in the MVES method, and, accordingly, (3) uses 

other operations to decode chromosomes. 

In next section we describe the unified MP with gene expression algorithm with using fourteen 
different nature-inspired algorithms for automatic generation and optimization of nonlinear models. 

Then we compare our approach with standard gene expression programming and with the application 

of different nature-inspired algorithms and show that the MP algorithm has a higher efficiency of 
evolutionary search for many cases of used nature-inspired algorithms. 

2. Metaheuristic programming with gene expression for synthesis of 
nonlinear models 

Metaheuristic programming with gene expression for the synthesis of nonlinear models is based on 

modeling of nature-inspired processes in a population of individuals [2, 3, 4]. Individuals in the 

population are chromosomes, namely, vectors of real numbers that encode mathematical expressions 
and each chromosome in this algorithm defines a set of expressions (formulas) arising from it after 

decoding. The algorithm begins with the creation of an initial population by a random operator, then 

for each individual the fitness function are calculated by decoding the genotype (chromosome) into a 
phenotype (expression). For next generation, new individuals are created using migration operators (in 

the case of a standard genetic algorithm, migration operators are selection, mutation and crossover). 

The purpose of the migration operators is to move to the extremum of the objective function. 

Metaheuristic programming algorithm presented in this paper is based on following main stages. 
1. Initial population is randomly generated from vectors (chromosomes) with components in the 

real interval [0, 1]. 

2. The fitness of each individual of the population is computed after the decoding procedure of 
the genotype into a phenotype 

3. A next generation of the population is created using migration operators of the nature-inspired 

algorithm (specified for each nature-inspired algorithm) to move individuals in the population 

to the extremum of the objective function 
4. Item Repeating steps 2 and 3 until a solution is found that satisfies the specified criteria, or until 

the maximum number of generations is reached  

In classic GEP [1] chromosomes (genes) are consisting of a head and a tail. The head consists of 
symbols representing functions (elements from the basic function set F) and terminals (elements from 

the terminal set T), whereas the tail consists of only terminals. The length of the head h is chosen for 

each problem, but the length of the tail t is evaluated by the equation t = h (n - 1) + 1, where n is the 
number of arguments of the function with the most arguments. Chromosomes of gene expression 

programming have all the same size, but encode the different mathematical expression. For example, 

for an expression 𝑓(𝑥, 𝑎) = (𝑥 + 2)/√(𝑎𝑥 − 5) with the expression tree shown on Figure 1 we have 

the chromosome {/+Qx2-*5 ax3axx4aa}, based on standard breadth-first traversal of the expression 



tree: 𝑓(𝑥, 𝑎) = (𝑥 + 2)/√(𝑎𝑥 − 5) → {/+Qx2-*5 ax3axx4aa}, with head: {/+Qx2-*5}, tail: 

{ax3axx4aa}, where Q is square root. 

 

 

Figure 1: Expression tree for  𝑓(𝑥, 𝑎) = (𝑥 + 2)/√(𝑎𝑥 − 5) 
 

In the proposed metaheuristic programming with gene expression to decode the chromosomes 

(vector of real-valued numbers) an unified approach is suggested for various nature-inspired algorithms. 

A vector of real-valued numbers (a genotype) is divided into three groups of elements (for head, tail 

and (optional part) constants) ({𝑚1𝑗}, {𝑚2𝑗}, {𝑚3𝑗}), 0 <  𝑚𝑖𝑗 <  1; |{𝑚1𝑗}| = ℎ; |{𝑚2𝑗}| =

𝑡; |{𝑚3𝑗}| = 𝑡. Each such group is interpreted with different alphabets, which are calculated by the 

following formulas: 

ℎ𝑗 = ⌊𝑚1𝑗 ∗ (|𝐹| + |𝑇|)⌋;  𝑡𝑗 = ⌊(𝑚2𝑗 ∗ |𝑇|)⌋; 𝑐𝑗 = ⌊(𝑚3𝑗 ∗ |𝐶|)⌋, (1) 

where |F| is the number of the basic functions, |T| is the number of the variables and constants, |C| is 

the number of the constants. For example, for an expression 𝑓(𝑥, 𝑎) = (𝑥 + 2)/√(𝑎𝑥 − 5) we have the 

following two steps of decoding the expression: [0,32;0,11;0,53;0,7;0,94; … ;0,8] → {/+Qx2-*5 

ax3axx4aa} → 𝑓(𝑥, 𝑎) = (𝑥 + 2)/√(𝑎𝑥 − 5). Note, (1) a linear (vector) representation of a 

chromosome with the constant size prevents the effect of unreasonable growth of expressions (bloat), 
and (2) simple operations (1) in decoding a genotype into a phenotype for the interpretation of a 

chromosome preserve syntactic correctness of the expressions when applying random migration 

operations of the nature-inspired algorithm. 
Thus, decoding a real-valued chromosome results in the function being represented as an interpreted 

expression. But we used a multi-variant algorithm to decode an expression into multiple subexpressions. 

In this multi-variant algorithm, we start reading from the first character of the head part of the 

chromosome to build the first expression, which is completely similar to the classic GEP. We then 
continue reading the second character of the head to get the second expression. And repeat the reading 

of the head symbols to the end of the head. In contrast to the standard GEP, this method allows, to 

simultaneously evaluate a several of expressions and can reduce the time to find an optimal solution. In 
this case the evaluation of a certain part of the chromosome with the minimum value of the fitness 

function from the obtained set of chromosomes is selected as the evaluation of the whole chromosome. 

Note that for a given chromosome K, there are many expressions for E; the objective function value is 
calculated for each expression, and the suitability of the chromosome is determined as matching the 

best expression encoded by that chromosome. For example, for an expression 𝑓(𝑥, 𝑎) =

(𝑥 + 2)/√(𝑎𝑥 − 5) we have the following multi-variant decoding the expression: (1) {/+Qx2-*5 

ax3axx4aa} → (𝑥 + 2)/√(𝑎𝑥 − 5), (2) {+Qx2-*5 ax3axx4aa} → 𝑥 + √2 , (3) {Qx2-*5 ax3axx4aa} 

→ √𝑥 , (4) {x2-*5 ax3axx4aa} → x, (5) {2-*5 ax3axx4aa} → 2, (6) {-*5 ax3axx4aa} → 𝑎𝑥 − 5, (7) 

{*5 ax3axx4aa} → 5a, (8) {5 ax3axx4aa} → 5. 
Thus, this algorithm encodes several solutions in a chromosome, unlike the classic GEP algorithm, 

which encode one solution in a chromosome. Also, unlike the algorithms from [5], this algorithm uses 



an unified approach for various nature-inspired algorithms [2, 3, 4] as their evolution engine to find 
optimal models. 

3. Experimental Results 

We investigate the efficiency of the metaheuristic programming with gene expression (mpge) using 

of fourteen different nature-inspired algorithms [2, 3, 4]  (Artificial Bee Colony (ABC), Continuous 
Ant Colony Optimization (ACOR), Bees Algorithm (BA), Biogeography-based Optimization (BBO), 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES), differential evolution (DE) [6], Firefly 

Algorithm (FA),  genetic algorithm (GA), Harmony Search (HS), Imperialist Competitive Algorithm 

(ICA), Invasive Weed Optimization (IWO), Particle Swarm Optimization (PSO), Simulated Annealing 
(SA), Teaching-Learning-based Optimization (TLB)) for the problem of generation and optimization 

of analytical functions and parameters of  models on the basis of the experimental data, variables and 

basic functions. We used the following ten test functions (see Table 1). 

Table 1 
Test functions 

Function Function Definition Variables Range 

f1 f1(x) = x4 + x3 + x2 + x 1 [1,10] 

f2 f2(x) = sin(x2 + x4)  1 [1,10] 

f3 f3(x) = sin(exp(sin(exp(sin(x)))))  1 [1,10] 

f4 f4(x) = sin(x3) + ex 1 [1,10] 

f5 f5(x) = x5− 2x3 + x 1 [1,10] 

f6 f6(x) = sin(x) + sin(x2 + x) 1 [1,10] 

f7 f7(x) = sin(x2) exp(x) − 1 1 [1,10] 

f8 f8(x, y) = 2sin(x)exp(y) 2 [1,10] 

f9 f9(x, y) = sin(x) + sin(y2) 2 [1,10] 

f10 f10(x, y) = x3 + y ∗ x2 + y 2 [1,10] 

 

 
The values of each function at 10 random points in the range [1,10] were used in the experiments. 

The set of basic functions for the test functions is F = {+, -, *, sin, exp}, the variables are for f1- f7 are 

T = {y}, for f8 - f10 are T = {y, z}. 
The following parameters of the compared algorithms are applied: a crossover probability of 0.80, 

a mutation probability of 0.15, a population size of 200, and a maximum number of generations of 200. 

The length of the chromosomes is 40; for the GEP we use a population size of 200, and a maximum 

number of generations of 200 (for classGEP1) and a population size of 1200, and a maximum number 
of generations of 600 (for classGEP2). For each algorithm and each test function, experiments were 

performed 50 times and the results were averaged. In the experiments, the algorithm's parameters were 

not optimized separately and we used the values of the parameters of the algorithms recommended by 
their authors in the cited books and articles for a correct comparison of efficiency. 

Metaheuristic programming using fourteen different natural algorithms was implemented using the 

resources of the Information Computing Center (ICC) of the Novosibirsk National Research State 

University (NSU) on Intel Xeon X5670 processors. We also compare MP, based on nature-inspired 
algorithms implemented in MATLAB, with the classic implementation of the gene expression 

programming algorithm (GEP) in MATLAB. 

We used the probability (frequency) of success, that is, the probability that the algorithm found an 
expression that coincides precisely with the test function as one of the main indicators for measuring 

the effectiveness of evolutionary synthesis algorithms. This is the ratio of the number of successful 

experiments, when the algorithm found the correct expression, to the total number of experiments with 

given parameters. Let �̅� is the average success rate for each algorithm over a set of test functions (see 

for �̅� Figure 2). It can be seen that the probability of success in MP is higher than that of classGEP1 in 

11 cases (in the following order: mpgeABC > mpgeTLB > mpgeFA > mpgeDE > mpgeBBO > mpgeHS 



> mpgeACO > classGEP2 > mpgePSO > mpgeGA > mpgeCMA > classGEP1) and the probability of 
success in MP is higher than classGEP2 in 6 cases. Comparison of all fourteen different nature-inspired 

algorithms by the average success rate in descending order is shown in Figure 2. The probability of 

success for MP with gene expression is in most cases higher than for the classical GEP algorithm, due 

to the ability of MP to represent several expressions on one chromosome, resulting in a higher chance 
of finding a solution. 

Let  𝑡̅ - average execution time of each algorithm for a set of test functions, i.e., the average execution 

time of an algorithm before the algorithm finds (synthesizes) a given expression or executes the required 
number of generations. Comparison of all fourteen different natural algorithms by average execution 

time 𝑡̅ in ascending order is shown in Figure 3. This result shows that MP has less time to find a solution 

than classGEP2 in all cases, and less time to find a solution than classGEP1 in 3 cases (in the following 

order: mpgeHS < mpgeACO < mpgePSO < classGEP1), but the algorithm classGEP1 has a low average 
success rate. For example, mpgeTLB has an average success rate of 60% higher than classGEP2 and 

40% lower average execution time than classGEP2. In the case of classGEP1, mpgeTLB has an average 

success rate of 134% higher and only 11% higher than the average execution time than classGEP1. MP 
with gene expression has less time to find a solution in many cases than for the classical GEP algorithm, 

which is explained by the simple structure of data and operations in MP. 

 

 
Figure 2: Average rate of success for each algorithm 

 

4. Conclusion 

We considered a new approach of metaheuristic programming with gene expression for solving the 

problem of generation and optimization of nonlinear models (represented by mathematical expressions 
and programs) based on given basic functions, experimental data and variables. To synthesize such 

models, metaheuristic programming has been developed as a unified approach for using almost any 

(fourteen in this article) different algorithms inspired by nature. This approach uses a linear (vector real) 
representation of a chromosome, simple operations to decode a genotype to a phenotype to interpret a 

chromosome as a mathematical expression, a multivariate method to represent a set of models (an 

expression) using a single chromosome. This approach prevents the effect of unreasonable growth of 

expressions (bloat), and preserve syntactic correctness of the expressions when applying random 
migration operations of the nature-inspired algorithm. The proposed MP approach with gene expression 

was implemented using fourteen different algorithms inspired by nature, and these algorithms were 

compared with each other and with a standard gene expression programming algorithm. We did not 
identify an absolute leader among the algorithms under consideration by two criteria (by the time of 

finding a solution and by the probability of finding a given function) at once, but we can choose the 



most suitable algorithm based on a compromise solution. Experiments show that the proposed approach 
is in many cases superior to the GEP algorithm and we can always choose the most suitable MP 

algorithm, better than the GEP algorithm, based on the preferred criterion either by the time of finding 

a solution, or by the probability of finding a function (model), or by both criteria simultaneously. 

 

   
Figure 3: Average time of execution for each algorithm 
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