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Abstract. The article proposes procedures for the formation and construction of stable algorithms for adaptive 

control and adaptation of indefinite dynamic objects that ensure the system's operability when changing 

coordinate and parametric perturbations within a sufficiently wide range. To solve the problem of synthesis of 

control algorithms for a priori indeterminate objects, the speed gradient method and signal adaptation 

algorithms are used. In this case, the differential components of the algorithm monitor the parametric 

perturbations that are slowly changing over a wide range. When constructing stable control algorithms, 

algorithms for pseudo-circulation of redefined matrices based on skeletal and singular value decompositions 

are used to ensure the convergence of the desired solution. The given stable algorithms for adaptive control of 

indefinite dynamic objects based on the used effective pseudo-circulation algorithms contribute to improving 

the accuracy of determining the parameters of the control law. 
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1 Introduction  

An analysis of the scientific and technical literature [1-5] concerning the questions about the origin 

of model uncertainty shows that, in general, different versions of the classification of its sources 
coincide. No mathematical model can accurately and completely describe a real object or process [1-

5]. This is due to many reasons, and therefore a nominal model of an object or process cannot be 

considered complete without quantifying possible errors, hereinafter referred to as model uncertainty. 

This is usually quite a time-consuming model, and if an incorrect description of the uncertainty is used, 
then erroneous results can be obtained. Uncertainties can be described in various ways, they may be 

namely, by bounds on the parameters of a linear model, bounds on non-linearity, bounds in the 

frequency domain, bounds in the stochastic definition based on entropy, etc. 
The need to manage systems with avoidable uncertainties has led to the emergence of a whole class 

of adaptive control systems. An adaptive controller typically contains a control device and an adaptation 

device. Various definitions of the term adaptive control [4-7] characterize the complexity of the task-
the construction of the laws of control of systems in the conditions of structural or parametric 

uncertainty [7, 8]. In this regard, there is a need to develop adaptive control systems that allow for high-

quality system functioning in conditions where the control object differs from the calculated model or 

when its mathematical model is not known or is not complete [4, 6, 8, 9]. In [8], the problem of adaptive 
output control of parametrically and functionally indeterminate objects is considered. 

The following methods are used to construct adaptive control systems: the direct Lyapunov method, 

the stochastic approximation method, the method of recurrent target inequalities, the speed gradient 
method, the quadratic criterion of absolute stability, methods based on the identification approach [3, 

7, 10, 11], and others. 

Depending on the amount of a priori information, adaptation algorithms are constructed using 

gradient methods that are used for undefined object parameters and deterministic external perturbations, 
as well as methods based on statistical theory [12]. In this case, the rules of the distribution of the object 

parameters and perturbations are assumed to be known. 
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2 Problem definition 

The adaptive approach considers nonlinear equations of an object of the form: 

 )0(

0)(),,,,()( xtxfuxtx   , (1) 

 ),,,( vuxwy  .  (2) 

Most often, instead of equations (1), (2), linearized equations are used: 

 )()()()()( trBBtxAAtx  , (3) 

where nRtx )( , )(ty  – vectors of the state and measured variables of the object, respectively; mRtr )(

, )(tu  – vectors of driving and controlling actions, respectively; A and В – matrices of unknown object 

parameters with corresponding dimensions; A  and B  – matrices of configurable parameters; )(tf , 

)(tv  – vectors of external disturbances and measurement interference; w, - known vector functions of 

their arguments. 

The purpose of the adaptation is to ensure that the vector )(tx  tends to the state vector of the 

reference model n

М Rtx )( , which is the solution of the equation 

 )()()( trBtxAtx ММММ  , (4) 

where nn  -matrix 
МA  and mn -matrix 

МB  (
МA  – the hurwitz matrix) set the desired movement 

dynamics.  

To get the adaptation algorithm, select the target functional 

 PeexQ T
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where )()()( txtxtee М  – error vector, 0 TPP  – positive definite nn -matrix.  

We find the derivative of the target functional by virtue of the system of equations (3) 

 ))()()()((:),( trBxAtrBBxAAPeQQtx МММ

T   .  

It is required to construct a feedback law )(xUu  , which provides for a given set of initial conditions 
nR  to achieve the control goal 
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where ),( 0xtx  - solution of system (3), (5) with initial condition 0x . 

One of the main methods for synthesizing algorithms for controlling a priori indeterminate objects 

is the speed gradient method. The speed gradient method, originally formulated for adaptive control 
problems, has many applications [4, 6, 14]. The method is based on the use of Lyapunov functions and 

requires setting the control goal. Several types of velocity gradient algorithms are described: algorithms 

in differential and finite forms, built on a local or integral target functional. The conditions for achieving 
the goal, convergence, and robustness of the algorithms are established. Some control problems were 

successfully solved with the help of algorithms constructed using the speed gradient method [13-16]. 

3 Synthesis of adaptive control and adaptation of undefined dynamic objects 

To solve the problem, you can use speed gradient algorithms that have the form 

 TГPexdtAd  / , TГPerdtBd  / , (6) 

where nIГ  , 0  – multiplier step. 



When a perturbation is applied to the control object (3), the algorithm (6) should be regularized to 
prevent an unlimited growth of the configurable parameters. We will choose the regularizing function 

in the form  )( , 0 . Then the algorithms (6) will take the form 

 
 
  ,)(/

,)(/

BBPerdtBd

AAPexdtAd

T

T








 (7) 

where A  and B  – some a priori estimates A  and B . 
The above results are also valid in the case when not all the coefficients of the equation of the object 

(3) are available to the setting [4]. 

We establish the conditions under which algorithms (6), (7) are identifying, i.e. 

 
ММ BtBBAtAA  )(,)(  in case of t .  

From (3), (4) we get the equation for the error )()()( txtxte М : 

 )()())(( trBBBxeAAAeAe ММММ  . (8) 

You can show it [4, 6, 13, 14], what if the vector function ))(),(( trtxcol М
 is integrally non-

degenerate, i.e., the reference model (4) is sufficiently fully excited by the input action )(tr  (for 

example, if the model (4) is controllable, and the spectrum of the function )(tr  contains at least n 

frequencies). 
Consider a control problem with a reference model for an op-amp 

 )()()( tButAxtx  ,  

where nRtx )( , mRtu )( , mRtr )( . 

According to the speed gradient scheme, we get 

 ))((),,( trBxABuxAPetxQ МММ

T   .  

Let for any x , n

М Rx  , mRr  the equation 

 eAtrBxABuAx ММММ  )(*
 (9) 

solvable with respect to mRu * . Then 
*u  satisfies the relation 

 xKtrKu xr
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* )(  , (10) 

where Мr BBK * , )(* AABK Мx   . 

In other words, )(BLAAМ  , )(BLBBМ  , where )(BL  is a linear subspace generated by the 

columns of the matrix B. The latter conditions, in turn, are equivalent to the relations 

 },{},{ AABrankBBrankrankB ММ  . (11) 

Conditions (11) are called adaptability conditions [4]. As a vector of configurable parameters, we 

choose vector ),( rx KKcol  and proceed to the synthesis of the adaptation algorithm. In this case, the 

speed gradient has the form: 
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Choosing the speed gradient algorithm in the form [6] we get 

 xKtrKu xr  )( , (12) 
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The algorithm (12) is operable when the coordinate and parametric perturbations change within a 

sufficiently wide range. If the parametric perturbation changes at a high rate, the adaptation process 
deteriorates. In this case, it is advisable to use signal adaptation algorithms. 

Signal adaptation algorithms are faster and less cumbersome, but they work in a narrower range of 

changes in object parameters than a parametric algorithm. If the operation of the main loop or the 
adaptation loop requires the measurement of all variables of the control object state, then an observer 

can be introduced into the system [17]. 

In systems with signal-parametric adaptation, the signal tuning law is usually chosen as a relay law 

in order to ensure high performance in the system and to compensate for rapidly changing parametric 
disturbances. Parametric tuning laws include integral components that compensate for parametric and 

coordinate perturbations that change over wide ranges, but slowly. 

In [17], the static and dynamic properties of robust structures of linear and nonlinear self-oscillating 
stabilization systems with complete invariance of static errors under constant influences without the use 

of integrating elements in the main contour of the system are studied. It is shown that the systems have 

a low sensitivity to variations in the parameters of the object and control, have a greater “survivability”. 
Figure 1 shows the structure of adaptive control with a reference model, with signal and parametric 

settings [6]. 

It can be shown [4, 13] that equation (9), when the conditions (11) are met, is uniquely solvable with 

respect to mRu *  for any mn

М RrRxx  ,, . To find 
*u , we use the relations 

 ***

* srМxМ urKxKu  , (13) 

where )(* AABK MxМ   , Mr BBK * , )(* AABu Ms   . 

Thus, under the conditions of adaptability, there is a matrix 0 TPP  and a vector function 
*u  (13), 

such that QGeetx T

0* ),,(   . P is found from the Lyapunov equation GPAPA T

MM   at some 

0 TGG . In the main contour, similarly to (12), we take a controller of the form 

 srxM urKxKu  ,  

where xMK , 
rK  and su  – configurable parameters that form a vector ),,( srxM uKKcol . 

 

 
 

Figure 1: Block diagram with reference model with parametric and signal configuration 
 



4 Stable efficient algorithms for pseudo-inversion of redefined matrices 

When calculating according to equations (10) and (13), the pseudo-inverse matrix is represented as 

follows: 

 
TT BBBB 1)(   . (14) 

It is known [18-20] that the problem of calculating a pseudo-inverse matrix is generally unstable 

with respect to the errors in setting the original matrix. In this case, the errors of the initial data naturally 

depend on the accuracy of the experimental studies, and the characteristics of the calculated process 
depend on the degree of adequacy of the model to the real process. The influence of rounding errors 

produced during the implementation of the computational procedure on the accuracy of the desired 

solution can be analyzed on the basis of known methods of analysis and accuracy balance [19, 21]. In 

view of this circumstance, there is a need to use efficient algorithms for pseudo-conversion of redefined 
matrices. 

In many typical situations, for example, when analyzing inverse problems, mathematical models 

lead to irregular equations. With the rejection of regularity, the problem of constructing numerical 
methods is obviously complicated, and this complication is fundamental [18, 22, 23]. 

Let's consider the most effective ways to pseudo-transform redefined matrices. Let be a matrix 

composed of m practically linearly independent columns of the matrix, and let be a matrix calculated 
from the matrix equation: 

 NMC  ,  

where is a matrix composed of some r practically linearly independent rows of the matrix, and the 

matrix is composed of elements lying at the intersection of the matrices and [19, 21]. Then let's put 

 DCB  .  

Thus, we assume that in formula (5), instead of B , we take the matrix 

 TTTT DDDCCCDCB )()( 1  .  

The method of effective pseudo-circulation, based on the singular value decomposition of the matrix 

B [18-22], i.e. on its representation in the form of 

 TUSVB  ,  

where U – orthogonal )2( pn  – matrix; V – orthogonal )2( pm  – matrix; S – diagonal )22( pp  – 

matrix. 

Columns iu  and iv  of the U and V matrices are the eigenvectors of the BBT  matrix, and the diagonal 

elements i  of the S matrix are the positive roots of the eigenvalues i  of the BBT  matrix. 

The Moore-Penrose pseudo-inverse matrix B  allows us to obtain an estimate of 
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where ),...,( 1

  issdiagS  – pseudo-inverse matrix for a matrix S ; r – rank matrix B , that is, the number 

of non-zero singular numbers ),1( pii  ; 
iis /1 , if 0i , and 0

is , if 0i . 

The algorithm (14) cannot be used directly in the case where BBT  is irreversible [18]. If mrangB

, then the calculation of B  is almost impossible [19]. Until recently, researchers have tried to overcome 

the difficulties that arise by relaxing the requirement of regularity. In particular, the case when the image 

BBT  is closed and has finite codimension is studied in sufficient detail. 



There are many works of a theoretical and applied nature that study this case [18, 23]. Studies on 
generalized regularity cover mainly only the finite-dimensional case. These two circumstances do not 

allow us to use these results in many inverse problems, optimization problems, etc. 

According to [19, 21], we represent the symmetric matrix in the diagonal form: 

 TT TUTBB  ,  

where )( 21 nmtttT    – is a block orthogonal, and U is a diagonal matrix. 

Then, according to [19], we can write: 

 
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where 021  nm   – eigenvalues of the matrix BB T . 

5 Conclusion 

Thus, the use of speed gradient algorithms in adaptive control problems allows us to conclude that 
the differential components of the algorithm track the parametric perturbations that are slowly changing 

over a wide range. On the basis of the speed gradient method, recommendations can be made on the 

choice of the structure of the main contour, i.e., in the end, the method provides a single approach to 
the synthesis of the main contour and the contour of the adaptation of the system. The given stable 

algorithms for adaptive control of indefinite dynamic objects based on the use of effective pseudo-

circulation algorithms contribute to improving the accuracy of determining the parameters of the control 

rule. 
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