
Machine Learning Models for Atrial Fibrillation Prediction after 
Coronary Artery Bypass Graft Surgery 
 

Boris I. Geltser 1, Vladislav Yu. Rublev 1, Karina I. Shakhgeldyan 1,2, Bogdan O. Shcheglov 1
 

and Svetlana N. Shcheglova 3
  

 
1 Far Eastern Federal University, School of Biomedicine, 10. Ajax Bay, build. 25, Vladivostok, 690920, Russian 

Federation 
2 Vladivostok State University of Economics and Service, Institute of Information Technologies, 41. Gogol str., 

Vladivostok, 690014, Russian Federation  
3 Magadan North-Eastern State University, Institute of Natural and Exact Sciences, Magadan, 13. Portovaya str., 

685000, Russian Federation 

 
  

Abstract  
 

The primary objective was the comparative quality metrics analysis of multivariate logistic 

regression, stochastic gradient boosting and an artificial neural network models with 

continuous and boundary-binarized preoperational factors for patients with new-onset atrial 

fibrillation prediction after coronary artery bypass graft surgery.  
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1. Introduction 

Artificial intelligence (AI) technologies implementation allows quality improvements in various 

clinical medicine areas, particularly medical care by diagnostic capabilities expansion and predictive 

assessments improving. In cardiac surgery, for instance, various prognostic scales are being developed 
based on machine learning algorithms and other data mining methods to assess patients’ individual risk, 

minimize the likehood of postoperative complications and to optimize treatment strategy. 

One of the most frequent cardiac surgery practice complications is postoperative atrial fibrillation 

(POAF), which, depending on the type of surgery is observed in 25-40% of patients [1, 2]. Recent 
papers for atrial fibrillation (AF) prediction shows the effectiveness of artificial neural networks in 

development of accurate predictive models in patients with coronary heart disease (CAD) using 

machine learning methods. Sidrah Liaqat et al. [3] developed a convolutional neural network with 
quality metric area under the ROC curve (AUC) equal to 0.81, LSTM (AUC - 0.83) and convolutional 

LSTM (AUC - 0.80). Hill N.R. et al. [4] create neural network model with AUC 0.83, based on 

electrocardiography (ECG) data. Yong Xia et al. [5] obtained a convolutional neural network model 

with a sensitivity of 98.34%, a specificity of 98.24% and an accuracy of 98.29%. Lown M. et al. [6] 
created an SVM model with a sensitivity of 99.2% and a specificity of 99.5%.  

The POAF risk measurement is highly important in cardiac surgery. Its occurrence after coronary 

artery bypass grafting (CABG) increases the risk of stroke, postoperative bleeding and acute renal 
failure by 4 times and doubles the probability of 30-days and 6-month horizons mortality [1, 7]. Despite 

large number of studies, until now there is no single pathophysiological concept that describes detailed 
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mechanisms of AF development and no unified scale for its occurrence risk calculation after CABG. 
However, there are small number of studies describing the binary classification methods (logistic 

regression (LR), random forest method (RF), decision trees and multilayer perceptron) in predictors 

identification and prognostic model’s development tasks [8, 9]. For instance, study by Mathew J.P. et 

al. [10] describes the accuracy of the logistic regression (LR) model according to the AUC metric 
around 0.7. The dataset included 1503 patients with CAD after CABG and determined the following 

parameters as predictors: age, AF history in the preoperative period, history of heart valve surgery, 

postoperative withdrawal of β-blockers and angiotensin-converting enzyme inhibitors. In a 
retrospective study, Güngör et al. [11] on the data of 125 patients obtained LR model, describing 

patients age and platelet-lymphocyte index as predictors. The model accuracy according to the AUC 

metric was 0.634, and the sensitivity and specificity were 64% and 56%, respectively. In a study by 
Magee M.J. et al. [12] the developed LR-model included 14 factors (AUC 0.72). The most significant 

predictors were preoperative and intraoperative factors: patients age, prolonged mechanical ventilation 

(24 hours or more), presence of cardiopulmonary bypass, and supraventricular arrhythmias history. 

Zaman A.G. et al. [13] during analysis of 326 patient’s data (among whom the AF was observed in 92) 
with LR identified the following predictors: patients age (> 75 years), increased duration of the P wave 

(> 155ms) and male sex and developed AF prediction model with sensitivity and specificity in 49% and 

84%, respectively. Amaret et al. [14] using stepwise LR developed a model with an AUC of 0.69, which 
included the following factors: sum of filtered signals from 3 orthogonal ECG leads before surgery, the 

patients elderly age and male gender. Todorov et al. [15] on a sample of 999 patients developed a 

multivariate model of AF prediction with AUC 0.68 and identified the following pre- and postoperative 
predictors: duration of mechanical ventilation and time spent in the intensive care unit, elderly age, 

increased C-reactive protein and plasma creatinine concentration. To predict POAF after CABG, many 

researchers used the prognostic scales EuroSCORE [16], Koleс [17], PAFAC (Predictors of AF After 

CABG) [18], CHA2DS2-VASc and HAS-BLED, calculated using LR, showing the accuracy AUC 
metric from 0.65 to 0.68 [19, 20].  

Thus, recent studies indicate a high accuracy in predicting AF in patients with coronary artery 

disease, but insufficient accuracy of previously developed models for predicting new-onset POAF after 
CABG, which prompted authors to analyze this problem more deeply. The aim of the study is to develop 

and improve the algorithm for POAF predictors selection and prediction models development for 

patients with CAD after CABG. 

2. Materials and methods 

The development of models was carried out based on data from a retrospective study containing 

electronic medical records (EMR) of 886 CAD patients (181 women and 685 men) aged 35 to 81 years 

with a median of 63 years and a 95% confidence interval (CI) [63; 64], who underwent isolated CABG 

under cardiopulmonary bypass in the period from 2008 to 2019 in cardiac surgery department of the 
Primorsky Regional Clinical Hospital No. 1, Vladivostok. Patients with any history of AF were 

excluded from the study. The total number of such patients was 85. Thus, the dataset was presented by 

the examination results of 801 patients with coronary artery disease. Verification of POAF was carried 
out according to the results of ECG monitoring for at least 96 hours after CABG. Among the surveyed 

cohort, 2 groups of patients were identified. The first included 153 (19.1%) patients with recorded AF 

paroxysms in the postoperative period, the second - 648 (80.9%) patients without cardiac arrhythmias. 
In the first group, hospital mortality was 9.8% (15 patients), and in the second - 4.6% (30 patients).  

The end point of the study was POAF in the form of a categorical binary feature (“absence” or 

“development”). Input attributes - a subset of 100 potential predictors was expressed in the form of 

continuous and categorical variables. Methods of statistical analysis and machine learning were used 
for data processing and analysis. The first of them were presented by Chi-square, Fisher, Mann-Whitney 

tests and univariate LR with the calculation of weight coefficients. The second - by multivariate LR, 

stochastic gradient boosting (SGB) and artificial neural network (ANN). The architecture of ANN was 
the multilayer perceptron selected by maximizing the area under the ROC curve (AUC) and consisted 

of the two hidden layers of 90 and 80 neurons each. “Sigmoid” and “relu” were used as the ANN 

activation function. In the final models, taking into account the best accuracy of the ANN, only the 



“sigmoid” function was included. The accuracy of the models was assessed according to 4 quality 
metrics: AUC, sensitivity (Sen), specificity (Spec), and accuracy (Acc). Model development included 

a k-box cross-validation procedure. The models were built on training sample (9/10) of patients and 

verified on test sample (1/10). All quality metrics values given in this work were obtained by averaging 

the forecast estimates on test samples.  
The study design included 4 stages. Firstly, statistical analysis was used, with the help of which 

intergroup potential POAF predictors comparisons were carried out. Since preliminary assessment of 

the data closeness to the normal distribution by the Shapiro-Wilk method showed a negative result, for 
continuous variables the Mann-Whitney test was used. The chi-square test was used to compare 

categorical variables, and the Fisher test was used to assess the odds ratio (OR) and their CI. Secondly, 

using methods mentioned above, the boundaries of analyzed factors values with the best predictive 
potential were determined. This procedure included testing hypotheses about the equality of feature 

distributions in comparison groups. The selection of prognostically significant ranges was carried out 

with a testing step of 0.05-0.1 conv. units for various indicators. The selection criteria corresponded to 

the boundaries of the values of the factors, the p-value of which had the minimum, and the OR - the 
maximum value. At the third stage, the weight coefficients corresponding to the significance influence 

of individual POAF development traits were determined using standardized characteristics of univariate 

LR. At the fourth stage, multivariate models based on LR, SGB and ANN were developed, the structure 
of which was step by step supplemented with potential POAF predictors and quality metrics assessment. 

With an increase in the values of the latter, it was assumed that the indicator included in the model can 

be considered as a predictor of POAF. Data processing and analysis were carried out with R in the R-
studio environment and in Python using the keras, tensorflow and xgboost packages. 

 

3. Results 

Comparative intergroup (between patients with and without POAF) factors analysis characterized 
the preoperative clinical and functional state of patients after CABG showed that reliably significant 

intergroup differences were recorded only for 10 indicators: age; compound parts of the 

electrocardiograms -  PQ and QRS segment, RR interval and QT duration; echocardiographic 

parameters of the heart - upper-lower (LA3) and transverse (LA2) dimensions of the left atrium (LA), 
longitudinal (RA1) and transverse (RA2) dimensions of the right atrium (RA), end systolic dimension 

(ESD) of the left ventricle (LV); a history of tricuspid valve insufficiency (TVI); ejection fraction (EF) 

of LV blood during systole (Table 1).  
The largest statistically significant intergroup difference (between patients with and without POAF) 

was observed in the following factors: RA1, RA2 and the duration of the QT interval (p-value <0.0001). 

Relative to patients without arrhythmia, in POAF group LA indices (LA2, LA3) were significantly 

higher alongside with statistically significantly shorter QRS duration. Further analysis showed that the 
pairwise product of indicators LA2 and LA3, alongside with RA1 and RA2 shows a statistically higher 

level of intergroup differences significance then assessment effect of individual heart chambers 

geometric parameters. Less noticeable, but statistically significant differences for patients with 
postoperative arrhythmia were associated with older age, higher LV ESD, QRS interval duration and 

TVI presence.  

 

Table 1 
Patients clinical and functional characteristics 

Factors Sample size 1 group, 
n=153 

2 group, 
 n= 648 

p-value 

Age, years 801 64 [63; 66] 63[62; 64] 0,00076 



EF,% 783 59 [57;60] 60[60; 60] 0,039 

LA2, mm 734 41 [40; 42] 39 [39; 40] 0,026 

LA3, mm 734 38 [37; 39] 37 [36; 37] 0,013 

LA2 * LA3, mm2 734 160 [147; 168] 144 [141; 148] 0,011 

RA1, mm 734 39,5 [3,9; 40] 37 [36; 37] 0,00007 

RA2, mm 734 43 [41; 43] 39 [38; 40] 0,00003 

RA1 * RA2, 
mm2 

734 164[160; 176] 144 [140;148] 0,000012 

PQ, ms 801 160 [150; 160] 150[140; 150] 0,1 

QRS, ms 801 80[80; 100] 100[80; 100] 0,0019 

RR, ms 761 936,5[909; 
1000] 

920[882,4; 950] 0,22 

QT, ms 761 400 [400; 410] 400[380; 400] 0,00012 

ESD LV, mm 733 350 [330; 360] 340[ 330; 350] 0,037 

TVI, abs (%) 801 34 (22,2%) 79 (12,2%) 0,002 

 
At the second stage of the study, among the indicators with significant differences in the comparison 

groups, the ranges of their values with the highest predictive potential were verified (Table 2). The 

following boundaries of continuous factors were identified that have a statistically significant effect on 
the development of POAF: men age over 55 and under 75 and women over 60 and under 79 (OR = 3.4, 

p <0.0001); PQ segment duration more than 160 and less than 200 ms (OR = 2.2, p = 0.0004), QRS 

depolarization complex more than 50 and less than 100 ms (OR = 1.5, p = 0.021), RR interval ranges 
from 1000 to 1100 ms, QT greater than 420 ms alongside with echocardiography hearth parameters: 

multiplication of LA3 and LA2 more than 150 mm2, multiplication of RA1 and RA2 more than 160 

mm2/ Moreover, LV ESD more than 4.9 cm shows a 2.9-fold increase in risk and EF more than 45 and 

less than 60% increased the risk of POAF by 1.7 times (p = 0.0058). The procedure for finding the 
boundaries of continuous variables made it possible to identify not only significant ranges of predictors 

and thus determine risk factors, but also to identify additional predictors that had not previously been 

verified as such (PQ and RR). 

 
 
 
 



Table 2 
POAF risk factors with the best predictive potential values boundaries  

Predictor and Its 
Boundary 

1 group, n=153 2 group, n= 648 OR, 95% CI p-value 

Age, years 
M 55- 74 
F 60-78 

142 (92,8 %) 511 (78,9%) 3,4 [1,9; 6,9] 0,0001 

EF,% 45-60% 81 (52,9%) 268 (41,4%) 1,68[1,17; 2,42] 0,0058 

ESD > 490 mm 7 (4,6%) 11 (1,7%) 2,9 [1,05; 7,7]] 0,049 

LA2*LA3 >160 
mm2 

67 (43,8%) 191 (29,5%) 2,1 [1,4; 3] 0,0002 

RA1 * RA2 >150 
mm2 

92 (60%) 269 (41,5%) 2,5[1,7; 3,8] <0,0001 

PQ 170-210 ms 38 (24,8%) 47 (7,3%) 2,2 [2,6; 6,8] 0,0004 

QRS 50-80 ms 88 (57,5%) 303 (46,8%) 1,53 [2,2; 14,4] 0,021 

RR 1000-1100 ms 70 (45,8 %) 175 (27%) 2 [1,4; 2,9] 0,00033 

QT, ms 
M>420 ms 
F>440 ms 

45 (30,8%) 100 (16,3%) 2,3 [1,5; 3,5] 0,00013 

TVI, abs (%) 34 (22,2%) 79 (12,2%) 2 [1,3; 3,2] 0,002 

Remark:  M – males; F – females 

During third stage of the study univariate LR models were developed with weight coefficients calculation for 
characterization of analyzed indicators predictive values and verification of possible risk factors interrelationships 

alongside with the likelihood of POAF (Table 3). This approach allowed to assess more detailed potential 

predictors influence on the resulting variable. Age, QRS and PQ segments shows the greatest influence on POAF. 

 

 

 

 

 

 



Table 3 
Weights for POAF risk assessment univariate LR models  

Factors Coefficient p-value 

Age, years 
M 55- 74 
F 60-78 

1,24 0,00015 

EF: 45 - 60% 0,42 0,03 

LA2*LA3 >160 mm2 0,73 0,00016 

ESD LV > 490 mm  1,07 0,03 

RA1 * RA2 >150 mm2 0,94 <0,0001 

PQ 170 - 210 ms 1,44 <0,0001 

QRS 50-80 ms 1,63 0,0005 

RR 1000- 1100 ms 0,87 <0,0001 

QT, ms 
M>420 ms 
F>440 ms 

0,78 0,00016 

TVI, abs (%) 0,72 0,0016 

 

At the fourth stage of the study, using the step-by-step inclusion of predictors in continuous or categorical form 

LR (Table 3), SGB (Table 4) and ANN (Table 5) models were developed. One of the objectives for our study was 

assessing the effectiveness categorical form predictors usage in comparison with their continuous counterparts. 

Accuracy increase of multivariate LR models was recorded in models 2-7 (Table 4). The maximum accuracy 

according to the Sen metric (0.67) was achieved in models 6 and 7 with AUC 0.71 and 0.7, respectively. The Spec 

level was 0.66. Further expansion of possible predictors lowered the Sen metric while retaining the levels of other 

metrics. This fact indicated that such parameters as ESD, EF and TVI are related, possibly linearly, with indicators 

of atrial size, ECG data and age. Analysis of LR-based models using categorical variables (models 11-20 in Table 

4) showed that the accuracy of the models improved similarly to the continuous case, but it could achieve better 
values. For example, a comparison of models 7 and 17 shows that the latter has the best accuracy for all 4-quality 

metrics (0.69 vs 0.67, 0.71 vs 0.66, 0.74 vs 0.7 and 0.71 vs 0.67). Further expansion of the categorical predictors 

of models 18-20 did not significantly change the forecast accuracy. 

 

 

 

 



Table 4 
POAF predictive models accuracy assessment on test samples for multivariate LR 

N Predictors Predictor 
and Its 

Boundary 

Accuracy metrics 

Sen Spec AUC ACC 

1 Age - 0.46 0.63 0.58 0.59 

2 Age, PQ - 0.51 0.62 0.59 0.6 

3 Age, PQ, QRS - 0.6 0.6 0.62 0.6 

4 Age, PQ, QRS, RR - 0.56 0.61 0.63 0.6 

5 Age, PQ, QRS, RR, QT - 0.62 0.61 0.67 0.61 

6 Age, PQ, QRS, RR, QT, RA1*RA2 - 0.67 0.66 0.71 0.66 

7 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3 

- 0.67 0.66 0.7 0.67 

8 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3, ESD 

- 0.64 0.68 0.71 0.66 

9 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3, ESD, EF 

- 0.62 0.68 0.7 0.66 

10 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3, ESD, EF, TVI 

- 0.58 0.7 0.7 0.68 

11 Age М 55- 74 
Ж 60-78 

0.93 0.21 0.57 0.35 

12 Age + PQ 170-210 
ms 

0.25 0.93 0.64 0.8 

13 Age, PQ + QRS 50-80 ms 0.72 0.46 0.66 0.5 

14 Age, PQ, QRS + RR 1000-1100 
ms 

0.56 0.75 0.7 0.71 



15 Age, PQ, QRS, RR + QT М>420 ms 
Ж>440 ms 

  

0.67 0.69 0.72 0.69 

16 Age, PQ, QRS, RR, QT + RA1*RA2 > 160 mm2 0.63 0.74 0.75 0.72 

17 Age, PQ, QRS, RR, QT, RA1*RA2 + 
LA1*LA2 

> 150 mm2 0.69 0.71 0.74 0.71 

18 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3 + ESD 

>490 mm 0.68 0.71 0.75 0.71 

19 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3, ESD + EF 

45-60% 0.68 0.72 0.75 0.71 

20 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3, ESD, EF, TVI 

- 0.69 0.71 0.75 0.71 

 
Models based on SGB were developed in a similar way (Table 5). Predictive assessment accuracy increase was 

recorded in 2-5 SGB models. The 4-quality metrics obtained in the 5th model are currently the best predictive 

estimates in comparison with all previously published results: 0.82, 0.76, 0.77 and 0.76 for AUC, ACC, Sen and 

Spec, respectively. Further inclusion of statistically significant predictors in the SGB-based models in a 

continuous form reduced the quality of the prediction (models 6-10). Models of SGB 11-20, developed using 

predictors in categorical form, reached peak accuracy with the same set of indicators as the LR model (models 17 

in Tables 4 and 5). Further expansion of the categorical predictors range didn’t lead to prediction quality changes 
Models based on LR and SGB were comparable in terms of the accuracy level. 

 

Table 5 
POAF predictive models accuracy assessment on test samples for SGB 

 

N Predictors Predictor 
and Its 

Boundary 

Accuracy metrics 

Sen Spec AUC ACC 

1 Age - 0.5 0.59 0.54 0.57 

2 Age, PQ - 0.58 0.66 0.65 0.64 

3 Age, PQ, QRS - 0.66 0.63 0.71 0.64 

4 Age, PQ, QRS, RR - 0.76 0.76 0.8 0.76 

5 Age, PQ, QRS, RR, QT - 0.77 0.76 0.82 0.76 



6 Age, PQ, QRS, RR, QT, 
RA1*RA2 

- 0.72 0.76 0.8 0.75 

7 Age, PQ, QRS, RR, QT, 
RA1*RA2, LA2*LA3 

- 0.68 0.78 0.79 0.76 

8 Age, PQ, QRS, RR, QT, 
RA1*RA2, LA2*LA3, 

ESD 

- 0.69 0.75 0.78 0.74 

9 Age, PQ, QRS, RR, QT, 
RA1*RA2, LA2*LA3, 

ESD,EF 

- 0.68 0.76 0.78 0.75 

10 Age, PQ, QRS, RR, QT, 
RA1*RA2, LA2*LA3, 

ESD,EF,TVI 

- 0.68 0.76 0.78 0.75 

11 Age M 55- 74 
F 60-78 

0.93 0.21 0.57 0.35 

12 Age + PQ 170-210 ms 0.25 0.93 0.64 0.8 

13 Age, PQ + QRS 50-80 ms 0.72 0.46 0.66 0.5 

14 Age, PQ, QRS + RR 1000-1100 
ms 

0.56 0.75 0.7 0.71 

15 Age, PQ, QRS, RR + QT М>420 ms 
Ж>440 ms 

0.67 0.69 0.72 0.69 

16 Age, PQ, QRS, RR, QT 
+ RA1*RA2 

> 160 mm2 0.63 0.74 0.75 0.72 

17 Age, PQ, QRS, RR, QT, 
RA1*RA2 + LA1*LA2 

> 150 mm2 0.69 0.71 0.74 0.71 

18 Age, PQ, QRS, RR, QT, 
RA1*RA2, LA2*LA3 + 

ESD 

>490 mm 0.68 0.71 0.75 0.71 



19 Age, PQ, QRS, RR, QT, 
RA1*RA2, LA2*LA3, 

ESD + EF 

45-60% 0.68 0.72 0.75 0.71 

20 Age, PQ, QRS, RR, QT, 
RA1*RA2, LA2*LA3, 

ESD, EF + TVI 

- 
  

0.69 0.71 0.75 0.71 

 
For models based on ANN, an accuracy increase was recorded when the predictors range was expanded both in 

continuous and categorical forms (Table 6). The best ANN model was obtained when all significant predictors 

were included in categorical form (Sen - 0.74, Spec - 0.73, AUC - 0.75, ACC - 0.73). The latter accuracy is lower 

than the best model based on SGB, but exceeds the accuracy of the LR model. But alongside, ANN models allow 

us to confirm the influence significance for the under-consideration predictors. 

 

Table 6 
POAF predictive models accuracy assessment on test samples for ANN 
 

N Predictors Predictor 
and Its 

Boundary 

Accuracy metrics 

Sen Spec AUC ACC 

1 Age - 0.16 0.86 0.56 0.7 

2 Age, PQ - 0.2 0.9 0.59 0.73 

3 Age, PQ, QRS - 0.5 0.77 0.71 0.6 

4 Age, PQ, QRS, RR - 0.6 0.68 0.63 0.64 

5 Age, PQ, QRS, RR, QT - 0.63 0.68 0.68 0.65 

6 Age, PQ, QRS, RR, QT, RA1*RA2 - 0.65 0.68 0.71 0.67 

7 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3 

- 0.68 0.7 0.69 0.69 

8 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3, ESD 

- 0.69 0.72 0.71 0.7 

9 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3, ESD, EF 

- 0.7 0.71 0.71 0.71 



10 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3, ESD, EF, TVI 

- 0.71 0.72 0.72 0.71 

11 Age M 55- 74 
F 60-78 

0 1.0 0.55 0.81 

12 Age + PQ 170-210 
ms 

0.24 0.94 0.62 0.8 

13 Age, PQ + QRS 50-80 ms 0.38 0.8 0.67 0.73 

14 Age, PQ, QRS + RR 1000-
1100 ms 

0.58 0.74 0.71 0.71 

15 Age, PQ, QRS, RR + QT M>420 ms 
F>440 ms 

0.68 0.68 0.72 0.68 

16 Age, PQ, QRS, RR, QT + RA1*RA2 > 160 
mm2 

0.63 0.75 0.75 0.73 

17 Age, PQ, QRS, RR, QT, RA1*RA2 + 
LA1*LA2 

> 150 
mm2 

0.65 0.74 0.75 0.72 

18 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3, ESD 

>490 mm 0.65 0.74 0.74 0.73 

19 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3, ESD + EF 

45-60% 0.7 0.71 0.74 0.71 

20 Age, PQ, QRS, RR, QT, RA1*RA2, 
LA2*LA3, ESD, EF + TVI 

- 
  

0.74 0.73 0.75 0.73 

 

4. Conclusions 

This work presents models for after CABG POAF prediction, developed on the basis of statistical 
analysis and machine learning methods: intergroup comparison, significant ranges searching, univariate 

LR, multivariate LR, SGB and ANN. Predictors were received during analysis of 100 pre-operative 

coronary artery disease patients’ characteristics data set. Statistical methods usage made it possible to 
identify the most significant factors. At the same time, it was possible to put forward hypotheses about 

the boundaries ranges of that form risk factors. The factors with the highest predictive potential included 

patients age (55-74 years for men, 60-78 years for women), RR 1000-1100 ms, QRS 50-80 ms, PQ 170-
210 ms, QT (> 420 ms for men;> 440 ms - for women), product of linear dimensions of LA> 150 mm2 

and RA> 160 mm2, presence of TVI, EF 45-60% and LV ESD> 490 mm. These hypotheses were 



confirmed by univariate, multivariate LR and ANN models. Some of the predictors (EF, TVI, ESD) 
had nonlinear relationships with the endpoint and did not increase the accuracy of the LR models. The 

step-by step increase of ANN models quality metrics confirms the influence of these factors on POAF 

risk. The usage of categorical form indicators didn’t lead to models accuracy degression in all cases 

considered.  
At the same time, the authors best model were obtained with SGB and most significant factors in 

continuous form. This model for new-onset POAF after CABG prediction according to 4 quality metrics 

(AUC - 0.82, ACC - 0.76, Sen - 0.77 and Spec - 0.76) is the best compared to previously published 
ones. Further extension of SGB model predictors reduced the prediction accuracy. Moreover, 

categorical indicators form usage for SGB also did not improve the models quality, compared to 

continuous counterparts. 
The predictors obtained in our study are explainable by modern pathophysiology concepts of 

coronary artery disease and AF. So, initially (before surgery), the altered atrial size, impaired LV 

contractile function and ECG abnormalities are aggravated against the background of operational stress, 

appear to be a substrate that contributes to the pathological arrhythmia’s occurrence. Complexity of the 
clinical interpretation for SGB and ANN is indisputable fact, but as shown in our experiment some 

predictors used for modeling could be widespread markers of patient’s functional status and their 

predictive value already has been shown in a number of works [21]. However, previously not used 
predictors, such as ESD, TVI and RA size, were identified, which is the task of further research. 
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