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ABSTRACT
Real-world data can often be represented as a heterogeneous net-

work relating nodes of different types. For example, envision a

network of the job market, where nodes may be job seekers, skills,

and jobs, and where links to skill nodes could indicate having that

skill (if linked to a job seeker) or having the skill as a requirement

(for jobs). It can be relevant to consider the imbalance in such a

network between the nodes of different types. In the example, this

imbalance could correspond to the mismatch between supply and

demand of jobs due to a mismatch in skills, an effect known as

‘friction’. Identifying and reducing such friction is a problem of

great economic and societal significance.

We introduce a quantification of the imbalance in a network

between two sets of nodes (nodes of different types, attributes, etc.)

based on the embedding of a network, i.e., a real-valued vector space

representation of the network nodes. Moreover, we introduce an

algorithm named GraB (Graph Balancing) which ranks unconnected
node pairs according to how well they would reduce the imbalance

in a network if an edge were added between them. E.g., in the job

network, GraB could be used to rank skills that job seekers do not

yet have but could strive to acquire, to move them closer in the

embedding towards an area where there is an abundance of jobs,

and hence to reduce job market imbalance. We evaluated GraB on

several datasets, including a job market network, and find that GraB
outperforms baselines in reducing network imbalance.

CCS CONCEPTS
• Computing methodologies→ Learning latent representations.
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1 INTRODUCTION
Graphs (or networks) are natural models for a wide range of real-

world structures [4], arising from e.g., social networks [8], biology

(e.g., Protein-Protein interaction networks) [26], and linguistics (e.g.,

word co-occurrence networks) [5]. Network embedding provides

an efficient way to solve graph analytics problems by mapping

nodes into a real-valued space, which can later be used as an input

feature vector to a machine learning model [11]. Using these vector

representations, machine learning methods can be applied on graph

datasets to perform graph analysis tasks such as link prediction

[12], information diffusion [9], and node classification [25].

RecSys in HR 2021, October 1, 2021, Amsterdam, the Netherlands
Copyright 2021 for this paper by its authors. Use permitted under Creative Commons

License Attribution 4.0 International (CC BY 4.0).

An imbalance between two sets of nodes is an undesirable phe-

nomenon in some networks. This paper studies how to quantify

network imbalance using the embedding of a network and proposes

a method to reduce network imbalance by adding a limited number

of links to the network.

Motivation: There are many networks for which it is be desir-

able to minimize the imbalance between specific sets of nodes. Let

us consider an example of a job market network with three sets of

nodes job vacancies, job seekers, and skills, and where job vacan-

cies are connected to the skills they require, and job seekers are

connected to the skills they have and possibly to the job vacancies

they have shown an interest in.

Imagine there are many Python developers seeking a job, and few

vacancies requiring Python programming, while there are many

vacancies requiring Java programming but few Java developers. As

a result, Java jobs would remain unfilled and many Python pro-

grammers would remain unemployed. With an ever faster evolving

job market, such imbalances are increasingly common and serious,

harming job market efficiency and ultimately the economy. Thus,

quantifying such imbalances would provide policy makers with an

objective picture of the current state of affairs.

Moreover, the ability to quantify imbalance also opens up the

possibility of trying to reduce it through targeted interventions

and incentives. While policy makers may not be able to influence

employers to shift their requirements, they can provide courses and

training material for specific worker profiles lacking sought-after

skills, to shift their area of expertise and better meet the demand of

the job market. In network terms, it is equivalent to adding a certain

number of links connecting job seekers (let us call this the set of

source nodes) to skills (auxiliary nodes), to reduce the imbalance

between job seekers (source nodes) and job vacancies (target nodes).
Our approach: In a job market network, a matching with lowest

cost—where cost could be defined as the required training time

of employees in the company, or the effort a job seeker has to

make to be suited for a job—between job seekers and job vacancies

appears to be the ideal situation. However, matching job seekers

to connected jobs only is not always desirable, because a link may

only indicate a job seeker’s expressed interest in a job. Yet, we could

let job seekers be matched with jobs even if they are not connected.

Formally. we denote an undirected network by𝐺 = (𝑉 , 𝐸), where
𝑉 and 𝐸 are the sets of nodes and links respectively. Moreover, we

define three sets of nodes, namely source nodes 𝑆 (e.g. job seekers
in the job market network), target nodes 𝑇 (e.g. job vacancies), and

auxiliary nodes 𝑈 (e.g. skills). Sets 𝑆 , 𝑇 , and 𝑈 are three disjoint

subsets of 𝑉 . Given such a network with sets 𝑆 and 𝑇 , we let every

node in 𝑆 be matched with every node in 𝑇 .
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Figure 1: A sample network. Blue nodes denote source nodes,
red nodes denote target nodes and green nodes denote aux-
iliary nodes. (a) A 2D embedding of the original network. (b)
A 2D embedding of the network after adding 200 links be-
tween source and auxiliary nodes using GraB, to reduce the
imbalance between source and target nodes.

Hence, in effect we model a complete bipartite network 𝐺 ′
from

node sets 𝑆 and 𝑇 . We define the imbalance between 𝑆 and 𝑇 in

𝐺 as the cost of a so-called optimal fractional perfect b-matching

(see, e.g., [1]) in 𝐺 ′
. Specifying the fractional perfect b-matching

requires the definition of the cost of matching any pair of nodes

from 𝑆 and 𝑇 in 𝐺 ′
. As the (inverse of the) distance between a pair

of nodes’ embeddings in a network embedding usually represents

some type of affinity between these nodes, we propose to let this

cost be based on the embedding distance of nodes in𝐺 . More details

are presented in Section 2.2.

Next, we define the problem of adding a limited number of links

between sets 𝑆 and 𝑈—in the original graph 𝐺—, to reduce the im-
balance between sets 𝑆 and 𝑇 . Adding links will change the embed-

ding of the network 𝐺 and thus modify the cost of matching node

pairs in𝐺 ′
. We propose a method called Graph Balancing (GraB) to

tackle this problem, which is based on a local approximation of the

imbalance that we may compute analytically, thus providing the

necessary scalability.

Example: To understand the relevance of the embedding, con-

sider the sample network shown in Figure 1a. The figure shows

three clusters of nodes. In the top-left cluster, source and target

nodes are mixed, while the bottom-left cluster only contains nodes

in 𝑆 while the top-right cluster only contains nodes in 𝑇 . Our goal

is to quantify which links between 𝑆 and𝑈 (the green nodes here)

would reduce the imbalance between 𝑆 and 𝑇 . Figure 1b shows the

network embedding after adding the top 200 links from GraB to the
network. Now, 𝑆 and 𝑇 are well-mixed in the network.

Related work: Previous studies on imbalance in supply and de-

mand on the job market mostly focus on the factors influencing the

imbalance (such as retirement, salary, etc.) and do not consider the

imbalance between nodes individually (different jobs require people

with specific skills) [27, 29]. The literature on graph matching is

related to our work, as we also define the imbalance in a network

between two sets of nodes using the cost of a matching between

them. However, the focus in this paper is not on the computational

problem of identifying this matching, we simply use the cost of the

optimal fractional perfect b-matching as the imbalance measure.

These two relations are further discussed in Section 5.

Themain contributions of this paper are:

• We define the imbalance between two sets of nodes, 𝑆 and 𝑇 ,

in a network and propose the measure 𝝍 (𝑫, 𝑆,𝑇 ) for quanti-
fying it, where we compute the cost of matching node pairs

using the embedding distances 𝑫 .

• We introduce the novel problem of reducing the imbalance
in a network by adding a limited number of links.

• We also propose a novel generic method, Graph Balancing
(GraB), to optimally select those links. Because this is compu-

tationally challenging, we introduce a link utility that uses

a local imbalance measure as a proxy and employ a greedy

algorithm to select the links.

• To better understand the merits of GraB, we propose two
baselines (a naive and a more intelligent baseline) for the

novel problem of reducing the imbalance in a network.

• GraB is proposed as a generic method, applicable to a wide

range of network embedding methods. We also develop a

concrete instantiation using conditional network embedding
(CNE) [16], a state-of-the-art network embedding method.

• Weperform several experiments to compare the performance

of GraB and baselines in reducing the imbalance in a network

embedding. The experiments show that GraB outperforms

the baselines in this task.

Outline. In Section 2, we define and quantify imbalance and

formalize the problem. In Section 3, we introduce our method GraB
to reduce the imbalance in a network using its embedding. In Sec-

tion 4, we provide an experimental evaluation of GraB. In Section 5,

we discuss the related work. In Section 6, we conclude and outline

avenues for future work.

2 PROBLEM DEFINITION
In this section, we first provide the relevant background and nota-

tion. Next, we provide a definition and quantification of imbalance

in networks. Finally, we formulate the problem of reducing imbal-

ance by adding links to a network.

2.1 Background
An undirected network is denoted by𝐺 = (𝑉 , 𝐸), where𝑉 is the set

of |𝑉 | = 𝑛 nodes and 𝐸 ⊆
(𝑉
2

)
is the set of links between nodes. For

convenience, we will index the set of nodes by natural numbers, i.e.

𝑉 = {1, . . . , 𝑛}. Let 𝑨 denote the adjacency matrix, and 𝑎𝑖 𝑗 is the

element of the adjacency matrix corresponding to the link between

node 𝑖 and node 𝑗 , i.e. 𝑎𝑖 𝑗 = 1 iff {𝑖, 𝑗} ∈ 𝐸. Network embedding

methods find a mapping each node 𝑖 ∈ 𝑉 to a 𝑑-dimensional real

vector 𝒙𝑖 ∈ R𝑑 . For convenience, these may be aggregated in a

matrix 𝑿 = (𝒙1, ..., 𝒙𝑛)′ ∈ R𝑛×𝑑 . In this paper, we assume there is

a given network embedding method to find 𝑿 .

2.2 Network Imbalance
To generically define our proposed notion of imbalance, we develop

it first for the concrete example of the job market. There, we define

the imbalance as the cost of matching all job seekers to job vacancies.

Here, we allow a job seeker and a job to be matched even if they

are not connected by a link. Indeed, a link between a job seeker

and a job vacancy might mean that the job seeker has applied for

the job or has otherwise expressed an interest, not necessarily that

they were employed for that job. Moreover, the absence of a link
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does not imply that the job seeker would not be a good candidate

for the job. It is this property that distinguishes our work from the
literature on combinatorial matching problems in graphs.

However, the skills to which the job seeker and job vacancy are

linked, and jobs vacancies they are linked to, provide information

on whether the job seeker is suited for the job; and the more suited,

the smaller the cost of a match between them should be. Hence, the

cost of matching a job seeker and a job vacancy should be a function

of the network structure, and adding or removing skills to that job

seeker or job vacancy should influence the cost of matching them.

Hence, the cost could be defined using any model that provides

link costs or link probabilities (so the cost of node pairs could

be computed based on them) based on the network structure. In

this paper, we investigate using the embedding of the network for

this, as it is a state-of-the-art approach to summarize the network

structure, where proximity between node embeddings reflects the

probability that both nodes should be linked.

2.2.1 Formal definition of network imbalance. The imbalance can

be formalized as follows. We create a complete bipartite network

(in which all node pairs between the two sets are linked), and assign

equal weights𝑤𝑖 to each node 𝑖 in a set, such that the sum of weights

in two sets are equal. Given a cost defined for each link 𝑫 = [𝑑𝑖 𝑗 ]
(e.g., based on the link probability or distance in the embedding

space), we define the imbalance as the cost of the fractional perfect
b-matching with minimum cost in the bipartite network.

A fractional perfect b-matching 𝑭 = [𝑓𝑖 𝑗 ] is defined as an as-

signment of nonnegative real numbers 𝑓𝑖 𝑗 to the links of a network

such that the sum of those numbers over links incident to any node

𝑖 is equal to a specified weight𝑤𝑖 of that node [1]. The cost of 𝐹 in

a undirected network with 𝑛 nodes is then defined as

𝑛∑
𝑖=1

𝑛∑
𝑗=𝑖+1

𝑓𝑖 𝑗𝑑𝑖 𝑗 .

We thus define the imbalance in a network as follows:

Definition 1 (Imbalance). Consider a network 𝐺 = (𝑉 , 𝐸), two
disjoint non-trivial subsets of its nodes referred to as the source nodes
∅ ⊂ 𝑆 ⊂ 𝑉 and the target nodes ∅ ⊂ 𝑇 ⊂ 𝑉 with 𝑆 ∩ 𝑇 = ∅, and
the costs 𝑑𝑖 𝑗 of matching the pairs of nodes 𝑖 and 𝑗 for all 𝑖 ∈ 𝑆

and 𝑗 ∈ 𝑇 , arranged in a matrix 𝑫 = [𝑑𝑖 𝑗 ]. Moreover, consider
the complete edge-weighted and node-weighted bipartite network
𝐺 ′ = (𝑉 ′ = 𝑆 ∪𝑇, 𝐸 ′ = 𝑆 ×𝑇 ), with weight of edge {𝑖, 𝑗} with 𝑖 ∈ 𝑆
and 𝑗 ∈ 𝑇 equal to 𝑑𝑖 𝑗 , and weight of node 𝑖 ∈ 𝑆 equal to 𝑤𝑖 = 1

|𝑆 |
and weight of node 𝑗 ∈ 𝑇 equal to 𝑤 𝑗 = 1

|𝑇 | . Then the imbalance
between nodes in sets 𝑆 and𝑇 , denoted as 𝝍 (𝑫, 𝑆,𝑇 ), is defined as the
cost of the minimum cost fractional perfect b-matching in 𝐺 ′.

Computing the imbalance defined in this way can be done by

solving a linear programming problem for finding the matching

𝑭 = [𝑓𝑖 𝑗 ] in 𝐺 ′
that minimizes the overall cost:

𝐶 =
∑
𝑖∈𝑆

∑
𝑗 ∈𝑇

𝑓𝑖 𝑗𝑑𝑖 𝑗 ,

s.t. 𝑓𝑖 𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝑆 ×𝑇,∑
𝑗 ∈𝑇

𝑓𝑖 𝑗 = 𝑤𝑖 ∀𝑖 ∈ 𝑆,
∑
𝑖∈𝑆

𝑓𝑖 𝑗 = 𝑤 𝑗 ∀𝑗 ∈ 𝑇 .

The imbalance measure 𝜓 is defined as the minimum cost of the

optimal matching. (The matching itself is not of interest to us for

the purposes of this paper.)

2.2.2 The matching cost, and a relation to the earth mover’s distance.
While the cost for each edge could be defined in several ways, net-

work embeddings arguably offer a natural way to define them: our

approach is to use the distance of nodes in the network embed-

ding of 𝐺 as the matching cost 𝑑𝑖 𝑗 of each node pair in 𝐺 ′
. For

embedding methods modeling first-order similarities in networks,

these distances are directly related to the link probability between

nodes. Moreover, the embedding of a node aggregates all relevant

information about the network structure in relation to the node.

Interestingly, with this matching cost, the proposed definition

of the imbalance is equivalent with the Earth Mover’s Distance

(EMD) [23] between the source and target sets in the embedding

space. The EMD computes the minimum cost to transform one

distribution into another.

Proposition 1 (Network Imbalance based on fractional b–

matching and EMD are eqivalent). Consider the two empirical
distributions of the node embeddings for 𝑆 and 𝑇 in the embedding
space. The EMD between these two distributions is equal to the network
imbalance measure𝜓 .

We refer to Appendix A
1
for a more precise formulation of this

proposition and a proof.

2.3 Formulating the problem of reducing
network imbalance

As the cost of matching node pairs depends on the structure of

the network, it will change by modifying the network. Motivated

by the job market example, we propose the operation of adding

links as the kind of modification that can be made. We further

propose to restrict the problem by allowing links to be added only

between nodes from the source set and nodes from an auxiliary

set of nodes. This is again motivated by the job market, where we

can realistically add new links between skills and job seekers (by

training job seekers), but not between job vacancies and skills. More

formally, we introduce the following problem:

Problem 1 (Imbalance Reduction). Given a network𝐺 = (𝑉 , 𝐸)
and three mutually disjoint sets of nodes source nodes ∅ ⊂ 𝑆 ⊂ 𝑉 ,
target nodes ∅ ⊂ 𝑇 ⊂ 𝑉 and auxiliary nodes ∅ ⊂ 𝑈 ⊂ 𝑉 , the cost of
matching each pair of nodes 𝑫 = [𝑑𝑖 𝑗 ] (that depends on the network
structure 𝐺), and imbalance measure𝜓 (𝑫, 𝑆,𝑇 ), find the optimal 𝑘
links E connecting nodes from set 𝑆 with nodes from set𝑈 , that reduce
the imbalance between the nodes in sets 𝑆 and 𝑇 . Formally,

argmin
E

E⊆𝑆×𝑈 ,E∩𝐸=∅

𝜓 (𝑫E , 𝑆,𝑇 ),

where 𝐷E is computed based on 𝐺E = (𝑉 , 𝐸 ∪ E).

In the next section, we introduce GraB to solve this problem.

1
https://github.com/aida-ugent/GraB/blob/master/GraB_appendix.pdf

https://github.com/aida-ugent/GraB/blob/master/GraB_appendix.pdf
https://github.com/aida-ugent/GraB/blob/master/GraB_appendix.pdf


RecSys in HR 2021, October 1, 2021, Amsterdam, the Netherlands Mashayekhi et al.

3 REDUCING NETWORK IMBALANCE: GRAB
In this section, we introduce GraB, a generic method to solve the

imbalance reduction problem, i.e., how to add 𝑘 links to a network

in order to maximally reduce the imbalance in the network, as

defined in Definition 1. We first provide a sketch of the solution

and then provide more details in the respective sections below.

The exact minimization problem amounts to finding a set of links

that jointly minimize the imbalance. This exact approach may be

computationally intractable when the number of candidate links is

large, since it may require computing the imbalance reduction for

every possible set of 𝑘 links. Besides the vast number of possible

sets, to compute the reduction in imbalance we need to re-embed

the network and compute the imbalance again. Recomputing the

embedding is computationally demanding, and is practically im-

possible to do even for a moderate number of candidate link sets.

Motivated by these two problems, our approach is as follows.

Firstly, rather than re-embedding the network and observing the

change in imbalance, we introduce a proxy measure for the change,
based on an infinitesimal change to any link {𝑖, 𝑗}. We refer to this

proxy measure as the link utility. The link utility is based on three

elements. (1) Since the formulation of 𝜓 is a linear programming

problem, the derivative of𝜓 w.r.t. links cannot be directly computed.

Hence, we introduce a local imbalance measure to be used as a

proxy for𝜓 , and quantify the infinitesimal changes in links for that

measure. (2) This local imbalance measure is then used to derive

a measure of the utility of links. (3) The local imbalance measure

relies on the estimation of the density of nodes at any point in

the embedding. For this, we employ multivariate Gaussian kernel

density estimation. These elements are presented in Section 3.1.

Secondly, the problem that we cannot test the imbalance reduc-

tion for all possible sets of links remains. Link utility does not

account for any interactions between links on the amount of im-

balance in the network. To find a good balance between accuracy

and computational tractability, GraB employs a greedy selection

strategy using link utility in combination with re-embedding the

network every 𝑏 steps (the batch size). The GraB algorithm imple-

menting this strategy is introduced in Section 3.2.

Finally, we need to select a suitable embedding method. We

briefly discuss suitable methods in Section 3.3.

3.1 The Link Utility Measure
In the embedding of a network, there are areas where the set 𝑆 (or

𝑇 ) is denser than the other one. Given a network with 𝑛 nodes and

their corresponding embeddings {𝒙1, ..., 𝒙𝑛}, the idea behind the

proxy measure is that to reduce the imbalance, we should add links

connecting source nodes with auxiliary nodes, such that the source

nodes are moved to areas with a higher density of target nodes and

fewer source nodes. We thus introduce a local imbalance measure

to quantify the density imbalance between source and target node

sets at any point in the embedding. Moving source nodes to areas

with higher local imbalance (more target nodes than source nodes)

would reduce the local imbalance in those areas. We define the

utility of adding a link using the first order of approximation of this

local imbalance measure.

3.1.1 Local Imbalance Quantification. Skipping for a moment how

to quantify the density of a set of nodes at a specific point in the

embedding, we define the local imbalance measure which evaluates

the imbalance between the embedding of two sets of nodes 𝑆 and

𝑇 locally at any point 𝒙 in the embedding space as follows:

Definition 2 (Local Imbalance Measure 𝛿𝑆,𝑇 ). Given a net-
work𝐺 = (𝑉 , 𝐸) with the embedding 𝑿 and two disjoint sets of nodes,
source nodes 𝑆 with ∅ ⊂ 𝑆 ⊂ 𝑉 and target nodes 𝑇 with ∅ ⊂ 𝑇 ⊂ 𝑉 ,
denote the density function of the target nodes as estimated based
on the embedding 𝑿 and evaluated at point 𝒙 by 𝑝𝑇 (𝒙;𝑿 ), and let
𝑝𝑆 (𝒙 ;𝑿 ) denote the estimated density function for the source nodes
evaluated at 𝒙 . We use the log ratio of the density of the two sets of
nodes as local imbalance measure 𝛿𝑆,𝑇 evaluated at point 𝒙 :

𝛿𝑆,𝑇 (𝒙 ;𝑿 ) = ln

(
𝑝𝑇 (𝒙 ;𝑿 )
𝑝𝑆 (𝒙 ;𝑿 )

)
. (1)

If the densities are differentiable and non-zero everywhere, also

𝛿𝑆,𝑇 becomes differentiable and suitable for optimization.

Example: Let us illustrate the idea behind GraB and the local

imbalance as a proxy to optimize the imbalance𝜓 . Figure 2a shows

a 2D embedding of a toy network with equal number of source

and target nodes. Hence, each source node should be matched with

exactly one target node to compute the imbalance 𝜓 . Visually, 𝑡1
should be matched with 𝑠3, since they are close to each other and

the cost of matching them is low. Thus, 𝑠1 and 𝑠2 should be matched

with 𝑡2 and 𝑡3, although the matching cost (their distance) would

be high. GraB can then be used to move source nodes 𝑠1 and 𝑠2 to

areas with higher local imbalance 𝛿 , which is the area where 𝑡2
and 𝑡3 reside. If we move 𝑠1 and 𝑠2 closer to 𝑡2 and 𝑡3, the matching

costs between them would be reduced and the imbalance𝜓 would

be reduced as well. GraB’s goal is to find links between source

and auxiliary nodes such that adding them would move the source

nodes to areas with higher local imbalance 𝛿 . GraB uses a link utility
measure for this purpose, whichwill be discussed in the next section.

Figure 2b shows the 2D embedding of the network after adding two

links {𝑠1, 𝑎3} and {𝑠2, 𝑎3} suggested by GraB, demonstrating that

adding the links indeed reduces𝜓 , from 3.44 to 2.71.

3.1.2 Link Utility. We can now define the utility of a link:

Definition 3 (Link Utility). The utility of adding a link {𝑖, 𝑗}
for reducing the local imbalance at the embedding 𝒙 𝒊 of source node
𝑖 ∈ 𝑉 is defined as the rate at which the local imbalance evaluated at
𝒙 𝒊 changes when increasing 𝑎𝑖 𝑗 , or mathematically: 𝜕𝛿𝑆,𝑇 (𝒙𝒊 ;𝑿 )

𝜕𝑎𝑖 𝑗
.

Note that two effects of adding the link {𝑖, 𝑗} are accounted for in
this definition: the fact that the embedding 𝒙 𝒊 of node 𝑖 will move,

possibly to a denser or sparser region, and the fact that the density

functions themselves may change. Both effects can be separated by

computing the total derivative:

𝜕𝛿𝑆,𝑇 (𝒙 ;𝑿 )
𝜕𝑎𝑖 𝑗

= ∇𝒙𝛿𝑆,𝑇 (𝒙 ;𝑿 )𝑇 𝜕𝒙 (𝑨)
𝜕𝑎𝑖 𝑗

(2)

+
∑
𝑟 ∈𝑆

∇𝒙𝑟 𝛿𝑆,𝑇 (𝒙 ;𝑿 )𝑇 𝜕𝒙𝑟 (𝑨)
𝜕𝑎𝑖 𝑗

+
∑
𝑟 ∈𝑇

∇𝒙𝑟 𝛿𝑆,𝑇 (𝒙 ;𝑿 )𝑇 𝜕𝒙𝑟 (𝑨)
𝜕𝑎𝑖 𝑗

,

where the first term accounts for the change in position 𝒙 where

the densities are measured, and the second and third terms account

fo the changes in both estimated densities.

Evaluating all these terms is costly. However, since changing 𝑎𝑖 𝑗
has a direct effect only on the embeddings of nodes 𝒙𝑖 and 𝒙 𝑗 [17],
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Figure 2: A sample network. Blue nodes denote source nodes,
red nodes denote target nodes and green nodes denote aux-
iliary nodes. (a) A 2D embedding of the original network.
Since the number of source and target nodes are the same, 𝑠1
and 𝑠2 should bemoved closer to 𝑡2 and 𝑡3 (because no source
nodes are close to them. The area near 𝑡2 and 𝑡3 has the high-
est local imbalance in the embedding space) to reduce the
matching cost (imbalance). (b) A 2D embedding of the net-
work after adding 2 links {𝑠1, 𝑎3} and {𝑠2, 𝑎3} using GraB, in
which 𝑠1 and 𝑠2 have moved closer to 𝑡2 and 𝑡3.

we argue that the summation terms over target nodes and over

source nodes where 𝑟 ≠ 𝑖 can be neglected. With 𝒙 set equal to 𝒙 𝒊 ,
we can thus approximate the utility as follows:

𝜕𝛿𝑆,𝑇 (𝒙𝑖 ;𝑿 )
𝜕𝑎𝑖 𝑗

≈
(
∇𝒙𝛿𝑆,𝑇 (𝒙 ;𝑿 ) + ∇𝒙𝑖𝛿𝑆,𝑇 (𝒙 ;𝑿 )

)
|𝑇𝒙=𝒙𝒊

.
𝜕𝒙𝑖 (𝑨)
𝜕𝑎𝑖 𝑗

.

(3)

Computing this approximation is far more efficient than a brute-

force computation of the utility. It is scalable especially if the deriva-

tives
𝜕𝒙𝑖 (𝑨)
𝜕𝑎𝑖 𝑗

of the embeddings can be computed analytically. An

embedding method for which that is the case is presented in Sec. 3.3.

3.1.3 KDE as Density Estimation Method. Kernel density estima-

tion (KDE), also known as Parzen window estimation [21], is a non-

parametric density estimator. The flexibility arising from KDE’s

non-parametric nature makes it a very popular approach for data

drawn from a complicated distribution [6]. We use KDE as the

density estimator in the local imbalance measure.

Definition 4 (Kernel Density Estimation [21]). Given a set of
𝑑-dimensional points {𝒙1, ..., 𝒙𝑛} forming the rows of data matrix 𝑿 ,
and a kernel function 𝐾 , the KDE for an arbitrary point 𝒙 is defined
as:

𝑝𝐾𝐷𝐸 (𝒙 ;𝑿 ) = 1

𝑛

𝑛∑
𝑖=1

𝐾 (𝒙 − 𝒙𝑖 ) .

For the kernel, we use multivariate Gaussian KDE:

𝐾 (𝒙) = (2𝜋)−𝑑/2 |𝐻 |−1/2 𝑒−
1

2
𝒙𝑇𝐻−1𝒙 ,

where the so-called bandwidth matrix 𝐻 is computed using Scott’s

rule [24]. Thus, we can quantify the utility (Definition 3) of adding

link {𝑖, 𝑗} at node 𝑖 by rewriting Eq. (3) with 𝑝𝐾𝐷𝐸 as the density

estimator. Doing this, observe that ∇𝒙𝒊𝐾 (𝒙 − 𝒙 𝒊) |𝒙=𝒙𝒊 = 0, such

that also ∇𝒙𝑖𝛿𝑆,𝑇 (𝒙 ;𝑿 ) |𝒙=𝒙𝒊 = 0. Hence, with this KDE as density

estimator, Eq. (3) simplifies to:

𝜕𝛿𝑆,𝑇 (𝒙𝑖 ;𝑿 )
𝜕𝑎𝑖 𝑗

≈ ∇𝒙𝛿𝑆,𝑇 (𝒙 ;𝑿 ) |𝑇𝒙=𝒙𝑖 .
𝜕𝒙𝑖
𝜕𝑎𝑖 𝑗

(𝑨) . (4)

3.2 The GraB Algorithm
Having defined the network imbalance measure and the link utility

measure to be used as a proxy, we can now craft a scalable algorithm

to optimize the imbalance. We designed GraB using three concepts.

1. Greedy link selection: As discussed, solving problem 1 ex-

actly requires computing the imbalance reduction for every possible

set of 𝑘 links between set 𝑆 and 𝑈 , which is computationally in-

feasible. Instead, GraB picks links greedily based on the link utility

measure. Although the link selection step aims to provide the most

beneficial links to add to the network, the network embedding af-

ter adding the links might be different than expected, due to the

following two issues.

2. Include links in batches: The first issue is that we are using
the utility of adding a link, assuming that the rest of the network em-

bedding remains the same. However, the effect of adding a link may

change after another link is included (especially if they are close to

each other in the network). A solution would be to re-embed the

network after the inclusion of each link, but this is computationally

costly. Thus, as a trade-off between cost and accuracy, we add links

to the network in several batches: in each iteration, we select a

batch of 𝑏 links from the top candidates ranked by link utility, add

them to the network, and re-embed the network. Additionally, since

the embedding of a node is affected more by its direct links, we add

at most one link per source node in a batch.

3. Post-hoc filtering: The second issue is that adding a link

may actually not reduce the imbalance, for example because the

source node moves a lot in the embedding and ‘jumps over’ the area

of higher local imbalance 𝛿𝑆,𝑇 . This is the case when the derivative

fromDefinition 3 is not a good approximation to the finite difference

of the local imbalance measure. An example is shown in Figure 3,

which shows the heatmap of 𝛿𝑆,𝑇 on a 2-dimensional embedding

of the Weibo network [28] using conditional network embedding.

In this example, node 𝑠 jumps over the area with a high 𝛿𝑆,𝑇 and

ends up in a worse position in terms of 𝛿𝑆,𝑇 .

Hence, to find the most beneficial 𝑏 links to add to the network

in each batch, we instead select the 𝑙 · 𝑏 top candidate links using

the link utility measure (𝑙 ≥ 1 controls how many more links than 𝑏
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Figure 3: An illustration of link utility error in heatmap of
𝛿𝑆,𝑇 on the 2D embedding ofWeibo network usingCNE,with
females as source nodes and males as target nodes. Point 𝑠1
shows the position of node 𝑠 before adding the link between
nodes 𝑠 (source node) and 𝑎 (auxiliary node) that has a pos-
itive utility, and 𝑠2 shows the new position of node 𝑠 after
adding the link, where the arrow shows the direction that
𝑠 would move. However, node 𝑠 jumps over the area with
higher 𝛿𝑆,𝑇 and moves to a position with lower 𝛿𝑆,𝑇 .

has to be added to the network for re-embedding). After adding 𝑙 ·𝑏
candidate links, we re-embed the network and select the first 𝑏 links

that caused their connected source nodes be moved to positions

with higher 𝛿𝑆,𝑇 . The parameter 𝑙 has to be large enough so that at

least 𝑏 links would end up in a better position after re-embedding.

GraB: In summary, we select 𝑘 links to add to the network to

reduce the imbalance in several batches, each of size 𝑏. For each

batch, we select the 𝑙 · 𝑏 top candidate links (at most one link per

source node) using the link utilitymeasure, add them to the network,

re-embed the network, and select the top 𝑏 links that caused their

connected source nodes to move to positions with higher 𝛿𝑆,𝑇 .

We call this method Graph Balancing (GraB). Full pseudocode
for the algorithm is given in Appendix B

2
.

3.3 Choice of Embedding Method
The generic method GraB applies to network embedding methods

where the optimal embeddings are differentiable w.r.t. changes in

link strength, i.e. where
𝜕𝒙𝑖
𝜕𝑎𝑖 𝑗

(𝑨) for 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑇 and 𝒙 𝒊 the

embedding of node 𝑖 , can be evaluated. To the best of our knowledge,

two methods satisfy this requirement: LINE [25] and Conditional

network embedding (CNE) [16]. We chose to use CNE for three

reasons. First, LINE uses the inner product as the similarity measure

between node embeddings, whereas KDE (and CNE) are based

on the Euclidean distance. This mismatch would make the local

imbalance proxy less effective. Second, re-embedding the network

starting from an initial embedding is easily done with CNE, greatly

speeding up GraB. And third, CNE was shown to outperform LINE.

Let 𝑯 𝑖 denote the (analytically computable) Hessian of the ob-

jective function of CNE w.r.t. 𝒙𝑖 . Then, with 𝛾 a hyper-parameter

2
https://github.com/aida-ugent/GraB/blob/master/GraB_appendix.pdf

of CNE, Kang et al. [17] showed that
𝜕𝒙𝑖 (𝑨)
𝜕𝑎𝑖 𝑗

is given by:

𝜕𝒙𝑖
𝜕𝑎𝑖 𝑗

(𝑨) = −𝛾𝑯−1
𝑖 (𝒙 𝑗 − 𝒙𝑖 ) .

4 EXPERIMENTAL EVALUATION
In this section, we describe the experimental evaluation of GraB. In
a qualitative experiment, we investigate question Q1: Does GraB
work as expected in moving source nodes towards areas with more

target nodes compared to source nodes? In the quantitative experi-

ments, we investigate two questions Q2: How does GraB perform
in reducing the imbalance𝜓 compared to the baselines? Q3: Does
GraB constantly reduce imbalance by increasing the number of

links added to the networks? In a hyper-parameter sensitivity ex-

periment, we investigate questionQ4: Is GraB sensitive to the batch
size 𝑏? Finally, we investigate questionQ5: How does GraB perform
in terms of execution time compared to the baselines?

We first discuss the datasets, baselines, and settings. Next, we

present the result of each experiment. The source code for repeating

the experiments are available here
3
.

4.1 Datasets
We evaluated the methods using three datasets described below:

VDAB 4
: VDAB is the employment service of Flanders in Bel-

gium. It provides a platform for job seekers to find jobs. The dataset

contains a sample of the applications made by job seekers to avail-

able job vacancies from January 2018 until October 2020. We con-

struct the job market network with three sets of nodes: job seekers,

job vacancies, and skills. Job vacancies are connected to job seekers

that have applied for them and to the skills they require. Our goal

is to reduce the imbalance between job seekers (source nodes) and

job vacancies (target nodes) by adding links connecting job seekers

with skills. This could be seen as teaching a group of job seekers

some skills, in a way that balances the job market network.

Weibo [28]: Weibo is the most popular Chinese microblogging

service. The dataset contains tweets of the users and the topic dis-

tribution of each tweet. We construct the network with three sets

of nodes: male users, female users, and topics. Users are connected

to their friends (reciprocal follow relationships) and the top topics

of their tweets. To find the top topics for each tweet, we first sort

the topic probabilities (relevance of topic for the tweet) in descend-

ing order. Next, we select the top topics until the difference of the

probabilities of two consecutive topics is greater than a very small

threshold (1e-6). We select a sample from the dataset by only con-

sidering tweets for the first year of the data. Our goal is to reduce

the imbalance between males (source nodes or target nodes) and

females (target nodes or source nodes) by adding new links con-

necting males/females with topics (auxiliary nodes). It is more like

recommending tweets with specific topics to the users to increase

their interest in that topic. In the experiments, we call this dataset

Weibo-mf if males are the source nodes and females are the target

nodes. Otherwise, we call the datasetWeibo-fm.

Movielens [14]: MovieLens is a web-based movie recommender

system. The dataset contains 100000 user ratings on movies. We

construct the network with three sets of nodes: users, movies, and

3
https://github.com/aida-ugent/GraB

4
https://www.vdab.be/

https://github.com/aida-ugent/GraB/blob/master/GraB_appendix.pdf
https://github.com/aida-ugent/GraB/blob/master/GraB_appendix.pdf
https://github.com/aida-ugent/GraB
https://github.com/aida-ugent/GraB
https://www.vdab.be/
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Table 1: Main statistics of the networks used for evaluation.

Dataset VDAB Weibo-mf Weibo-fm Movielens

Nodes 5016 1364 1364 2644

Source Nodes 2358 822 442 1682

Target Nodes 2463 442 822 943

Auxiliary Nodes 195 100 100 19

Links 48451 14308 14308 102893

Average Degree 19 20 20 77

movie genres. There is a link between each user and movie for

each rating. We also connect each movie to its genres. Our goal is

to reduce the imbalance between movies (source nodes or target

nodes) and users (target nodes or source nodes) by adding new

links connecting movies with genres (auxiliary nodes).

We only used the largest connected component in each network.

Table 1 shows the main statistics of each of the networks.

4.2 GraB-variants and baselines evaluated
As mentioned earlier, we are the first to introduce the concept of

imbalance in a network in the way described in Section 2.2 and to

reduce it by adding links to the network. However, there exist other

methods that try to add links to the networks to make them more

cohesive. We consider two of those methods [10, 20] for comparison.

Parotsidis et al. [20] minimize the average shortest path in a

network by adding links. Garimella et al. [10] compute controversy

between two sets of nodes using the random walks starting from

one set, and ending in the same or the other set. The main differ-

ence between the imbalance and controversy is that the amount

of links between nodes in the same set has a major effect on the

controversy, which is not necessarily the case in computing the

imbalance. Moreover, we use the distance in the embedding space

as the cost of matching node pairs, while they consider the actual

links in the network to compute the controversy.

We also designed a randommethod combined with our proposed

greedy algorithm, and a pure random method for comparison.

In summary, the following methods will be evaluated:

GraB: The main method proposed in this paper.

S-GraB: ‘Simple Graph Balancing’ is the same as GraB without
comparing the value of 𝛿𝑆,𝑇 of the previous and the new embedding

of the source node (i.e. without post-hoc filtering). I.e., S-GraB
selects 𝑏 links connecting source nodes with auxiliary nodes for

each batch from the link selection step. To select 𝑘 links to add

to the network, S-GraB runs 𝑘
𝑏
iterations. S-GraB is evaluated to

assess the importance of the post-hoc filtering.

Since the problem of graph balancing has not been studied before,

we also propose two simple baselines for comparison:

ROV [10]: ’Recommend opposing view’ adds links to the net-

work to reduce controversy. In this work, 𝑘 links between high

degree nodes in sets 𝑆 and 𝑇 that reduce controversy the most,

are added using a greedy algorithm. We adopt this method for our

problem setting by adding links between sets 𝑆 and 𝑈 using the

same method.

SSW [20]: ’Shortcuts for a smaller world’ adds links to the net-

work to reduce the average shortest path length. In this work, 𝑘

links are added to the network using different strategies. We employ

the greedy strategy, since it has the best performance [20].

S-Random: The ‘Simple random’ baseline selects𝑘 random links

connecting source nodes with auxiliary nodes.

I-Random: The ‘Intelligent random’ baseline is the same as

GraB, except that we select random links connecting source nodes

with auxiliary nodes in the link selection step. Since the link se-

lection step is a random algorithm, adding links in several batches

probably does not help the performance. Hence, I-Random adds

links in one batch and re-embeds the network to select links that

moved their source nodes to positions with higher 𝛿𝑆,𝑇 (post-hoc

filtering). We expect that adding random links results in making

the graph denser and nodes tend to be closer to each other.

In summary, I-Random selects 𝑙 · 𝑘 random links connecting

source nodes with auxiliary nodes, re-embeds the network, and the

same as GraB, it only selects links that helped their source nodes

end up in a position with a higher 𝛿𝑆,𝑇 (post-hoc filtering).

4.3 Experimental Settings
In the quantitative experiments, we compare methods in terms of𝜓

(Definition 1).We conduct the experiments on CNEwith dimensions

2 and 4 with a combination of block and degree prior (see [16]). We

average the results for I-Random and S-Random over 3 repetitions

to smoothen out random fluctuations.

In the qualitative experiment of GraB, we set 𝑘 = 10 and 𝑙 = 5.

We run the experiment for 2-dimensional embedding.

In the experiment in Sec. 4.5.1, the methods are evaluated on

several datasets. We set 𝑘 = 100 for this experiment. We tune 𝑏

from values {25, 100} for GraB and S-GraB. We also tune 𝑙 from

values {3, 5} for I-Random and GraB (S-GraB does not have hyper-
parameter 𝑙 , since it does not need to compare the value of 𝛿𝑆,𝑇
of the previous and the new embedding of the source node). We

use the author’s implementation of computing the controversy in a

network between two sets and used their default hyper-parameters,

which is used in ROV. We used 10% of the high degree source nodes

and 20 high degree auxiliary nodes for the candidate selection in

ROV. We also use the author’s implementation of SSW. SSW does

not require to set any particular hyper-parameter.

In the experiment in Sec. 4.5.2, we analyze the behavior of GraB
with different values of 𝑘 . We increase 𝑘 from 25 to 1000 by 25 and

report𝜓 values. We set 𝑏 = 25 and 𝑙 = 5.

In the experiment in Sec. 4.6, we analyze the behavior of GraB
with different values of batch size 𝑏. We set 𝑘 = 100 and 𝑙 = 5 for

this experiment and vary 𝑏 from 1 to 100.

4.4 Qualitative Evaluation
In this section, we show that GraB moves source nodes to the areas

in the embedding space with having more target node percentage

in their neighborhood than before (Q1). We first add 10 links to

each dataset. Next, we analyze two sample source nodes that we

added links to and compare the percentage of target nodes in their

neighborhood. The percentage of target nodes in 25 nearest neigh-

bors (only neighbors from source nodes and target nodes) of two

sample source nodes for each network is presented in Table 2.

The number of target nodes in 25 nearest neighbors of the two

source nodes is increased for each network. It means that GraB
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Table 2: Percentage of target nodes in 25 nearest neighbors
of source nodes.

Dataset Node Main Graph GraB

VDAB-CNE2

𝑣1 28% 56%
𝑣2 40% 72%

Weibo-mf-CNE2

𝑣1 48% 64%
𝑣2 20% 28%

Weibo-fm-CNE2

𝑣1 44% 64%
𝑣2 28% 48%

Movielens-CNE2

𝑣1 32% 68%
𝑣2 32% 56%

moved source nodes to areas where they have more access to target

nodes, and also fewer source nodes are competing with them to

access the same target nodes.

4.5 Quantitative Evaluation
4.5.1 Baseline Comparison . Here we compare the methods in

terms of𝜓 on all datasets. We report𝜓 on the main graph as well

(Q2). Table 3 shows the result of this experiment.

GraB reduces𝜓 over the main graph and outperforms the other

methods in all datasets. S-GraB also outperforms other baselines

in most datasets. This shows that the link selection based on the

link utility is choosing proper links to add to the network, and also

post-hoc filtering of links in GraB improves the results.

For the baselines, I-Random improves 𝜓 over the main graph

and S-Random. S-Random however, is not effective and gains the

same results as the main graph. Hence, the greedy algorithm with

post-hoc filtering proposed in this paper (applied in I-Random) is

helpful even with a random link selection.

The other methods SSW and ROV do not perform particularly

well (in some datasets even increases the imbalance, and the amount

of imbalance reduction in other datasets is less than GraB), since
they are designed for a different purpose and objective function.

As a result, we can conclude that both the link selection step

based on link utility and the greedy algorithm of GraB with post-

hoc filtering are crucial to solve the problem and they are both

playing an important role in reducing𝜓 of the main graph.

4.5.2 Effect of adding a different number of links on GraB. In this

experiment, we evaluate the performance of GraB for different

values of 𝑘 , i.e., number of links added to the network (Q3). Figure 4
shows the result of this experiment for all datasets.

In most datasets, 𝜓 decreases by adding more links to the net-

work. The amount of reduction in𝜓 mostly decreases, or even in

some datasets𝜓 increases as we add more links to the network. The

reason is that in the beginning, there are more links available to

add to the network. As we gradually add the most beneficial links

to the network, the remaining candidate links might have smaller

utilities and less certainty. Hence, GraB selects links from those

candidates which results in worsening the performance globally.

So GraB does not constantly reduce imbalance by increasing the

number of links added to the networks.

Figure 4: 𝜓 after adding different number of links to each
network by GraB.

Figure 5: 𝜓 after adding 100 links to each network by GraB
for different values of 𝑏.

The reason that there is a blank spot in Weibo-fm-CNE2 dataset

for 𝑘 > 675 is that the method could not find 25 links to add to

the network in the next batch (because after re-embedding, not 25

links moved their source nodes to a position with a higher value of

𝛿𝑆,𝑇 ) and we stopped running the method after adding 675 links.

4.6 Hyper-Parameter Sensitivity
In this section, we evaluate the sensitivity of GraB w.r.t. the batch
size 𝑏 (Q4). Figure 5 shows the result of this experiment.

Smaller 𝑏 means fewer links are added to the network and hence,

the network embedding is more stable. As a result, the algorithm

finds links with the highest utilities more accurately. The issue of

small values of 𝑏 is that the effect of adding links on each other is

neglected. For example, consider adding link {𝑖, 𝑗} and {𝑝, 𝑞} to a

network one by one (𝑏 = 1). Since GraB adds {𝑖, 𝑗} at the first step, it
means that node 𝑖 has moved to an area with higher local imbalance

𝛿𝑆,𝑇 . Yet, it is possible that after adding {𝑝, 𝑞} the local imbalance

𝛿𝑆,𝑇 at the position of node 𝑖 becomes less than its original position

(since moving node 𝑝 changes the density of the source nodes in

the embedding space). On the other hand, by adding the two links

at the same time (𝑏 = 2), {𝑖, 𝑗} will be filtered in post-hoc filtering

step and will not be selected and there will be the opportunity to

select other links to reduce the imbalance.
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Table 3:𝜓 after adding 100 links to each network. Best performance per dataset is highlighted in bold.

Dataset Main Graph S-Random I-Random SSW ROV S-GraB GraB

VDAB-CNE2 0.2357 0.2335 0.2286 0.2351 0.2362 0.2254 0.2245
Weibo-mf-CNE2 0.5729 0.5650 0.5479 0.5361 0.56891 0.5191 0.4955
Weibo-fm-CNE2 0.5724 0.5750 0.5419 0.6763 0.5739 0.4917 0.4425
Movielens-CNE2 0.4667 0.4653 0.4654 0.4501 0.4652 0.4458 0.4400
VDAB-CNE4 0.4211 0.4206 0.4164 0.4195 0.4213 0.4170 0.4137
Weibo-mf-CNE4 0.6432 0.6423 0.6245 0.6252 0.6506 0.6269 0.6049
Weibo-fm-CNE4 0.6536 0.6486 0.6290 0.7175 0.6446 0.6235 0.5895
Movielens-CNE4 0.6031 0.5927 0.5990 0.5856 0.6002 0.5748 0.5686

Figure 6: Execution time (log-scale) of all methods for exper-
iment 4.5.1 on each evaluated network.

On the other hand, having a large 𝑏 also is not always the best

option because by adding 𝑙 · 𝑏 links at the same time, the density

of source nodes and target nodes are not stable and varies a lot

(since by filtering some links and selecting only 𝑏 links, the actual

densities after re-embedding will be different). Moreover, by adding

so many links at the same time, the behavior of the embeddings

is less predictable due to the impact of links on each other. Hence,

the method will not be accurate in selecting and adding links to the

network, to reduce the imbalance.

Middle values of 𝑏 show more stable results in most datasets.

There is a blank spot in Weibo-fm-CNE4 dataset for 𝑏 = 100

because GraB could not find 100 links to add to the network (because
after re-embedding, not 100 links moved their source nodes to a

position with a higher 𝛿𝑆,𝑇 ). Hence, we did not report𝜓 .

4.7 Execution Time
In this experiment, we compare the methods in terms of the execu-

tion time (Q5) with the same settings as experiment 4.5.1. Figure 6

shows the execution time in seconds (log-scale) for all methods,

including the time for hyper-parameter tuning.

GraB and ROV have the highest execution time among all meth-

ods. GraB has a high execution time due to the number of hyper-

parameters to be tuned, the link selection step, and also re-embedding

after adding each batch. ROV has a high execution time due to the

large number of candidates and the time needed for computing the

controversy after adding each candidate link to the graph.

S-GraB has a greater execution time than I-Random. For more

analysis, we first count the number of times they need to re-embed

the networks. I-Random re-embeds the networks once for each

hyper-parameter selection because it does not add links in batches.

Since we tune 𝑙 from 2 values, I-Random selects links and re-embeds

the networks 2 times in total. S-GraB re-embeds the networks
𝑘
𝑏
−1

times for each value of 𝑙 . Since 𝑘 = 100 and we tune 𝑏 from values

{25, 100}, S-GraB re-embeds the networks 3 times in total. Besides,

S-GraB performs the link selection step
𝑘
𝑏
times. Thus, it performs

the link selection step 5 times in total (once when 𝑏 = 100 and 4

times when 𝑏 = 25). Moreover, the link selection step is more time

consuming in S-GraB than I-Random which selects links randomly.

Hence, S-GraB is slower than I-Random.

Moreover, S-Random is a simple random method and the execu-

tion time is almost zero for all datasets.

5 RELATEDWORK
Imbalance in the workforce has been studied in various systems [27,

29]. However, our work differs from these studies. Previous studies

aremostly domain-specific and they analyze the supply and demand

based on domain-specific features such as educational training

program length, retirement, and salary. Previous studies in this

area also lack a global measure to quantify the imbalance between

two different entities. In contrast to this, we tackle the problem

from a graph analysis approach. We propose a quantification of

the imbalance in the network using its embedding and a method to

reduce the imbalance by adding links to the network.

Another line of research focuses on matching problems [18, 22].

Finding the cost of the fractional perfect b-matching [1] with min-

imum cost in bipartite networks is related to our work. In this

problem, the goal is to find a matching between two sets of nodes

in a network with minimum total cost. We define the imbalance

as the cost of the minimum cost fractional perfect b-matching on

a new bipartite network created from the original network. Our

work differs from the studies focusing on matching, since we do not

address the computational problem of how to find the matching, we

only use the cost of the matching to quantify the imbalance. More-

over, we add links to the network (not directly between the two

sets of nodes of interest), to change the cost of links between the

two sets of nodes, and hence, reduce the imbalance in the network.

Fairness in node embeddings is studied in various research pa-

pers [2, 3]. These studies try to learn an unbiased network em-

bedding. The similarity between learning an unbiased embedding
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and reducing the imbalance in a network embedding is that they

both try to have a mix between nodes with different attributes or

different types (job seeker and job vacancy, female and male, etc.).

The main difference is that debiasing methods learn an unbiased

embedding based on the original network, while we modify the

network in order to make it more balanced. A secondary difference

is in the quantification of the imbalance or unfairness. In our setting,

we intend to bring two sets of nodes closer, to reduce the imbalance,

while the goal to reduce unfairness is that the two sets of nodes

cannot be separated, which is not important in our case.

There are also several papers aiming to add links to a network

to modify the network structure. Some of the researches focus on

adding links to a network to make it more cohesive, where cohe-

siveness is quantified using network properties such as shortest

paths [19, 20], diameter [7], information unfairness [15], contro-

versy [10] and structural bias [13]. The paper by Garimella et al.

[10] is most related to our work, since they add links to the network

to reduce the controversy between two sets of nodes. However,

the difference between our works is that we consider a different

measure to compute the imbalance and use a different approach to

optimize it.

6 CONCLUSIONS AND FUTUREWORK
We defined and quantified the concept of imbalance between two

sets of nodes in a network, and introduced the novel problem of

reducing that imbalance by introducing new links. We proposed

GraB, a scalable algorithm to tackle this problem, leveraging a num-

ber of well-motivated heuristics to trade-off speed with accuracy.

We presented experiments applying GraB together with CNE as the

network embedding method to various networks. The experimen-

tal results indicate that GraB outperforms (also newly proposed)

baselines for reducing imbalance in a network embedding.

In future work, we plan to investigate the benefits of a new link

for individual nodes (e.g., improving the access to a target set of

nodes) instead of just for the global balance of the network, as

well as other problem settings such as reducing the imbalance in a

network by removing a specific number of links from the network

(e.g., changing job contents and required skills, making jobs more

accessible), or both adding and removing links at the same time.

Moreover, a more detailed investigation of the impact of hyper-

parameters such as the KDE bandwidth would be useful.

ACKNOWLEDGMENTS
The research leading to these results has received funding from the

European Research Council under the European Union’s Seventh

Framework Programme (FP7/2007-2013) / ERC Grant Agreement

no. 615517, from the Flemish Government under the “Onderzoek-

sprogramma Artificiële Intelligentie (AI) Vlaanderen” programme,

and from the FWO (project no. G091017N, G0F9816N, 3G042220).

Part of the experiments were conducted on pseudonimized HR data

generously provided by VDAB.

REFERENCES
[1] Roger E Behrend. 2013. Fractional perfect b-matching polytopes I: General theory.

Linear Algebra Appl. 439, 12 (2013), 3822–3858.
[2] Avishek Joey Bose and William L Hamilton. 2019. Compositional fairness con-

straints for graph embeddings. arXiv preprint arXiv:1905.10674 (2019).

[3] Maarten Buyl and Tijl De Bie. 2020. DeBayes: a Bayesian method for debiasing

network embeddings. arXiv preprint arXiv:2002.11442 (2020).
[4] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-

prehensive survey of graph embedding: Problems, techniques, and applications.

IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

[5] Ramon Ferrer I Cancho and Richard V Solé. 2001. The small world of human

language. Proceedings of the Royal Society of London. Series B: Biological Sciences
268, 1482 (2001), 2261–2265.

[6] Yen-Chi Chen. 2017. A tutorial on kernel density estimation and recent advances.

Biostatistics & Epidemiology 1, 1 (2017), 161–187.

[7] Erik D Demaine and Morteza Zadimoghaddam. 2010. Minimizing the diameter of

a network using shortcut edges. In Scandinavian Workshop on Algorithm Theory.
Springer, 420–431.

[8] Linton C Freeman. 2000. Visualizing social networks. Journal of social structure
1, 1 (2000), 4.

[9] Sheng Gao, Huacan Pang, Patrick Gallinari, Jun Guo, and Nei Kato. 2017. A novel

embedding method for information diffusion prediction in social network big

data. IEEE Transactions on Industrial Informatics 13, 4 (2017), 2097–2105.
[10] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Michael

Mathioudakis. 2017. Reducing controversy by connecting opposing views. In

Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining. 81–90.

[11] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,

and performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.
[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[13] Shahrzad Haddadan, Cristina Menghini, Matteo Riondato, and Eli Upfal. 2021.

RePBubLik: Reducing the Polarized Bubble Radius with Link Insertions. arXiv
preprint arXiv:2101.04751 (2021).

[14] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History

and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[15] Zeinab S Jalali, Weixiang Wang, Myunghwan Kim, Hema Raghavan, and Sucheta

Soundarajan. 2020. On the Information Unfairness of Social Networks. In Proceed-
ings of the 2020 SIAM International Conference on Data Mining. SIAM, 613–521.

[16] Bo Kang, Jefrey Lijffijt, and Tijl De Bie. 2018. Conditional network embeddings.

arXiv preprint arXiv:1805.07544 (2018).
[17] Bo Kang, Jefrey Lijffijt, and Tijl De Bie. 2019. Explaine: An approach for explaining

network embedding-based link predictions. preprint arXiv:1904.12694 (2019).
[18] Vladimir Kolmogorov. 2009. Blossom V: a new implementation of a minimum

cost perfect matching algorithm. Mathematical Programming Computation 1, 1

(2009), 43–67.

[19] Manos Papagelis, Francesco Bonchi, and Aristides Gionis. 2011. Suggesting ghost

edges for a smaller world. In Proceedings of the 20th ACM international conference
on Information and knowledge management. 2305–2308.

[20] Nikos Parotsidis, Evaggelia Pitoura, and Panayiotis Tsaparas. 2015. Selecting

shortcuts for a smaller world. In Proceedings of the 2015 SIAM International
Conference on Data Mining. SIAM, 28–36.

[21] Emanuel Parzen. 1962. On estimation of a probability density function and mode.

The annals of mathematical statistics 33, 3 (1962), 1065–1076.
[22] Lyle Ramshaw and Robert E Tarjan. 2012. On minimum-cost assignments in

unbalanced bipartite graphs. HP Labs, Palo Alto, CA, USA, Tech. Rep. HPL-2012-
40R1 (2012).

[23] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. 1998. A metric for distribu-

tions with applications to image databases. In Sixth International Conference on
Computer Vision (IEEE Cat. No. 98CH36271). IEEE, 59–66.

[24] David W Scott. 2015. Multivariate density estimation: theory, practice, and visual-
ization. John Wiley & Sons.

[25] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[26] Athanasios Theocharidis, Stjin Van Dongen, Anton J Enright, and TomC Freeman.

2009. Network visualization and analysis of gene expression data using BioLayout

Express 3D. Nature protocols 4, 10 (2009), 1535.
[27] Graham Willis, Andrew Woodward, and Siôn Cave. 2013. Robust workforce

planning for the English medical workforce. In Conference Proceedings, The 31st
International Conference of the System Dynamics Society.

[28] Jing Zhang, Biao Liu, Jie Tang, Ting Chen, and Juanzi Li. 2013. Social influence

locality for modeling retweeting behaviors. In Twenty-Third International Joint
Conference on Artificial Intelligence.

[29] Pascal Zurn, Mario R Dal Poz, Barbara Stilwell, and Orvill Adams. 2004. Imbalance

in the health workforce. Human resources for health 2, 1 (2004), 1–12.


	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Background
	2.2 Network Imbalance
	2.3 Formulating the problem of reducing network imbalance

	3 Reducing Network Imbalance: GraB
	3.1 The Link Utility Measure
	3.2 The GraB Algorithm
	3.3 Choice of Embedding Method

	4 Experimental Evaluation
	4.1 Datasets
	4.2 GraB-variants and baselines evaluated
	4.3 Experimental Settings
	4.4 Qualitative Evaluation 
	4.5 Quantitative Evaluation 
	4.6 Hyper-Parameter Sensitivity 
	4.7 Execution Time 

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

