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Abstract
The symbol grounding problem refers to the necessity of grounding abstract symbolic knowledge (such
as encoded in formal ontologies) in the real world through perception and action. The cognitive frame-
work of conceptual spaces provides a potential way for solving the symbol grounding problem by
proposing an intermediate representational layer: Concepts are represented by regions in low-dimensional
similarity spaces, which are in turn grounded in subsymbolic processing. Logic tensor networks provide
a general mechanism for learning membership functions in the presence of both bottom-up information
(i.e., training examples) and top-down constraints in the form of logical rules. In this paper, we pro-
pose to combine logic tensor networks with conceptual spaces in order to ground predicates from the
symbolic layer in conceptual regions while taking into account logical constraints from abstract back-
ground knowledge. We discuss several potential membership functions for concepts and argue that this
approach can be used to provide a cognitive grounding for formal ontologies.

Keywords
Conceptual Spaces, Logic Tensor Networks, Symbol Grounding, Cognitive AI, Neurosymbolic AI

1. Introduction

Formal ontologies provide us with ways of encoding knowledge in a logical format. Large-scale
applications such as Google’s knowledge graph1 illustrate the usefulness of such a structured
representation for encoding entities, classes, and their respective relations. However, ontologies
as used in current technical systems suffer from the symbol grounding problem [1, 2]: The
symbols they contain are not directly linked to the real world, but are usually defined based on
other symbols. Research in knowledge graph embeddings [3], where entities are identified with
points in a feature space, provide only a partial solution to this problem, since the dimensions
of this feature space are usually not tied to perception and action.

Deep neural networks have become the predominant approach in many machine learning
tasks, including the areas of computer vision [4] and natural language processing [5]. They
are able to extract compact representations from raw perceptual input without the need for
extensive manual feature engineering. However, their recent successes have been accompanied
with an urge for more human-like, explainable AI [6], since their overall input-output mapping
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is opaque and cannot be easily analyzed or interpreted by human experts.

Neural-symbolic integration [7] offers the possibility to combine the interpretability of
symbolic systems with the learning capabilities of artificial neural networks. Also the area of
cognitive AI [8], i.e., intelligent systems inspired by findings from cognitive psychology, can
help to align artificial systems more closely with human cognition.

The cognitive framework of conceptual spaces [9] unifies aspects of both the neural-symbolic
tradition and cognitive AI. It proposes a geometric representation of conceptual knowledge
based on psychological similarity spaces and offers an intermediate level of representation
between the connectionist and the symbolic approach. The individual dimensions spanning
such a conceptual space correspond to cognitively meaningful features of the inputs (such as
hue, saturation, and brightness for colors). Concepts (such as the color blue) can then be defined
as convex regions in this space. Conceptual spaces thus provide an indirect way of grounding
symbolic descriptions in perception. They have seen a wide variety of applications in artificial
intelligence, linguistics, psychology, and philosophy [10, 11].

Logic tensor networks [12, 13] (LTNs) are a type of neural network which uses fuzzy mem-
bership functions in order to ground symbolic predicates in a given embedding space. When
optimizing the parameters of these membership functions, LTNs can take into account both
bottom-up information in the form of training examples and top-down constraints in the form
of general logical rules. For instance, conceptual hierarchies from an ontology can be used to
enforce a subsethood relation between the respective membership functions.

In this paper, we propose to use logic tensor networks to ground ontologies in conceptual
spaces. Since conceptual spaces are based on meaningful dimensions, this aids the interpretabil-
ity of the resulting embedding. Conceptual spaces can be grounded in psychological dissimilarity
ratings [14, 15] or the features extracted by deep neural networks from raw perceptual inputs.
Therefore, a successful grounding of a given ontology in a conceptual space indirectly solves the
symbol grounding problem in a cognitively plausible way. Moreover, by explicitly considering
relations between classes, logic tensor networks can help to leverage background knowledge in
order to learn conceptual regions.

The remainder of this paper is structured as follows: In Section 2, we describe both conceptual
spaces and logic tensor networks in more detail. In Section 3, we then argue why a combination
of these two frameworks seems promising and discuss possible implementations of different
membership functions. Section 4 then concludes this paper.

2. Background

In the following, we will first give a general overview of the conceptual spaces framework
(Section 2.1), before introducing logic tensor networks (Section 2.2).

2.1. Conceptual Spaces

A conceptual space as proposed by Gärdenfors [9] is a similarity space spanned by a small
number of interpretable, cognitively relevant quality dimensions (e.g., temperature, time, hue,



pitch). One can measure the distance between two observations with respect to each of these
dimensions and aggregate them into a global notion of semantic distance. Semantic similarity
is then defined as an exponentially decaying function of distance, i.e., 𝑆𝑖𝑚(𝑥, 𝑦) = 𝑒−𝑐·𝑑(𝑥,𝑦)

with a sensitivity parameter 𝑐 > 0.
The overall conceptual space can be structured into so-called domains, which represent, for

example, different perceptual modalities such as color, shape, taste, and sound. The color domain,
for instance, can be represented by the three dimensions hue, saturation, and brightness, while
the sound domain is spanned by the dimensions pitch and loudness. Based on psychological
evidence [16, 17], distance within a domain is measured with the Euclidean metric, while the
Manhattan metric is used to aggregate distances across domains.

Gärdenfors defines properties like red, round, and sweet as convex regions within a single
domain (namely, color, shape, and taste, respectively). A property thus corresponds to a set of
observations from a single perceptual modality. Concept hierarchies are an emergent property
of this spatial representation: If the sky blue region is a subset of the blue region, this implicitly
encodes that sky blue is a special shade of blue. Based on properties, Gärdenfors now defines
full-fleshed concepts like apple or dog by using one convex region per domain, a set of salience
weights (which represent the relevance of the given domain to the given concept), and infor-
mation about cross-domain correlations. The apple concept may thus be represented by the
regions red, sweet, and round in the domains of color, taste, and shape, respectively.

There are in principle three ways of obtaining the dimensions of a conceptual space [9,
Sections 1.7, 1.9, and 6.5]: Firstly, if the domain of interest is well understood, one can manually
define the dimensions of the similarity space.

A second approach is based on machine learning algorithms for dimensionality reduction.
For instance, unsupervised artificial neural networks (ANNs) such as autoencoders or self-
organizing maps can be used to find a compressed representation for a given set of input stimuli.
This task is however solved by minimizing a mathematical error function which seems to be
not satisfactory from a psychological point of view.

A third popular way of obtaining a conceptual similarity space is based on psychological
dissimilarity ratings. These dissimilarity ratings are collected for a fixed set of stimuli in a
psychological experiment. They are then converted into an 𝑛-dimensional geometric repre-
sentation of the stimulus set by using a technique called “multidimensional scaling” (MDS),
which ensures that geometric distances between pairs of stimuli reflect their psychological
dissimilarity [15]. While the similarity spaces produced by MDS are grounded in psychological
experiments, they do not readily generalize to unseen stimuli [18].

Recently, a hybrid approach has been proposed [19, 20, 21, 22], where MDS is used to initialize
the similarity space and ANNs are then trained to generalize the mapping to novel inputs.

Gärdenfors argues that the convexity requirement relates conceptual spaces to the prototype
theory of concepts [23], which assumes that concept membership is based on similarity to
a prototype. This can explain why some members of a category are deemed to be more
typical than others. Gärdenfors [9, Section 3.8] now argues that if concepts are represented
by convex regions, a prototype can be obtained by computing the center of gravity for the
conceptual region. Conversely, Gärdenfors [9, Section 3.9] shows that by assuming a prototype-



based representation, one can easily generate convex regions. For instance, if color properties
such as red and orange are represented by their prototypical points in color space (e.g., their
corresponding focal colors), one can partition the overall space into convex regions by assigning
each point in the space to its closest prototype. This way of partitioning a space is called a
Voronoi tessellation and will be discussed in more detail in Section 3.2.

Since conceptual spaces can be interpreted as an intermediate layer of representation between
the traditional symbolic and subsymbolic layers, they can also help to solve the symbol grounding
problem: Individual observations, which correspond to high-dimensional activation vectors in
the subsymbolic layer, are represented by points in the lower-dimensional conceptual space
and can be mapped onto constants and variables from the symbolic layer. Predicates from
the symbolic layer (such as apple and red) can be mapped onto concepts and properties in the
conceptual layer. The symbols from the symbolic layer can therefore be indirectly grounded in
subsymbolic perception through the conceptual layer.

Conceptual spaces in their original formulation focus mostly on concepts that can be defined
based on perceptual properties. Relations between objects can be represented using product
spaces, for instance by defining longerThan as a convex region in R+ × R+ (where each
dimension represents the length of one individual object) [9, Section 3.10.1]. Relational concepts
like robber or seat can be represented based on their respective roles in events like robbing and
sitting (which involve agent, patient, theme, action, and result) [24, Sections 6.7 and 8.4].

2.2. Logic Tensor Networks

Logic Tensor Networks (LTNs) [12, 13, 25, 26] provide a principled way of using neural compu-
tations to connect feature spaces with symbolic rules through fuzzy logic.2

Logic Tensor Networks integrate knowledge representation, learning, and reasoning using
a differentiable fuzzy first-order logic language called “Real Logic”. Real Logic is a first-order
language containing constant symbols (representing individual observations such as Bob or
Paris), function symbols (representing mappings between observations, e.g., homeTownOf ),
predicate symbols (representing concepts and relations such as lawyer and livesIn), and variable
symbols (representing lists of observations) [13]. All of these language constituents are typed
with respect to a set of domains 𝒟: We can require that Bob belongs to the domain of people and
Paris to the domain of cities, while the function homeTownOf takes only people as input and
returns cities. The individual parts of the language can now be combined into formulas such as
lawyer(Bob), or ∀𝑥 : (lawyer(𝑥) → homeTownOf(𝑥) = Paris). These formulas are constructed
using logical connectives (such as →) and quantifiers (such as ∀) and have a fuzzy degree of
truth in the interval [0, 1].

In order to relate the semantics of the logical language to actual data points, Real Logic
makes use of a so-called grounding function 𝐺𝜃, which maps terms (i.e., constants, variables,
and results of function applications) onto points in a feature space, and both functions and
predicates onto neural networks. The networks implementing predicates are required to return
a value from the interval [0,1] and can thus be interpreted as defining a fuzzy membership
function of the respective concept or relation in the given feature space. Relations such as

2See https://github.com/logictensornetworks/logictensornetworks for the implementation of this framework.

https://github.com/logictensornetworks/logictensornetworks


Figure 1: Grounding of a formula containing a function symbol (homeTownOf ), a predicate symbol
(livesIn), and a constant symbol (Bob).

livesIn are implemented as fuzzy regions in a product space of domains (in this case people and
cities). Overall, the grounding associates any formula expressible in the language with a real
number in [0,1], representing its degree of truth.

This is done as follows (see Figure 1): First, all terms (such as Bob) are grounded into vectors,
and all function and predicate symbols (such as homeTownOf an livesIn) are grounded into
their respective neural networks. The structure of the symbolic formula then determines which
neural network is applied to which feature vector. If predicates such as married(𝑥, 𝑦) are applied
to variables such as 𝑥 = (Bob, John) and 𝑦 = (Alice,Mary, Susan), the resulting grounding is a
matrix containing the degree of truth for each possible combination of observations [13].

In order to ground logical connectives such as ∧, ∨, ¬, and →, the corresponding operators
from fuzzy logic are used. Badreddine et al. [13] note that many standard operators from fuzzy
logic are not well-suited for the context of neural networks, since they may cause vanishing
or exploding gradients. They recommend using the product norm 𝑇𝑝𝑟𝑜𝑑(𝑥, 𝑦) = 𝑥 · 𝑦 for
implementing the conjunction and its complement 𝑆𝑝𝑟𝑜𝑑(𝑥, 𝑦) = 𝑥+𝑦−𝑥 ·𝑦 for the disjunction.
For the negation, 𝑁(𝑥) = 1− 𝑥 is used.

Since Real Logic is a first-order language, it also needs to provide a grounding for the universal
and the existential quantifier. Mapping ∀𝑥 to the minimum over all entries of the variable 𝑥 may
be a straightforward choice, but does not tolerate exceptions and may thus not be suitable for
real-life applications, if one assumes a certain amount of noise both in the background knowl-
edge and in the empirical data (e.g., incorrect labels) [26, 27]. Instead, the generalized mean

𝑚𝑒𝑎𝑛𝑝(𝑥1, . . . , 𝑥𝑑) =
(︁
1
𝑑

∑︀𝑑
𝑖=1 𝑥

𝑝
𝑖

)︁ 1
𝑝 is used, where the parameter 𝑝 controls the “strictness”

of the aggregator.3 The current version of the framework [13] proposes to use different variants
of the generalized mean for grounding both the universal and the existential quantifier. This
of course breaks the duality between the existential and the universal quantifier, but seems
to be necessary to enable robust gradient-based learning. One could envision to use both an
exception-tolerant and a rigid classical version for both quantifiers. One would then however
need to specify which version to apply in which contexts.

3Note that 𝑚𝑒𝑎𝑛1 corresponds to the standard arithmetic mean and 𝑚𝑒𝑎𝑛−1 to the harmonic mean. If 𝑥 =
(𝑥1, . . . , 𝑥𝑑) is a difference vector, then 𝑚𝑒𝑎𝑛𝑝(𝑥) is equivalent to a Minkowski metric.



Satisfiability specifies the degree to which a grounding 𝐺𝜃 satisfies a given set 𝐾 of formulas
by simply aggregating the truth values of all formulas 𝜑 ∈ 𝐾 [12, 25, 26]. Donadello et al. [27]
propose to use the generalized mean also for this purpose, since using a conjunction over the
formulas can lead to undesired behavior in gradient-based optimization.

The knowledge represented in logic tensor networks consists of both the formulas 𝜑 in the
logical language (corresponding to symbolic top-down information) and the grounding 𝐺𝜃

obtained from observations (corresponding to subsymbolic bottom-up information) [13]. One
can encode different types of constraints into the system: For instance, one can explicitly fix the
grounding for some of the symbols (e.g., mapping a given constant to a concrete feature vector).
Also a parametric definition of predicates is possible by specifying the structure of the respective
neural network, but leaving its exact parameter settings undetermined. Moreover, different
kinds of formulas can be used to constrain the system: Factual propositions such as lawyer(Bob)
encode facts about individual constants (which corresponds to providing labels for training
examples), while generalized propositions such as ∀𝑥 : (lawyer(𝑥) → homeTownOf(𝑥) = Paris)
allow to specify data-independent general background knowledge.

Learning in logic tensor networks takes place through gradient descent on the parameter
values 𝜃 of the grounding 𝐺𝜃 in order to maximize the satisfiability of the overall set of formulas
𝐾 [13]. In practice, maximizing satisfiability may need to be accompanied by a regularization
term on the parameters 𝜃 to prevent overfitting [13, 26]. Once a grounding has been established,
it can be used for answering concrete queries about the truth value of a given formula or about
the embedding of a given term.

Since LTNs unify subsymbolic machine learning aspects with symbolic logical constraints,
they can be applied to a variety of problems. Badreddine et al. [13] have given a principled
overview of different tasks that can be solved with LTNs. These include classification, regression,
clustering, semi-supervised pattern recognition, embedding learning, and knowledge base
completion. LTNs have also been used to learn transitive predicates (such as hyponymOf )
for simple ontologies based only on one-hop examples [28]. Moverover, Bianchi et al. [29]
have recently illustrated the capability of LTNs to connect pre-trained entity embeddings with
a subset of the DBpedia ontology [30]. Other practical applications include semantic image
interpretation [26, 27, 31], incorporating fairness constraints into deep neural networks [32],
and supplementing reinforcement learning algorithms with semantic knowledge [33].

3. Towards a Fruitful Combination

Logic tensor networks offer the possibility to combine bottom-up information in the form of
training examples with top-down information in the form of general rules. They thus make an
ideal candidate for closing the gap between the conceptual and the symbolic layer.

In Section 3.1, we show how logic tensor networks can reflect the general properties of the
conceptual spaces framework. Afterwards, we investigate different membership functions,
using a distinction into partitional (Section 3.2) and nonpartitional (Section 3.3) approaches.



3.1. General Considerations

The knowledge approach to concepts from psychology [34, Chapter 6] emphasizes the crucial
role of world knowledge in the learning and application of concepts and can thus be linked
to both formal ontologies and the influence of logical rules on the learning process in LTNs.
Moreover, LTNs take into account information about points in a feature space, and the grounding
of predicates usually gives rise to a membership function with one or more receptive fields.
LTNs can therefore also be related to the prototype [23] and exemplar theories [35] of concepts.

These observations and the combination of bottom-up and top-down information make LTNs
quite interesting from the perspective of conceptual spaces: If we use a conceptual space as
a feature space, then the LTN can implement a two-way interaction between the conceptual
and the symbolic layer. Just as with the conceptual spaces framework, observations can be
represented by points and concepts can be represented as regions in the feature space. Moreover,
LTNs are able to encode the domain structure of a conceptual space and they use a similar way
of encoding simple relations as regions in a product space. Finally, the usage of fuzzy sets and
fuzzy logic allows us to represent vague conceptual boundaries.

How exactly can we apply LTNs to conceptual spaces? Both properties and concepts can
be represented by predicates with a convex membership function. While properties refer only
to a single domain, concepts are defined on a concatenation of domains. We can require that
the predicate red(𝑥) is defined on the three-dimensional color domain, while the predicate
apple(𝑥 = (𝑥𝑐, 𝑥𝑡, 𝑥𝑠)) involves the domains of color, taste, and shape. Individual observations
can then be represented by one point per domain. Function symbols could potentially be used to
represent actions and changes: Applying a function symbol like lift could for instance translate
into a simple vector addition in the location domain that increases the altitude of the given
object. Finally, basic relations are defined by considering regions in product spaces of multiple
domains. In order to represent more complex relational knowledge, one could try to use the
event structure proposed by Gärdenfors [24, Chapter 9].

An advantage of using logic tensor networks for grounding ontologies in conceptual spaces is
their large variety of inference and learning methods. In addition to learning conceptual regions
from observations, they can for instance also generate an embedding of an unobserved object
based on a symbolic description. For example, “object 𝑥 is a red apple” can be translated into a
point in the conceptual space by maximizing the satisfiability of apple(𝑥) ∧ red(𝑥). This spatial
representation of object 𝑥 can then in turn be used to make further inferences, for instance
about the taste domain (e.g., by evaluating sweet(𝑥)). Thus, the geometric embedding can give
rise to common-sense inferences not easily realizable within the symbolic layer.

Moreover, LTNs do not only provide an embedding of entities and classes, but they are also
able to enforce the validity of general rules, which may reduce the required number of training
examples. This makes them especially attractive for bridging the conceptual and the symbolic
layer, since they can harness the whole expressivity of formal ontologies in order to guide the
machine learning process. This also related to embodied and enactivist approaches to cognition
[36], which assume that top-down information strongly influences bottom-up perception and
conceptualization of the environment. One may furthermore speculate that the enforcement of
general logical rules can help to prevent catastrophic interference, where continued learning



causes a neural network to forget previously learned knowledge [37].
While LTNs have already been used in the context of ontologies [28, 29], their underlying

Real Logic is not intended as a language for writing domain ontologies. Moreover, to the best
of our knowledge, its formal properties (e.g., expressivity, decidability, or complexity) have
not been thoroughly analyzed, yet. For our current purposes, Real Logic is merely used as a
translation tool for encoding relevant domain knowledge from a given ontology as constraints
for a machine learning process and for extracting structured knowledge (which may then be
added to the ontology) from a trained machine learning system. The combination of conceptual
spaces and LTNs is thus in principle applicable to any symbolic language.

Finally, we would like to mention the recent work by Singh et al. [38], who combine the
computational power of deep ANNs with a psychological model of categorization. Their end-
to-end model learns both a similarity space and a prototype-based categorization model at
once. One could envision a similar application of LTNs: The input domain contains raw images,
which are then mapped by a function symbol (implemented as deep neural network) into a
low-dimensional conceptual space. In this conceptual space, one can then define membership
functions for the different concepts under consideration. The whole system could then be
trained based on labeled examples, but also using additional background knowledge based on
human similarity ratings and general rules from the symbolic layer. In the terms of cognitive
psychology, this would result in a combination of prototype theory (represented by convex
membership functions) with the knowledge view on concepts (represented by the presence of
constraints from background knowledge), spanning all three layers of representation.

When viewed from the perspective of cognitive science, logic tensor networks can of course
not be labeled as a cognitively plausible learning mechanism: They rely on batch-processing
large amounts of (typically labeled) data with gradient descent. One can of course argue that
LTNs are not used to model the human concept acquisition process itself, but rather to take a
shortcut to the resulting concept inventory. However, it would certainly also be interesting to
extend LTNs such that they can work in an incremental way. A potential example application
in this context are language games [39], where a population of agents needs to negotiate a
common conceptualization of the world, receiving only indirect feedback through the success
or failure of their interactions.

In the following, we will take a look at different membership functions from the conceptual
spaces literature and discuss their applicability in logic tensor networks. For illustration pur-
poses, we will consider a one-dimensional conceptual space with two concepts 𝐶1 and 𝐶2 as
well as three data points 𝑥1, 𝑥2, 𝑥3, which are supposed to belong to 𝐶1, but not to 𝐶2. Since
the parameters of the membership functions are optimized through gradient descent, we will
especially focus on their derivatives.

3.2. Partitional Membership Functions

Let us first consider membership functions which partition the underlying conceptual space, i.e.,
which aim to assign each point to exactly one concept. We start with Gärdenfors’ approach of
identifying concepts with a prototypical point and creating a Voronoi tessellation of the space



[9, Section 3.9]: One starts from a set of prototypical points 𝑝1, . . . , 𝑝𝑛 for the 𝑛 concepts under
consideration. Each point 𝑥 in the conceptual space is then assigned to its closest prototype 𝑝𝑖
based on the distances 𝑑(𝑥, 𝑝𝑖). As Gärdenfors [9, Section 3.9] argues, a Voronoi tessellation
based on the Euclidean metric partitions the overall space into convex regions.

Since the Voronoi tessellation gives us a partitioning of the overall space, the membership
function of each concept 𝐶𝑖 is constant almost everywhere and undefined on the border line to
a neighboring conceptual region (see Figure 2a). Therefore, the derivative of this membership
function with respect to any variable is either zero or undefined, which is highly problematic
for gradient descent. For example, consider the point 𝑥3, which is currently misclassified as
belonging to 𝐶2 instead of 𝐶1. In gradient-based optimization, the prototypes 𝑝1 and 𝑝2 are
updated by computing the derivative 𝑑𝜇𝑖(𝑥3)

𝑑𝑝𝑖
and then slightly increasing or decreasing the

value of 𝑝𝑖, depending on the sign of the derivative and whether we want to increase or decrease
𝜇𝑖(𝑥3). In the case of Figure 2a, we however note that both derivatives are zero – small changes
to 𝑝1 and 𝑝2 do not result in any changes to 𝜇𝑖(𝑥3). Thus, gradient descent is incapable of
making any update to the prototypes.

In order to make gradient-based learning possible, we need a soft version of the Voronoi
approach. We can express the classification decision of the Voronoi tessellation as follows
(where 𝑐 > 0 is a sensitivity parameter):

𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗 𝑑(𝑥, 𝑝𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗(−𝑐 · 𝑑(𝑥, 𝑝𝑗))

Instead of the crisp 𝑎𝑟𝑔𝑚𝑎𝑥 function (which results in flat membership values), we can now
apply the so called softmax function, which is commonly used in neural networks to provide
an output probability distribution over a set of mutually exclusive classes:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =
𝑒𝑧𝑖∑︀
𝑗 𝑒

𝑧𝑗

Here, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 gives the probability for class 𝑖, given a vector of raw confidence values 𝑧.
If we combine this with the Voronoi tessellation approach, we obtain a soft Voronoi tessellation
with the following membership function:

𝜇𝑖(𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(−𝑐 · 𝑑(𝑥, 𝑝))𝑖 =
𝑒−𝑐·𝑑(𝑥,𝑝𝑖)∑︀
𝑗 𝑒

−𝑐·𝑑(𝑥,𝑝𝑗)

As we can see, the numerator reflects the semantic similarity of 𝑥 and 𝑝𝑖, while the denominator
is the sum over all similarities to all prototypes. The resulting membership function can thus
also be interpreted as a normalized version of semantic similarity. Figure 2b illustrates this
membership function: We now have a continuous transition from high membership values to
low membership values. Moreover, the derivative of this membership function is defined on the
whole conceptual space and nonzero in all cases - even points such as 𝑥1 have a very small, but
nonzero derivative.

We should highlight at this point that we assume that the same sensitivity parameter 𝑐 is used
for all concepts. If we allow different values 𝑐1 ̸= 𝑐2, we can control the size of the respective
conceptual regions (smaller values of 𝑐 leading to larger regions). However, these different



Figure 2: Partitional membership functions in a one-dimensional conceptual space.

values may cause some unintended effects. For instance, Figure 3a illustrates the case where
𝑐1 ≫ 𝑐2, which causes the membership function 𝜇2(𝑥) to be no longer convex.

Generalized Voronoi tessellations [9, Section 4.9] allow to encode differently sized conceptual
regions by considering prototypical regions 𝑃𝑖 instead of prototypical points 𝑝𝑖. These prototypi-
cal regions are usually represented as disks with a central point 𝑝𝑖 and a radius 𝑟𝑖. Based on these
prototypical regions, one can now generate a generalized Voronoi tessellation by assigning each
point 𝑥 in the conceptual space to the concept whose prototypical region is closest. In the case
of disks, this corresponds to finding the concept 𝐶𝑖 for which 𝑑(𝑥, 𝑃𝑖) = max(0, 𝑑(𝑥, 𝑝𝑖)− 𝑟𝑖)
is smallest. Concepts with larger prototypical regions (as reflected through a larger value of 𝑟𝑖)
thus result in larger conceptual regions in the generalized Voronoi tessellation (see Figure 2c).
Again, by using the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 instead of the 𝑎𝑟𝑔𝑚𝑎𝑥 function, this can be generalized to a soft
notion of concept membership (see Figure 2d).

Also Douven et al. [40] consider prototypical regions instead of prototypical points. However,
they create all possible Voronoi diagrams by picking a single point 𝑝𝑖 ∈ 𝑃𝑖 for all prototypical
regions 𝑃𝑖. These individual Voronoi tessellations are then aggregated into a so called “collated
Voronoi diagram”: A point 𝑥 is assigned to concept 𝐶𝑖 if and only if it has been assigned to
𝐶𝑖 in all individual Voronoi diagrams. Douven et al. identify borderline cases as points 𝑥 that
belong to different conceptual regions for different Voronoi diagrams. These borderline points
are not assigned to any concept and represent vagueness in concept boundaries. In Figure 2e,
we again note that the derivative is zero within the conceptual regions and undefined in the
border area.

Decock and Douven [41] extend the work of Douven et al. [40] by providing a degree of



Figure 3: (a) Unintended results for the soft Voronoi membership and different sensitivity parameters
𝑐1 ≫ 𝑐2. (b) Workaround for zero gradient inside prototypical regions.

membership for borderline cases. They define the membership of a point 𝑥 to a concept 𝐶𝑖

as the fraction of individual Voronoi diagrams for which 𝑥 belongs to the conceptual region
of 𝐶𝑖. Decock and Douven note that if the prototypical regions 𝑃𝑖 have an infinite number of
points, then the membership function is s-shaped (cf. Figure 2f). However, we can observe
that the membership function is flat for large parts of the conceptual space, namely, for all
non-borderline points. This is again highly problematic for gradient descent.

3.3. Nonpartitional Membership Functions

The usage of Voronoi tessellations for conceptual spaces has not been without challenge in the
literature. For instance, Lewis and Lawry [42] argue that partitioning the conceptual space may
be adequate for individual domains such as color, but that it is not suitable for a combination of
multiple domains. It seems implausible that every single point in a high-dimensional space has
to be assigned to exactly one category: On the one hand, some regions in the overall conceptual
space may not be covered by any existing concept. Points in such regions should be recognized
as outliers or members of a novel, previously unknown category. On the other hand, conceptual
regions may also overlap, for instance in order to represent conceptual hierarchies.

Lewis and Lawry [42] have also made a general proposal for nonpartitional membership
functions: A point 𝑥 in the conceptual space is said to belong to concept 𝐶𝑖 if its distance to the
prototypical region 𝑃𝑖 is not greater than a threshold distance 𝜖𝑖. Lewis and Lawry assume that
the threshold 𝜖𝑖 is not known, but that a probability distribution 𝛿𝑖 over its possible values is
available. The degree of membership of a point 𝑥 to a concept 𝐶𝑖 is then given by the probability
of 𝑑(𝑥, 𝑃𝑖) being smaller than 𝜖𝑖:

𝜇𝑖(𝑥) = P𝛿(𝑑(𝑥, 𝑃𝑖) ≤ 𝜖𝑖) =

∫︁ ∞

𝑑(𝑥,𝑃𝑖)
𝛿𝑖(𝜖𝑖)𝑑𝜖𝑖

Lewis and Lawry are in general open to different forms for the probability distribution 𝛿𝑖. If we
use 𝛿𝑖(𝜖𝑖) = 𝑐𝑖 · 𝑒−𝑐𝑖·𝜖, then concept membership reflects similarity to the prototypical region:

𝜇𝑖(𝑥) =

∫︁ ∞

𝑑(𝑥,𝑃𝑖)
𝑐𝑖 · 𝑒−𝑐𝑖·𝜖𝑖𝑑𝜖𝑖 =

[︀
−𝑒−𝑐𝑖·𝜖𝑖

]︀𝜖𝑖→∞
𝜖𝑖=𝑑(𝑥,𝑃𝑖)

= 0−
(︁
−𝑒−𝑐𝑖·𝑑(𝑥,𝑃𝑖)

)︁
= 𝑒−𝑐𝑖·𝑑(𝑥,𝑃𝑖)



Figure 4: Nonpartitional membership functions in a one-dimensional conceptual space.

The shape of the resulting similarity function for𝑃𝑖 = {𝑝𝑖} (i.e., prototypical points) is illustrated
in Figure 4a. As we can see, all points in the similarity space receive a non-zero membership
value. Moreover, the derivative of the membership function is defined for all points except
for the prototypes 𝑝1 and 𝑝2. In practical applications, this theoretical shortcoming can be
overcome by defining the derivative in this point to equal zero. Furthermore, we are able to
control the size of the conceptual regions by choosing different sensitivity parameters 𝑐1 ̸= 𝑐2.

However, we can also note that the derivative of the membership function is proportional to
the membership value itself: The largest derivatives are observed for the points with the highest
membership in the concept. Since gradient descent algorithms typically take into account not
only the direction, but also the magnitude of the gradient, this can lead to undesired effects.
Consider for instance the point 𝑥2 in Figure 4a, which has a fairly high membership to 𝐶1. The
derivative 𝑑𝜇1(𝑥2)

𝑑𝑝1
is quite large and will thus cause the gradient descent algorithm to increase

𝑝1 considerably. In the resulting configuration, 𝜇1(𝑥2) may however be smaller than before,
since 𝑝1 may have moved considerably past 𝑥2. This seems to be a major shortcoming of this
similarity-based approach to concept membership.

The examples by Lewis and Lawry [42] often make use of uniform distributions 𝛿𝑖(𝜖𝑖) =
𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑟𝑖). As we can see in Figure 4b, the membership curve has in this case a triangular
shape and its derivative is therefore constant for all points with a partial membership. However,
both concept membership and its derivative are zero for most parts of the similarity space.

These considerations can of course also be generalized to prototypical regions 𝑃𝑖, which
subsumes our own formalization of the conceptual spaces framework [43, 44, 45]: There exists a
well-defined region with full membership, which in our case is based on the union of axis-aligned
cuboids. Membership is then defined as similarity to this prototypical region.



In Figure 4c, we can see two problems with this approach: On the one hand, we again have
the problem of large derivatives for large membership values as already discussed for Figure
4a. On the other hand, the membership function is constant for all points in the prototypical
region, hence, the derivative is zero. If an observation such as 𝑥3 is confidently misclassified as
belonging to 𝐶2, then gradient descent is not able to move 𝑃2 away from 𝑥3.

The problem of a zero derivative could be circumvented as follows: We define a new mem-
bership function 𝜇′

𝑖(𝑥) := (1− 𝜖) · 𝜇𝑖(𝑥) for some small 𝜖 > 0. Furthermore, we identify the
central point 𝑝𝑖 ∈ 𝑃𝑖. The membership value for 𝑥 ∈ 𝑃𝑖 is then increased based on its distance
to 𝑝𝑖, such that 𝜇′

𝑖(𝑝𝑖) = 1 and that 𝜇′
𝑖(𝑥) = 1− 𝜖 for points on the border of 𝑃𝑖. This provides

a small slope for the membership function inside the prototypical region and thus a nonzero
derivative (cf. Figure 3b). However, it remains to be seen whether such a workaround is useful
in practice.

Despite these shortcomings, there are however reasonably strong arguments for using a
membership function like the one proposed in our formalization: Firstly, by using a union of
axis-aligned cuboids, our formalization is able to represent correlations between domains. This
is an important aspect of human conceptualization [46, 47] which is not captured by any of
the aforementioned approaches. Secondly, one can apply a variety of operations defined in the
context of our formalization in order to reason on the learned concepts. For instance, relations
such as conceptual similarity and conceptual betweenness are not defined in LTNs, but they
become immediately available with the use of our proposed formalization of concepts. Thirdly,
logical formulas in LTNs always have to be evaluated on a set of data points which requires
that one keeps all examples in memory. Our formalization on the other hand provides closed
formulas for computing the validity of such logical formulas – the original data points are
not needed any more and the computation can potentially be faster. However, the operations
defined in our formalization are based on the minimum norm, while LTNs are commonly used
with the product norm. Therefore, the numeric results of the computations might differ.

Motivated by the problem of large gradients for large membership values, we also consider
multivariate Gaussian functions, whose membership value can be defined as follows with a
symmetric, positive semi-definite matrix Σ:

𝜇𝑖(𝑥) = 𝑒−
1
2
(𝑥−𝑝𝑖)

𝑇Σ−1(𝑥−𝑝𝑖)

Figure 4d illustrates the usage of such Gaussian functions in our one-dimensional similarity
space.4 As one can see, this type of membership function does not suffer from the gradient size
problem as identified in Figure 4a: The derivative is small both for points with a very low and
for points with a very high membership. It is largest for points with an intermediate level of
membership, i.e., points that are currently treated as borderline members. Another advantage of
multivariate Gaussian functions is that they are able to encode correlations between dimensions
as well as different distribution widths through their covariance matrix Σ.

4We can model this with 𝛿𝑖(𝜖𝑖) =
𝜖𝑖
𝜎2
𝑖
· 𝑒

−
𝜖2𝑖
2𝜎2

𝑖 in the one-dimensional case using the approach by Lewis and

Lawry [42]



However, the usage of Gaussians in the context of conceptual spaces is somewhat unsat-
isfactory from a theoretical standpoint. The notion of similarity is not based on the Eu-
clidean distance 𝑑𝐸(𝑥, 𝑝𝑖) =

√︀∑︀
𝑑(𝑥𝑑 − 𝑝𝑖𝑑)2, but on the squared Mahalanobis distance

𝑑𝑀 (𝑥, 𝑝𝑖) =
√︀

(𝑥− 𝑝𝑖)𝑇Σ−1(𝑥− 𝑝𝑖). Applying the Mahalanobis distance corresponds to
transforming the similarity space with the covariance matrix, and then computing the Euclidean
metric in the transformed space. This implicit transformation of the similarity space would in
our opinion cause a major modification of the original framework. Nevertheless, the simplicity
and computational attractiveness of multivariate Gaussians make them an interesting candidate
for experimental investigations, such that one should not hastily dismiss them.

4. Conclusions

In this paper, we have introduced both conceptual spaces and logic tensor networks. We
have argued that a combination of the two frameworks is a promising direction of research:
Conceptual spaces can provide a grounding for the feature spaces considered in logic tensor
networks and allow us to use relatively simple membership functions for representing predicates.
Logic tensor networks on the other hand can help us to bridge the gap between the conceptual
and the symbolic layer by learning concepts not only based on labeled examples, but also
based on general logical top-down constraints. Moreover, the resulting system can provide
a cognitive grounding for formal ontologies: Individual concepts from the ontology can be
grounded in regions of a conceptual space, whose dimensions are grounded in psychological
data and/or perceptual sensor information. Moreover, this grounding can take into account the
most important part of ontologies, namely the relations between concepts. Since the envisioned
system unifies both bottom-up and top-down processes, the information from the conceptual
layer can furthermore give rise to additional rules for the symbolic ontology.

Moreover, we have also discussed several possible membership functions for concepts in
conceptual spaces and their applicability to gradient-based optimization methods. If we consider
partitional approaches, a soft version of generalized Voronoi tessellations seems to be most
promising: It is capable of representing conceptual regions of different sizes and comes with
a derivative that is guaranteed to be non-zero everywhere. If we are however interested in
nonpartitional membership functions, multivariate Gaussians seem to be preferable from a com-
putational point of view: They are able to explicitly encode correlations between dimensions,
they can take into account concepts of varying size, and they provide a meaningful non-zero
gradient everywhere. Nevertheless, also the membership function of our own formalization of
the conceptual spaces framework should be explored, since it provides us with a large number
of operations for downstream reasoning processes.

Our proposal has so far been only a theoretical one. In order to evaluate its actual merit,
practical experiments need to be conducted. Ideally, these experiments should consider all
membership functions discussed in this paper in order to confirm or refute our theoretical
analyses. There are several data sets that can serve as test beds for a first study, including the
conceptual spaces extracted by Banaee et al. [48] and Derrac and Schockaert [49], as well as the
robotics data set by Spranger et al. [50]. Since the strength of LTNs stems from their ability



to incorporate top-down rules to compensate for scarce training data, especially the movie
spaces from Derrac and Schockaert [49] are relevant: Each movie is annotated with its genres,
a set of plot keywords, at its age restriction. Using techniques such as the apriori algorithm
[51], one can extract rules from the co-occurrence statistics of the labels and then simulate
few-shot learning [52] by showing only a small part of the available examples, but providing
the general rules as additional constraints to the system. After such initial experiments, studies
with actual ontologies are needed in order to ensure that all relevant pieces of ontological
information (especially relations of varying complexity) can be adequately encoded by the
proposed approach.
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