
Asynchronous Forward-Bounding algorithm with
Directional Arc Consistency
Rachid Adrdor1, Lahcen Koutti1

1Ibn Zohr University, Faculty of Sciences, Department of Computer Science, Agadir, Morocco

Abstract
The AFB_BJ+-AC* algorithm is one of the latest algorithms used to solve Distributed Constraint Opti-
mization Problems known as DCOPs. It is based on soft arc consistency techniques (AC*) to speed up
the process of solving a problem by permanently removing any value that doesn’t belong to the opti-
mal solution. In fact, these techniques have greatly contributed to improving the performance of the
AFB_BJ+ algorithm in solving DCOPs, but there are some exceptions in which they have no effect due
to the limited number of deletions made. For that, we use in this paper a higher consistency level, which
is a directional arc consistency (DAC*). This level makes it possible to erase more values and thus to
quickly reach the optimal solution of a problem. Experiments on some benchmarks show that the new
algorithm, AFB_BJ+-DAC*, is better in terms of communication load and computation effort.

Keywords
DCOP, AFB_BJ+, AC*, Directional Arc Consistency

1. Introduction

A large number of multi-agent problems can be modeled as DCOPs such as meetings schedul-
ing [1], sensor networks [2], and so on. In a DCOP, variables, domains, and constraints are
distributed among a set of agents. Each agent has full control over a subset of variables and
constraints that involve them [3]. A DCOP is solved in a distributed manner via an algorithm al-
lowing the agents to cooperate and coordinate with each other to find a solution with a minimal
cost. A solution to a DCOP is a set of value assignments, each representing the value assigned
to one of the variables in that DCOP. Algorithms with various search strategies have been
suggested to solve DCOPs, for example, Adopt[4], BnB-Adopt[5], BnB-Adopt+[6], SyncBB[7],
AFB[3], AFB_BJ+[8], AFB_BJ+-AC*[9, 10, 11], etc.

In AFB_BJ+-AC*, agents synchronously develop a current partial assignment (CPA) in order
to find the optimal solution to the problem to be solved. During this process, and in order to
reduce the number of retries, each agent uses arc consistency (AC*) to remove any suboptimal
values in its domain. But sometimes, the number of deletions generated by AC* is insufficient,
which negatively affects the performance of the algorithm.

In this paper, instead of using the basic level of arc consistency (AC*), we use directional arc
consistency (DAC*), which is the next higher level of AC*. DAC* allows AFB_BJ+ to generate

ASPOCP 2021: Workshop on Answer Set Programming and Other Computing Paradigms 2021 co-located with ICLP
2021 Porto, Portugal, September 21, 2021
" rachid.adrdor@edu.uiz.ac.ma (R. Adrdor); l.koutti@uiz.ac.ma (L. Koutti)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:rachid.adrdor@edu.uiz.ac.ma
mailto:l.koutti@uiz.ac.ma
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

more deletions and thus quickly reach the optimal solution of a problem. The new algorithm
is called AFB_BJ+-DAC*. It uses DAC* to filter agent domains by performing a set of cost
extensions from an agent to its neighbors, then executing AC*. Our experiments on different
benchmarks show the superiority of AFB_BJ+-DAC* algorithm in terms of communication load
and computation effort.

This paper comprises four sections. Section 2 gives an overview of DCOPs, soft arc consistency
rules, and AFB_BJ+-AC* algorithm. Section 3 gives a description of AFB_BJ+-DAC* algorithm.
Section 4 talks about experiments fulfilled on some benchmarks. The last section gives the
conclusion.

2. Background

2.1. Distributed Constraint Optimization Problem (DCOP)

A DCOP [12, 13, 11] is defined by 4 sets, set of agents 𝒜 = {𝐴1, 𝐴2, ..., 𝐴𝑘}, set of variables
𝒳 = {𝑥1, 𝑥2, ..., 𝑥𝑛}, set of finite domains 𝒟 = {𝐷1, 𝐷2, ..., 𝐷𝑛}, where each 𝐷𝑖 in 𝒟 contains
the possible values for its associated variable 𝑥𝑖 in 𝒳 , and set of soft constraints 𝒞 = {𝑐𝑖𝑗 :
𝐷𝑖 ×𝐷𝑗 → R+} ∪ {𝑐𝑖 : 𝐷𝑖 → R+}. In a DCOP, each agent is fully responsible for a subset of
variables and the constraints that involve them.

In this paper, while maintaining the generality, each DCOP is characterized in that each agent
is responsible for a single variable and that two variables, at most, are linked by a constraint
(i.e., unary or binary constraint) [14].

We consider these notations: 𝐴𝑗 is an agent, where 𝑗 is its level. (𝑥𝑗 , 𝑣𝑗) is an assignment
of 𝐴𝑗 , where 𝑣𝑗 ∈ 𝐷𝑗 and 𝑥𝑗 ∈ 𝒳 . 𝐶𝑖𝑗 is a binary constraint between 𝑥𝑖 and 𝑥𝑗 , and 𝑐𝑖𝑗 is its
binary cost. 𝐶𝑎𝑐

𝑖𝑗 is an identical copy of the 𝐶𝑖𝑗 constraint, used in the AC* process. 𝐶𝑗 is a
unary constraint on 𝑥𝑗 and 𝑐𝑗 is its unary cost. 𝐶𝜑 is a zero-arity constraint that represents a
lower bound of any problem solution. 𝐶𝜑𝑗 is the contribution value of 𝐴𝑗 in 𝐶𝜑. 𝑈𝐵𝑗 is the
cost of the optimal solution reached so far and it is also the lowest unacceptable cost used for
AC* process. [𝐴1, 𝐴2, . . . , 𝐴𝑛] is the lexicographic ordering of agents (the default ordering),
Γ(𝑥𝑗) = {Γ− : 𝑥𝑖 ∈ 𝒳 | 𝐶𝑖𝑗 ⊆ 𝐷𝑖 ×𝐷𝑗 , 𝑖 < 𝑗} ∪ {Γ+ : 𝑥𝑖 ∈ 𝒳 | 𝐶𝑖𝑗 ⊆ 𝐷𝑖 ×𝐷𝑗 , 𝑖 > 𝑗} is
the set of neighbors of 𝐴𝑗 . Γ− (resp. Γ+) is a set of neighbors with a higher priority (resp. with
a lower priority). 𝑌 = 𝑌 𝑗 = [(𝑥1, 𝑣1), . . . , (𝑥𝑗 , 𝑣𝑗)] is a current partial assignment (CPA). 𝑣*𝑗 is
the optimal value of 𝐴𝑗 . 𝐿𝐵𝑘[𝑖][𝑣𝑗] are the lower bounds of a lower neighbor 𝐴𝑘 obtained for
𝑌 𝑗 . 𝐺𝐶 (resp. 𝐺𝐶*) are the guaranteed costs of 𝑌 (resp. in AC*). 𝐷𝑉 𝑎𝑙𝑠 is a list of 𝑛 arrays
containing deleted values, each array, 𝐷𝑉 𝑎𝑙𝑠[𝑗], contains two elements, 𝑙𝑖𝑠𝑡𝑉 𝑎𝑙𝑠 which is the
list of values deleted by 𝐴𝑗 and 𝑈𝑛𝑣𝑁𝑏𝑟𝑠 which is a counter of the 𝐴𝑗 neighbors that have not
yet processed 𝑙𝑖𝑠𝑡𝑉 𝑎𝑙𝑠. 𝐸𝑉 𝑎𝑙𝑠 is a list of arrays containing extension values.

The guaranteed cost of 𝑌 is the sum of 𝑐𝑖𝑗 involved in 𝑌 (1).

𝐺𝐶(𝑌) =
∑︁
𝑐𝑖𝑗∈𝒞

𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗) | (𝑥𝑖, 𝑣𝑖), (𝑥𝑗 , 𝑣𝑗) ∈ 𝑌 (1)

A CPA 𝑌 is said to be a complete assignment (i.e., a solution) when it comprises a value assign-
ment for each variable of a DCOP. Solving a DCOP is to find a solution such that the sum of the

Proc. 1: ProjectUnary()

1 𝛽 ← 𝑚𝑖𝑛𝑣𝑖∈𝐷𝑖
{𝑐𝑖(𝑣𝑖)} ;

2 𝐶𝜑𝑖
← 𝐶𝜑𝑖

+ 𝛽 ;

3 foreach (𝑣𝑖 ∈ 𝐷𝑖) do
4 𝑐𝑖(𝑣𝑖)← 𝑐𝑖(𝑣𝑖)− 𝛽 ;

Proc. 2: ProjectBinary(𝑥𝑖, 𝑥𝑗)

1 foreach (𝑣𝑖 ∈ 𝐷𝑖) do
2 𝛼← 𝑚𝑖𝑛𝑣𝑗∈𝐷𝑗

{𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗)} ;
3 foreach (𝑣𝑗 ∈ 𝐷𝑗) do
4 𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗)← 𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗)− 𝛼 ;
5 if (𝐴𝑖 is the current agent)
6 𝑐𝑖(𝑣𝑖)← 𝑐𝑖(𝑣𝑖) + 𝛼 ;

Proc. 3: Extend(𝑥𝑖, 𝑥𝑗 , 𝐸)

1 foreach (𝑣𝑖 ∈ 𝐷𝑖) do
2 foreach (𝑣𝑗 ∈ 𝐷𝑗) do
3 𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗)← 𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗) + 𝐸[𝑣𝑖] ;
4 if (𝐴𝑖 is the current agent)
5 𝑐𝑖(𝑣𝑖)← 𝑐𝑖(𝑣𝑖)− 𝐸[𝑣𝑖] ;

Proc. 4: CheckPruning()

1 foreach (𝑎 ∈ 𝐷𝑗) do
2 if (𝑐𝑗(𝑎) + 𝐶𝜑 ≥ 𝑈𝐵𝑗)
3 𝐷𝑗 ← 𝐷𝑗 − {𝑎} ;
4 𝐷𝑉 𝑎𝑙𝑠[𝑗].𝑙𝑖𝑠𝑡𝑉 𝑎𝑙𝑠.𝑎𝑑𝑑(𝑎) ;

5 if (𝐷𝑗 𝑖𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑)
6 𝐷𝑉 𝑎𝑙𝑠[𝑗].𝑈𝑛𝑣𝑁𝑏𝑟𝑠← 𝐴𝑗 .𝑁𝑏𝑟𝑠;

7 if (𝐷𝑗 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦)
8 broadcastMsg : stp(𝑈𝐵𝑗) ;
9 𝑒𝑛𝑑← 𝑡𝑟𝑢𝑒 ;

Proc. 5: DAC*()
1 foreach (𝐴𝑘 ∈ Γ+) do
2 foreach (𝑣𝑗 ∈ 𝐷𝑗) do
3 𝐸[𝑣𝑗]← 𝑐𝑗(𝑣𝑗) ;

4 𝐸𝑥𝑡𝑒𝑛𝑑(𝑥𝑗 , 𝑥𝑘, 𝐸) ;
5 𝐸𝑉 𝑎𝑙𝑠[𝑗𝑘].𝑝𝑢𝑡(𝐸) ;
6 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝐵𝑖𝑛𝑎𝑟𝑦(𝑥𝑘, 𝑥𝑗) ;

Proc. 6: ProcessPruning(msg)

1 𝐷𝑉 𝑎𝑙𝑠← 𝑚𝑠𝑔.𝐷𝑉 𝑎𝑙𝑠 ;
2 foreach (𝐴𝑘 ∈ Γ) do
3 foreach (𝑎 ∈ 𝐷𝑉 𝑎𝑙𝑠[𝑘]) do
4 𝐷𝑘 ← 𝐷𝑘 − {𝑎} ;
5 if (𝐷𝑘 𝑖𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑)
6 𝐷𝑉 𝑎𝑙𝑠[𝑘].𝑈𝑛𝑣𝑁𝑏𝑟𝑠.𝑑𝑒𝑐𝑟(−1) ;
7 if (𝐷𝑉 𝑎𝑙𝑠[𝑘].𝑈𝑛𝑣𝑁𝑏𝑟𝑠 = 0)
8 𝐷𝑉 𝑎𝑙𝑠[𝑘].𝑙𝑖𝑠𝑡𝑉 𝑎𝑙𝑠.𝑐𝑙𝑒𝑎𝑟 ;

9 if (𝑚𝑠𝑔.𝑡𝑦𝑝𝑒 = ok?)
10 𝐸𝑉 𝑎𝑙𝑠← 𝑚𝑠𝑔.𝐸𝑉 𝑎𝑙𝑠 ;

11 foreach (𝐴𝑘 ∈ Γ−) do
12 𝐸𝑥𝑡𝑒𝑛𝑑(𝑥𝑘, 𝑥𝑗 , 𝐸𝑉 𝑎𝑙𝑠[𝑘𝑗]) ;
13 𝐸𝑉 𝑎𝑙𝑠[𝑘𝑗].𝑐𝑙𝑒𝑎𝑟 ;
14 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝐵𝑖𝑛𝑎𝑟𝑦(𝑥𝑗 , 𝑥𝑘) ;
15 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑈𝑛𝑎𝑟𝑦() ;

16 𝐶𝜑 ← 𝑚𝑎𝑥
{︀
𝐶𝜑, 𝑚𝑠𝑔.𝐶𝜑

}︀
+ 𝐶𝜑𝑗

;

17 𝐶𝜑𝑗
← 0 ;

18 if (𝐶𝜑 ≥ 𝑈𝐵𝑗)
19 broadcastMsg : stp(𝑈𝐵𝑗) ;
20 𝑒𝑛𝑑← 𝑡𝑟𝑢𝑒 ;

21 𝐶ℎ𝑒𝑐𝑘𝑃𝑟𝑢𝑛𝑖𝑛𝑔() ;
22 DAC*() ;
23 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() ;

costs of constraints involved in this solution is minimal, i.e., 𝑌 * = argmin
𝑌

{𝐺𝐶(𝑌) | 𝑣𝑎𝑟(𝑌) =

𝒳}.

2.2. Soft arc consistency

Soft arc consistency techniques are used when solving a problem to delete values that are not
part of the optimal solution of this problem. To apply these techniques to a problem, a set of
transformations known as equivalence preserving transformations are used. They allow the
exchange of costs between the constraints of the problem according to three manners that are a
binary projection, a unary projection, and an extension.

The binary projection (Proc. 2) is an operation which subtracts, for a value 𝑣𝑖 of 𝐷𝑖, the
smallest cost 𝛼 of a binary constraint 𝐶𝑖𝑗 and adds it to the unary constraint 𝐶𝑖. The unary
projection (Proc. 1) is an operation which subtracts the smallest cost 𝛽 of a unary constraint
𝐶𝑖 and adds it to the zero-arity constraint 𝐶𝜑. The extension (Proc. 3) is an operation which
subtracts, for a value 𝑣𝑖 of 𝐷𝑖, the extension value (𝐸[𝑣𝑖]) of 𝑣𝑖 from a unary constraint 𝐶𝑖 and
adds it to the binary constraint 𝐶𝑖𝑗 , with 0 < 𝐸[𝑣𝑖] ≤ 𝑐𝑖(𝑣𝑖). All of these transformations are
applied to a problem under a set of conditions represented by soft arc consistency levels [15],
namely:

Node Consistency (NC*) : a variable 𝑥𝑖 is NC* if each value 𝑣𝑖 ∈ 𝐷𝑖 satisfies 𝐶𝜑+ 𝑐𝑖(𝑣𝑖) <
𝑈𝐵𝑖 and there is a value 𝑣𝑖 ∈ 𝐷𝑖 with 𝑐𝑖(𝑣𝑖) = 0. A problem is NC* if each variable 𝑥𝑖 of this
problem is NC*.
Arc Consistency (AC*) : a variable 𝑥𝑖 is AC* with respect to its neighbor 𝑥𝑗 if 𝑥𝑖 is NC*

and there is, for each value 𝑣𝑖 ∈ 𝐷𝑖, a value 𝑣𝑗 ∈ 𝐷𝑗 which satisfies 𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗) = 0. 𝑣𝑗 is called
a simple support of 𝑣𝑖. A problem is AC* if each variable 𝑥𝑖 of this problem is AC*.

Directional Arc Consistency (DAC*) : a variable 𝑥𝑖 is DAC* with respect to its neighbor
𝑥𝑗(𝑗>𝑖) if 𝑥𝑖 is NC* and there is, for each value 𝑣𝑖 ∈ 𝐷𝑖, a value 𝑣𝑗 ∈ 𝐷𝑗 which satisfies
𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗) + 𝑐𝑗(𝑣𝑗) = 0. 𝑣𝑗 is called a full support of 𝑣𝑖. A problem is DAC* if each variable 𝑥𝑖
of this problem is DAC* with its neighbors 𝑥𝑗(𝑗>𝑖).

To make a given problem DAC*, we first compute, for each variable 𝑥𝑖 with respect to its
neighbors of lower priority 𝑥𝑗(𝑗>𝑖), the extension values appropriate to the values of its domain
𝐷𝑖 (Proc. 5, 𝑙. 3). Next, we perform the extension operation (Proc. 5, 𝑙. 4) by subtracting the
extension values from the unary constraints 𝐶𝑖 and adding them to the binary ones 𝐶𝑖𝑗 (Proc. 3).
Then, each neighbor 𝑥𝑗 performs, successively, a binary projection (Proc. 2), a unary projection
(Proc. 1), and finally a deletion of non-NC* values. These last three instructions ensure the
fulfillment of arc consistency (AC*).

In a distributed case, each agent 𝐴𝑖 performs DAC* locally and shares the value of its zero-
arity constraint 𝐶𝜑𝑖 with the other agents in order to calculate the global 𝐶𝜑 (i.e., 𝐶𝜑 =∑︀

𝐴𝑖∈𝒜𝐶𝜑𝑖)(Proc. 6, 𝑙. 16). Each agent 𝐴𝑖 keeps locally for each of its constraints 𝐶𝑖𝑗 an
identical copy marked by 𝐶𝑎𝑐

𝑖𝑗 and used in DAC* procedure. During DAC*, 𝐶𝑎𝑐
𝑖𝑗 constraints are

changed. To keep the symmetry of these constraints in the agents, each agent 𝐴𝑖 applies, on its
copy 𝐶𝑎𝑐

𝑖𝑗 , the same action of its neighbor 𝐴𝑗 and vice versa (Proc. 5, 𝑙. 6) [16].

2.3. AFB_BJ+-AC* algorithm

Each agent 𝐴𝑗 carries out the AFB_BJ+-AC*[9] according to three phases. First, 𝐴𝑗 initializes
its data structures and performs the AC* in which it deletes permanently all suboptimal values
from its domain 𝐷𝑗 . Second, 𝐴𝑗 chooses, for its variable 𝑥𝑗 , a value from its previously filtered
domain 𝐷𝑗 in order to extend the CPA 𝑌 𝑗 by its value assignment (𝑥𝑗 , 𝑣𝑗). If 𝐴𝑗 has successfully
extended the CPA, it sends an ok? message to the next agent asking it to continue the extension
of CPA 𝑌 𝑗 . This message loads the extended CPA 𝑌 𝑗 , its guaranteed cost (2), its guaranteed
cost in AC* (3), the 𝐶𝜑, and the list 𝐷𝑉 𝑎𝑙𝑠.

𝐺𝐶(𝑌 𝑗)[𝑗] = 𝐺𝐶(𝑌 𝑗−1) +
∑︁

(𝑥𝑖,𝑣𝑖)∈𝑌 𝑗−1 | 𝑖<𝑗

𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗) (2)

𝐺𝐶*(𝑌 𝑗)
(𝑥𝑖,𝑣𝑖)∈𝑌 𝑗−1

= 𝐺𝐶*(𝑌 𝑗−1) + 𝑐𝑗(𝑣𝑗) +
∑︁
𝑐𝑎𝑐𝑖𝑗 ∈𝒞

𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗) (3)

Otherwise, that is to say, the agent 𝐴𝑗 fails to extend the CPA, either because it doesn’t find
a value that gives a valid CPA, or because all the values in its domain are exhausted, it stops
the CPA extension and sends a back message, containing the same data structures as an ok?
message excluding 𝐺𝐶 and 𝐺𝐶*, to the appropriate agent. If such an agent doesn’t exist or the
domain of 𝐴𝑗 becomes empty, 𝐴𝑗 stops its execution and informs the others via stp messages.

A CPA 𝑌 𝑗 is said to be valid if its lower bound (4) doesn’t exceed the global upper bound 𝑈𝐵𝑗 ,
which represents the cost of the optimal solution achieved so far.

𝐿𝐵(𝑌 𝑗)[𝑖] = 𝐺𝐶(𝑌 𝑗)[𝑖] +
∑︁

𝐴𝑘>𝐴𝑗

𝐿𝐵𝑘(𝑌
𝑗)[𝑖] (4)

Third, 𝐴𝑗 evaluates the extended CPA by sending fb? messages, which hold the same data
structures excluding 𝐶𝜑 and 𝐷𝑉 𝑎𝑙𝑠, to unassigned agents asking them to evaluate the CPA
and send the result of the evaluation. When an agent has completed its evaluation, it sends the
result directly to the sender agent via an lb message. The evaluation is based on the calculation
of appropriate lower bounds for the received CPA 𝑌 𝑖. The lower bound of 𝑌 𝑖 (5) is the minimal
lower bound over all values of 𝐷𝑗 with respect to 𝑌 𝑖.

𝐿𝐵𝑗(𝑌
𝑖)[ℎ]

(ℎ≤𝑖<𝑗)

= min
𝑣𝑗∈𝐷𝑗

{︂ ∑︁
(𝑥𝑘,𝑣𝑘)∈𝑌 ℎ

(𝑘≤ℎ)

𝑐𝑘𝑗(𝑣𝑘, 𝑣𝑗) +
𝑖−1∑︁

𝑘=ℎ+1
(ℎ<𝑘<𝑖)

min
𝑣𝑘∈𝐷𝑘

{𝑐𝑘𝑗(𝑣𝑘, 𝑣𝑗)}+

𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗) +
∑︁

𝑥𝑘∈Γ+(𝑥𝑗)

(𝑘>𝑗)

min
𝑣𝑘∈𝐷𝑘

{𝑐𝑗𝑘(𝑣𝑗 , 𝑣𝑘)}
}︂ (5)

3. The AFB_BJ+-DAC* algorithm

The AFB_BJ+-DAC* algorithm uses a higher consistency level, which is a directional arc
consistency (DAC*). It improves the ability of AFB_BJ+-AC* algorithm to generate more
deletions. It is based on executing a set of cost extensions from unary constraints to binary ones,
then on executing of AC*. DAC*() (Proc. 5) is the procedure responsible for calculating the
extension values (i.e., costs to be transferred) and 𝐸𝑥𝑡𝑒𝑛𝑑() (Proc. 3) is the one that performs the
extension of costs from the unary constraints towards the binary ones (§2.2). All the extension
values used by an agent are stored in a list, 𝐸𝑉 𝑎𝑙𝑠, and routed to its lower neighbors via an
ok? message in order to keep the symmetry of 𝐶𝑎𝑐

𝑖𝑗 constraints in each agent and its neighbors.
The list of extension values, 𝐸𝑉 𝑎𝑙𝑠, is processed in the procedure 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑃𝑟𝑢𝑛𝑖𝑛𝑔() (Proc.
6, 𝑙. 9-13) in which DAC*() is also performed (Proc. 6, 𝑙. 22).

3.1. Description of AFB_BJ+-DAC*

The AFB_BJ+-DAC* (Proc. 7) is performed by each agent 𝐴𝑗 as follows :
𝐴𝑗 starts with the initialization step (Proc. 7, 𝑙. 1-3). If 𝐴𝑗 is the 1𝑠𝑡 agent (Proc. 7, 𝑙. 4), it filters

its domain by calling 𝐶ℎ𝑒𝑐𝑘𝑃𝑟𝑢𝑛𝑖𝑛𝑔() (Proc. 4), then performs the appropriate extensions
through DAC*() (Proc. 5), and finally calls 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() to generate a CPA 𝑌 .

Next, 𝐴𝑗 starts processing the messages (Proc. 7, 𝑙. 9). First, it updates 𝑈𝐵𝑗 and 𝑣*𝑗 (Proc.
7, 𝑙. 12). Then, 𝐴𝑗 updates 𝑌 and 𝐺𝐶 and erases all unrelated lower bounds if the received
CPA (𝑚𝑠𝑔.𝑌) is fresh compared to the local one (𝑌) (Proc. 7, 𝑙. 13). Thereafter, 𝐴𝑗 restores all
temporarily deleted values (Proc. 7, 𝑙. 28).

Proc. 7: AFB_BJ+-DAC*()
1 Init. of data structures
2 foreach (𝐴𝑘 ∈ Γ+) do
3 𝐿𝐵𝑘[0][𝑣𝑗]

(𝑣𝑗∈𝐷𝑗)

← 𝑚𝑖𝑛
𝑣𝑘∈𝐷𝑘

{︀
𝑐𝑗𝑘(𝑣𝑗 , 𝑣𝑘)

}︀
;

4 if (𝐴𝑗 = 𝐴1)
5 𝐶𝜑 ← 𝐶𝜑 + 𝐶𝜑𝑗

; 𝐶𝜑𝑗
← 0;

6 𝐶ℎ𝑒𝑐𝑘𝑃𝑟𝑢𝑛𝑖𝑛𝑔() ;
7 DAC*() ;
8 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() ;

9 while (¬𝑒𝑛𝑑) do
10 𝑚𝑠𝑔 ← 𝑔𝑒𝑡𝑀𝑠𝑔() ;
11 if (𝑚𝑠𝑔.𝑈𝐵 < 𝑈𝐵𝑗)
12 𝑈𝐵𝑗 ← 𝑚𝑠𝑔.𝑈𝐵 ; 𝑣*𝑗 ← 𝑣𝑗 ;

13 if (𝑚𝑠𝑔.𝑌 is stronger than 𝑌)
14 𝑌 ← 𝑚𝑠𝑔.𝑌 ; 𝐺𝐶 ← 𝑚𝑠𝑔.𝐺𝐶 ;
15 clear irrelevant 𝐿𝐵𝑘[][] ; reset 𝐷𝑗 ;

16 if (𝑚𝑠𝑔.𝑡𝑦𝑝𝑒 = ok?)
17 𝑚𝑢𝑠𝑡𝑆𝑒𝑛𝑑𝐹𝐵 ← 𝑇𝑟𝑢𝑒 ;
18 𝐺𝐶* ← 𝑚𝑠𝑔.𝐺𝐶* ;
19 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑃𝑟𝑢𝑛𝑖𝑛𝑔(𝑚𝑠𝑔) ;

20 if (𝑚𝑠𝑔.𝑡𝑦𝑝𝑒 = back)
21 𝑌 ← 𝑌 𝑗−1 ;
22 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑃𝑟𝑢𝑛𝑖𝑛𝑔(𝑚𝑠𝑔) ;

23 if (𝑚𝑠𝑔.𝑡𝑦𝑝𝑒 = fb?)
24 𝐺𝐶* ← 𝑚𝑠𝑔.𝐺𝐶* ;
25 foreach (𝑣𝑗 ∈ 𝐷𝑗) do
26 𝑐𝑜𝑠𝑡← 𝐶𝜑 +𝐺𝐶*(𝑌 𝑗−1) + 𝑐𝑗(𝑣𝑗) ;
27 if (𝑐𝑜𝑠𝑡 ≥ 𝑈𝐵𝑗)
28 𝐷𝑗 ← 𝐷𝑗 − 𝑣𝑗 ;

29 sendMsg : lb
to 𝐴𝑖

(𝐿𝐵𝑗(𝑌
𝑖)[], 𝑚𝑠𝑔.𝑌) ;

30 if (𝑚𝑠𝑔.𝑡𝑦𝑝𝑒 = stp)
31 𝑒𝑛𝑑← 𝑡𝑟𝑢𝑒 ;

33 if (𝑚𝑠𝑔.𝑡𝑦𝑝𝑒 = lb)
34 𝐿𝐵𝑘(𝑌

𝑗)← 𝑚𝑠𝑔.𝐿𝐵 ;

35 if (𝐿𝐵(𝑌 𝑗) ≥ 𝑈𝐵𝑗)
36 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() ;

Proc. 8: ExtendCPA()

1 𝑣𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛
𝑣
′
𝑗∈𝐷𝑗

{︁
𝐿𝐵(𝑌 ∪ (𝑥𝑗 , 𝑣

′
𝑗))

}︁
;

2 if (𝐿𝐵(𝑌 ∪ (𝑥𝑗 , 𝑣𝑗)) ≥ 𝑈𝐵𝑗) ∨
(𝐶𝜑 +𝐺𝐶*(𝑌 𝑗−1) + 𝑐𝑗(𝑣𝑗) ≥ 𝑈𝐵𝑗)

3 for 𝑖← 𝑗 − 1 to 1 do
4 if (𝐿𝐵(𝑌)[𝑖− 1] < 𝑈𝐵𝑗)
5 sendMsg : back

to 𝐴𝑖

(𝑌 𝑖, 𝑈𝐵𝑗 , 𝐷𝑉 𝑎𝑙𝑠, 𝐶𝜑) ;

return ;
6 broadcastMsg : stp(𝑈𝐵𝑗) ;
7 𝑒𝑛𝑑← 𝑡𝑟𝑢𝑒 ;

8 else
9 𝑌 ← {𝑌 ∪ (𝑥𝑗 , 𝑣𝑗)} ;

10 if (𝑣𝑎𝑟(𝑌) = X)
11 𝑈𝐵𝑗 ← 𝐺𝐶(𝑌) ; 𝑣*𝑗 ← 𝑣𝑗 ;

12 𝑌 ← 𝑌 𝑗−1 ;
13 𝐶ℎ𝑒𝑐𝑘𝑃𝑟𝑢𝑛𝑖𝑛𝑔() ;
14 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() ;

15 else
16 sendMsg : ok?

to 𝐴𝑗+1

(𝑌, 𝐺𝐶, 𝑈𝐵𝑗 , 𝐷𝑉 𝑎𝑙𝑠,

𝐸𝑉 𝑎𝑙𝑠, 𝐶𝜑, 𝐺𝐶*) ;
17 𝐸𝑉 𝑎𝑙𝑠.𝑐𝑙𝑒𝑎𝑟 ;
18 if (𝑚𝑢𝑠𝑡𝑆𝑒𝑛𝑑𝐹𝐵)
19 sendMsg : fb?

to 𝐴𝑘
𝑘>𝑗

(𝑌, 𝐺𝐶, 𝑈𝐵𝑗 , 𝐺𝐶*) ;

20 𝑚𝑢𝑠𝑡𝑆𝑒𝑛𝑑𝐹𝐵 ← 𝑓𝑎𝑙𝑠𝑒 ;

When receiving an ok? message (Proc. 7, 𝑙. 16), 𝐴𝑗 authorizes the sending of fb? messages
and calls 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑃𝑟𝑢𝑛𝑖𝑛𝑔() (Proc. 6).

When calling 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑃𝑟𝑢𝑛𝑖𝑛𝑔() (Proc. 6), 𝐴𝑗 deals initially, for ok? messages only, with
extensions of its higher neighbors (Proc. 6, 𝑙. 9-13). Afterward, it updates its 𝐷𝑉 𝑎𝑙𝑠, then
its neighbors’ domains separately in order to keep the same domains as these agents (Proc.
6, 𝑙. 1-4). After that, it performs the two projections fulfilling the condition of AC* (Proc. 6,
𝑙. 14-15). Next, 𝐴𝑗 decrements the unvisited neighbors of 𝐴𝑘, 𝐷𝑉 𝑎𝑙𝑠[𝑘].𝑈𝑛𝑣𝑁𝑏𝑟𝑠, and then
checks whether it is the last visited neighbor of this agent 𝐴𝑘 in order to reset its list of deleted
values 𝐷𝑉 𝑎𝑙𝑠[𝑘].𝑙𝑖𝑠𝑡𝑉 𝑎𝑙𝑠 (Proc. 6, 𝑙. 5-8). Then, 𝐴𝑗 updates its global 𝐶𝜑 (Proc. 6, 𝑙. 16). If 𝐶𝜑

exceeds the 𝑈𝐵𝑗 , 𝐴𝑗 turns off its execution and notifies the others (Proc. 6, 𝑙. 18-20). Finally, 𝐴𝑗

calls 𝐶ℎ𝑒𝑐𝑘𝑃𝑟𝑢𝑛𝑖𝑛𝑔() to prune its domain, DAC*() (Proc. 5) to make the proper extensions,
and 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() to extend the received CPA (Proc. 6, 𝑙. 21-23).

When calling DAC*() (Proc. 5), 𝐴𝑗 performs the proper extensions from 𝐶𝑗 to each 𝐶𝑖𝑗 (Proc.
5, 𝑙. 4-5). To do that, 𝐴𝑗 calculates, for each value 𝑣𝑗 of 𝐷𝑗 , its extension value (Proc. 5, 𝑙. 2-3)
based on the unary cost of this value (0 < 𝐸[𝑣𝑖] ≤ 𝑐𝑖(𝑣𝑖)). Once completed, 𝐴𝑗 performs a
binary projection to keep the symmetry of 𝐶𝑎𝑐

𝑖𝑗 constraints (Proc. 5, 𝑙. 6). It should be noted
that the direction taken into account by each agent 𝐴𝑗 for the extension of its costs is towards
its lower neighbors (Γ+(𝑥𝑗)).

When calling 𝐶ℎ𝑒𝑐𝑘𝑃𝑟𝑢𝑛𝑖𝑛𝑔() (Proc. 4), 𝐴𝑗 deletes any value from its domain for which
the sum of the 𝐶𝜑 with the unary cost of this value exceeds 𝑈𝐵𝑗 (Proc. 4, 𝑙. 2-3). With each
new deletion, 𝐴𝑗 initializes the number of its neighbors not yet visited (Proc. 4, 𝑙. 5-6). If 𝐴𝑗

domain becomes empty, 𝐴𝑗 turns off its execution and notifies the others (Proc. 4, 𝑙. 7-9).
When calling 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() (Proc. 8), 𝐴𝑗 looks for a value 𝑣𝑗 for its variable 𝑥𝑗 (Proc. 8,

𝑙. 1). If no value exists, 𝐴𝑗 returns to the priority agents by sending a back message to the
contradictory agent (Proc. 8, 𝑙. 2-5). If no agent exists, 𝐴𝑗 turns off its execution and notifies
the others via stp messages (Proc. 8, 𝑙. 6-7). Otherwise, 𝐴𝑗 extends 𝑌 by adding its assignment
(Proc. 8, 𝑙. 9). If 𝐴𝑗 is the last agent (Proc. 8, 𝑙. 10) then a new solution is obtained and the
𝑈𝐵𝑗 is updated, which obliges 𝐴𝑗 to call 𝐶ℎ𝑒𝑐𝑘𝑃𝑟𝑢𝑛𝑖𝑛𝑔() to filter again its domain and then
𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() to proceed the search (Proc. 8, 𝑙. 11-14). Otherwise, 𝐴𝑗 sends an ok? message
loaded with the extended 𝑌 to the next agent (Proc. 8, 𝑙. 16) and fb? messages to unassigned
agents (Proc. 8, 𝑙. 19).

When 𝐴𝑗 receives an fb? message, it filters its domain 𝐷𝑗 with respect to the received 𝑌
(Proc. 7, 𝑙. 24-28), calculates the appropriate lower bounds (5), and immediately sends them to
the sender via lb message (Proc. 7, 𝑙. 29).

When 𝐴𝑗 receives an lb message, it stores the lower bounds received (Proc. 7, 𝑙. 34) and
performs 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() to modify its assignment if the lower bound calculated, based on the
cost of 𝑌 (4), exceeds the 𝑈𝐵𝑗 .

3.2. Correctness of AFB_BJ+-DAC*

Theorem 1. AFB_BJ+-DAC* is guaranteed to calculate the optimum and terminates.

Proof. The AFB_BJ+-DAC* algorithm outperforms AFB_BJ+-AC* [9] by executing a set of cost
extensions. These extensions have already been proved which are correct in [15, 17], and they
are executed by the AFB_BJ+-DAC* without any cost redundancy (Proc. 3, 𝑙. 4), (Proc. 5, 𝑙. 6),
and (Proc. 6, 𝑙. 9-13).

4. Experimental Results

In this section, we experimentally compare the AFB_BJ+-DAC* algorithm with its older versions
[8, 9] and with the BnB-Adopt+-DP2 algorithm [18], which is its famous competitor. Two
benchmarks are used in these experiments: meetings scheduling and sensors network.
Meetings scheduling [1]: are defined by (𝑚, 𝑝, 𝑡𝑠), which are respectively the number of

meetings/variables, the number of participants, and the number of time slots for each meeting.
Each participant has a private schedule of meetings and each meeting takes place at a particular
location and at a fixed time slot. The constraints are applied to meetings that share participants.
We have evaluated the same cases presented in detail in [1]. These cases are A, B, C, and D,
each representing a different scenario in terms of the number of meetings and the number of
participants who each have a different hierarchical level.
Sensors network [2]: are defined by (𝑡, 𝑠, 𝑑), which are respectively the number of tar-

gets/variables, the number of sensors, and the number of possible combinations of 3 sensors

A B C D
0

200

400

600

800

1,000

case

nu
m

be
r

of
m

es
sa

ge
s

AFB_BJ+ AFB_BJ+-AC*

AFB_BJ+-DAC* BnB-Adopt+-DP2

A B C D
0

2,000

4,000

6,000

case

nu
m

be
r

of
nc

cc
s

Figure 1: Total of messages (𝑚𝑠𝑔𝑠) sent and non-concurrent constraint checks (𝑛𝑐𝑐𝑐𝑠) for meetings
scheduling

A B C D
0

1,000

2,000

3,000

case

nu
m

be
r

of
m

es
sa

ge
s

AFB_BJ+ AFB_BJ+-AC*

AFB_BJ+-DAC* BnB-Adopt+-DP2

A B C D
0

2,000

4,000

6,000

8,000

case

nu
m

be
r

of
nc

cc
s

Figure 2: Total of messages (𝑚𝑠𝑔𝑠) sent and non-concurrent constraint checks (𝑛𝑐𝑐𝑐𝑠) for sensors
network

reserved for tracking each target. A sensor can only track one target at most and each com-
bination of 3 sensors must track a target. The constraints are applied to adjacent targets. We
have evaluated the same cases presented in detail in [1]. These cases are A, B, C, and D, each
representing a different scenario in terms of the number of targets and the number of sensors
which are arranged in different topologies.

To compare the algorithms, we use two metrics which are the total of messages exchanged
(𝑚𝑠𝑔𝑠) that represents the communication load and the total of non-concurrent constraint
checks (𝑛𝑐𝑐𝑐𝑠) that represents the computation effort.

Regarding meetings scheduling problems (Fig. 1), the results show a clear improvement of
the AFB_BJ+-DAC* compared to others, whether for 𝑚𝑠𝑔𝑠 or for 𝑛𝑐𝑐𝑐𝑠. But with regard to
sensors network problems (Fig. 2), the BnB-Adopt+-DP2 retains the pioneering role, despite
the superiority of the AFB_BJ+-DAC* algorithm to its older versions.

By analyzing the results, we can conclude that the AFB_BJ+-DAC* is better than its earlier
versions, because of the existence of directional arc consistency (DAC*) which allows agents to

remove more suboptimal values. This is due to a set of cost extensions applied to the problem.
Regarding the superiority of the BnB-Adopt+-DP2 over the AFB_BJ+-DAC* in sensors network
problems, this is mainly due to the arrangement of the pseudo-tree used by this algorithm
that corresponds to the structure of these problems, as well as the existence of DP2 heuristic
facilitates the proper choice of values.

5. Conclusion

In this paper, we have introduced the AFB_BJ+-DAC* algorithm. It is an algorithm that relies
on DAC* to generate more deletions and thus quickly reach the optimal solution of a problem.
DAC* mainly relies on performing a set of cost extensions in one direction from an agent
to its lower priority neighbors in order to perform AC* multiple times, which increases the
number of deletions made by each agent and thereby speed up the process of solving a problem.
Experiments on some benchmarks show that the AFB_BJ+-DAC* algorithm behaves better
than its older versions. As future work, we propose to exploit the change in the size of the agent
domains in variable ordering heuristics.

References

[1] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, P. Varakantham, Taking dcop
to the real world: Efficient complete solutions for distributed multi-event scheduling,
in: Proceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems-Volume 1, IEEE Computer Society, 2004, pp. 310–317.

[2] R. Béjar, C. Domshlak, C. Fernández, C. Gomes, B. Krishnamachari, B. Selman, M. Valls, Sen-
sor networks and distributed csp: communication, computation and complexity, Artificial
Intelligence 161 (2005) 117–147.

[3] A. Gershman, A. Meisels, R. Zivan, Asynchronous forward bounding for distributed cops,
Journal of Artificial Intelligence Research 34 (2009) 61–88.

[4] P. J. Modi, W.-M. Shen, M. Tambe, M. Yokoo, Adopt: Asynchronous distributed constraint
optimization with quality guarantees, Artificial Intelligence 161 (2005) 149–180.

[5] W. Yeoh, A. Felner, S. Koenig, Bnb-adopt: An asynchronous branch-and-bound dcop
algorithm, Journal of Artificial Intelligence Research 38 (2010) 85–133.

[6] P. Gutierrez, P. Meseguer, Saving messages in adopt-based algorithms, in: Proc. 12th DCR
workshop in AAMAS-10, Citeseer, 2010, pp. 53–64.

[7] K. Hirayama, M. Yokoo, Distributed partial constraint satisfaction problem, in: Interna-
tional Conference on Principles and Practice of Constraint Programming, Springer, 1997,
pp. 222–236.

[8] M. Wahbi, R. Ezzahir, C. Bessiere, Asynchronous forward bounding revisited, in: Interna-
tional Conference on Principles and Practice of Constraint Programming, Springer, 2013,
pp. 708–723.

[9] R. Adrdor, R. Ezzahir, L. Koutti, Connecting afb_bj+ with soft arc consistency, International
Journal of Computing and Optimization 5 no. 1 (2018) 9–20.

[10] R. Adrdor, L. Koutti, Enhancing AFB_BJ+AC* algorithm, in: 2019 International Conference
of Computer Science and Renewable Energies (ICCSRE), IEEE, 2019, pp. 1–7.

[11] R. Adrdor, R. Ezzahir, L. Koutti, Consistance d’arc souple appliquée aux problèmes dcop,
Journées d’Intelligence Artificielle Fondamentale (JIAF) (2020) 63.

[12] T. Grinshpoun, T. Tassa, V. Levit, R. Zivan, Privacy preserving region optimal algorithms
for symmetric and asymmetric dcops, Artificial Intelligence 266 (2019) 27–50.

[13] F. Fioretto, E. Pontelli, W. Yeoh, Distributed constraint optimization problems and applica-
tions: A survey, Journal of Artificial Intelligence Research 61 (2018) 623–698.

[14] D. T. Nguyen, W. Yeoh, H. C. Lau, R. Zivan, Distributed gibbs: A linear-space sampling-
based dcop algorithm, Journal of Artificial Intelligence Research 64 (2019) 705–748.

[15] J. Larrosa, T. Schiex, In the quest of the best form of local consistency for weighted csp, in:
IJCAI, volume 3, 2003, pp. 239–244.

[16] P. Gutierrez, P. Meseguer, Improving bnb-adopt+-ac, in: Proceedings of the 11th Interna-
tional Conference on Autonomous Agents and Multiagent Systems-Volume 1, International
Foundation for Autonomous Agents and Multiagent Systems, 2012, pp. 273–280.

[17] M. C. Cooper, S. De Givry, M. Sánchez, T. Schiex, M. Zytnicki, T. Werner, Soft arc
consistency revisited, Artificial Intelligence 174 (2010) 449–478.

[18] S. Ali, S. Koenig, M. Tambe, Preprocessing techniques for accelerating the dcop algorithm
adopt, in: Proceedings of the fourth international joint conference on Autonomous agents
and multiagent systems, ACM, 2005, pp. 1041–1048.

	1 Introduction
	2 Background
	2.1 Distributed Constraint Optimization Problem (DCOP)
	2.2 Soft arc consistency
	2.3 AFB_BJ+_AC* algorithm

	3 The AFB_BJ+_DAC* algorithm
	3.1 Description of AFB_BJ+_DAC*
	3.2 Correctness of AFB_BJ+_DAC*

	4 Experimental Results
	5 Conclusion

