CEUR-WS.org/Vol-2970/gdepaperl.pdf

A Short Tutorial on s(CASP), a Goal-directed
Execution of Constraint Answer Set Programs

Joaquin Arias’, Gopal Gupta? and Manuel Carro*?

YCETINIA, Universidad Rey Juan Carlos, Madrid, Spain
ZUniversity of Texas at Dallas, Richardson, USA
’IMDEA Software Institute, Madrid, Spain
*Universidad Politécnica de Madrid, Spain

Abstract

This paper presents a short tutorial on s(CASP), highlighting some of the novel aspects and the reasons
for its design. The most important aspect of s(CASP) is its goal-directed top-down execution model
that implements Constraints Answer Set Programming. The execution strategy of s(CAPS) avoids the
grounding phase, present in most ASP systems, and can constraint variables that, as in CLP, are kept
during the execution and in the answer sets. Additionally, s(CASP) generates a human-understandable
justifications (in natural language) of the resulting answer sets. s(CASP) is implemented in Prolog (cur-
rently available for Ciao and SWI Prolog) and has been used in several applications, including medical
advisors, avionic, legal reasoner, XAl and natural language processing.

Keywords
Answer Set Programming, Constraint, Goal-directed, s(CASP), Tutorial

1. Introduction

s(CASP) [1] is a novel non-monotonic reasoner, developed by Joaquin Arias in collaboration
with IMDEA Software Institute and the University of Texas at Dallas. It is a re-implementation
of s(ASP) [2] by Kyle Marple, extended with constraints. The main contribution of s(CASP)
is its ability to evaluate Constraint Answer Set Programs without a grounding phase, either
before or during execution. s(CASP) supports predicates and thus retains logical variables (and
constraints) both during the execution and in the answer sets. The operational semantics of
s(CASP) relies on backward chaining, which is intuitive to follow and lends itself to generating
explanations that can be translated into natural language [3]. As the execution of an s(CASP)
program returns partial stable models, that are the relevant subsets of the stable models [4],
i.e., include only the (negated) literals necessary to support the initial query. To the best of our
knowledge, s(CASP) is the only system that exhibits the property of relevance [5].

s(CASP) has been already applied in relevant fields mainly related to the representation of
commonsense reasoning:

GDE’21: ICLP’21 (Virtual) Workshop on Goal-directed Execution of Answer Set Programs, September 20, 2021
Q joaquin.arias@urjc.es (J. Arias); gupta@utdallas.edu (G. Gupta); manuel.carro@imdea.org (M. Carro)
& http://www.ia.urjc.es/GIA/joaquin-arias/ (J. Arias); https://personal.utdallas.edu/~gupta/ (G. Gupta)
® 0000-0003-4148-311X (J. Arias); 0000-0001-9727-0362 (G. Gupta); 0000-0001-5199-3135 (M. Carro)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

71 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:joaquin.arias@urjc.es
mailto:gupta@utdallas.edu
mailto:manuel.carro@imdea.org
http://www.ia.urjc.es/GIA/joaquin-arias/
https://personal.utdallas.edu/~gupta/
https://orcid.org/0000-0003-4148-311X
https://orcid.org/0000-0001-9727-0362
https://orcid.org/0000-0001-5199-3135
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

« An automated reasoner that uses Event Calculus (EC) [6], available at http://bit.ly/
EventCalculus. The expressiveness of s(CASP) allows deductive reasoning tasks in do-
mains featuring constraints involving dense time and fluents with continuous properties.
It is being used to model real-world avionics systems, to verify (timed) properties as well
as to identify gaps with respect to system requirements [7].

« s(CASP) justification framework has been used to bring Explainable Artificial Intelligence
(XAI) principles to rule-based systems capturing expert knowledge [8, 3], ILP systems that
generate ASP programs [9], and concurrent imperative programs based on behavioral,
observable specifications [10].

« Two natural language understanding systems [11]: SQUARE, a Semantic-based Question
Answering and Reasoning Engine, and StaCACK, Stateful Conversational Agent using
Commonsense Knowledge. They use the s(CASP) engine to “truly understand” and
perform reasoning while generating a natural language explanation for their responses.
Building on these systems Kinjal, leader of one of the nine teams selected to participate in
Amazon Alexa Socialbot Grand Challenge 4', is developing a conversational Al chatbot.

« Jason Morris’ team” has developed an expert system at the SMU Centre for Computational
Law at Singapore. They have coded rule 34 of Singapore’s Legal Profession. The front-end
of the system is a web interview that will collect information from a user, run the query
on s(CASP), and display the results with a corresponding explanation.

« s(LAW), an administrative and judicial discretion reasoner[12], which allows mod-
eling legal rules involving ambiguity and infers conclusion, providing (natural lan-
guage)justifications based on them.

In addition, in January 2021, during the HackReason® at UT Dallas, 17 teams developed
applications that rely on simulating human-style commonsense reasoning using s(CASP).

This tutoral provides a brief description of s(CASP). Section 2 describes the installation
process. Section 3 presents the language supported by s(CASP). Section 4 provides some ticks
to tune the size, and/or the number of resulting answer sets and to adjust the constraint’s
accuracy. Section 5 gives a brief description of the available flags to generate justifications
and/or encoding (in natural language) with different levels of detail. In Section 6 we present
the Dynamic Consistency Check (DCC), still a work in progress, and how can be activated for
testing. Finally, in Section 7 we propose some ideas for improving s(CASP).

2. s(CASP) Installation on Ciao or SWI-Prolog

As we mentioned before, s(CASP) is currently available to be executed under Ciao http://
ciao-lang.org/, or SWI-Prolog https://www.swi-prolog.org/. The s(CASP) source code for Ciao
is available at https://gitlab.software.imdea.org/ciao-lang/sCASP and for SWI-Prolog, thanks to
Jan Wielemaker, at https://github.com/JanWielemaker/sCASP.

"https://cs.utdallas.edu/computer-scientists-enhance-alexas-small-talk-skills/
*https://github.com/smucclaw/r34_sCASP
*https://hackreason.aisutd.org/

http://bit.ly/EventCalculus
http://bit.ly/EventCalculus
http://ciao-lang.org/
http://ciao-lang.org/
https://www.swi-prolog.org/
https://gitlab.software.imdea.org/ciao-lang/sCASP
https://github.com/JanWielemaker/sCASP
https://cs.utdallas.edu/computer-scientists-enhance-alexas-small-talk-skills/
https://github.com/smucclaw/r34_sCASP
https://hackreason.aisutd.org/

Installation on Ciao Ciao is a programming language that is builds from a logic-based
simple kernel and is designed to be extensible and modular. The system implements some
advanced features such as separate and incremental compilation, global program analysis
and static debugging and optimization (via source to source program transformation, CiaoPP
preprocessor), a build automation system, documentation generator, debugger, and (Emacs-
based) development environment.

The installation of Ciao can be done using an interactive assistant from the command line in
three steps: first, we run the interactive assistant *, then, we activate the added Ciao path, and
finally, we install s(CASP) as a bundle:

curl https: //ciao-lang.org/boot -sSfL | sh
source ~/ washrag
ciao get gitlab.software.imdea.org/ciao-lang/sCASP

When the installation succeeds, a folder with the source code and s(CASP) examples is created
in the ciao workspace (the default path is ~/.ciao/sCASP/). The --help_all flag generates
the list of all available flags ° to consult and/or adapt s(CASP) behavior.

Installation on SWI-Prolog SWI-Prolog offers a comprehensive free Prolog environment.
Since its start in 1987, SWI-Prolog development has been driven by the needs of real-world
applications. SWI-Prolog is widely used in research and education as well as commercial appli-
cations. Additionally, it offers SWISH (https://swish.swi-prolog.org/), an online environment for
teaching and exchanging ideas. Therefore, thanks to Jan Wielemaker, we can not only generate
a standalone file, but also we have the opportunity to use s(CASP) directly in SWISH.

To generate the standalone file we have to use the latest development release version of SWI-
Prolog available at https://www.swi-prolog.org/download/devel - there are already compiled
SWI-Prolog binaries for Linux, Windows, and MacOS. Then, to generate the executable file of
s(CASP), we just need to run the make file available in the corresponding s(CASP) repository
for SWI-Prolog (https://github.com/JanWielemaker/sCASP).

3. Getting started

s(CASP) extends the expressiveness of Answer Set Programming systems by featuring predicates,
constraints among non-ground variables, uninterpreted functions, and, most importantly, a
top-down, query-driven execution strategy. These features make it possible to return answers
with non-ground variables (possibly including constraints among them) and to compute partial
models by returning only the fragment of a stable model that is necessary to support the answer
to a given query.

In s(CASP), and unlike Prolog’s negation as failure and ASP default negation, not p(X) can
return bindings for X on success, i.e., bindings for which the call p (x) would have failed.

*For Linux and MacOS use the sh-terminal, for Windows the “Windows Subsystem for Linux” is required.
*For the reader’s convenience the help_all output is available in Appendix A.

https://swish.swi-prolog.org/
https://www.swi-prolog.org/download/devel
https://github.com/JanWielemaker/sCASP

Example 1. Considering the program p.pl°

1 p@).
let’s run s(CASP) in the iterative mode by invoking scasp -i p.pl.

Then, we introduce the query ?- not p(X). and s(CASP) would return the binding X \=a,
where \= is a disequality constraint meaning X # a, and the model {not p(X |{X\=a})}
that represents the set of not p(X) can be proven only when X # a.”

Thanks to the interface of s(CASP) with constraint solvers, sound non-monotonic reasoning
with constraints is possible.

Example 2. Consider the program p2.pl:
1 pX):-X>0.
which for the same query as above, returns the model {not p(x | {x < 0})}.

As we mentioned before, s(CASP) supports uninterpreted functions (with the same con-
ventions as Prolog), e.g., [f (a) |Rest] denotes a list with head f (a) and tail Rest. While in
conventional ASP implementations this could give rise to an infinite grounded program, the
s(CASP) execution model can deal with them similarly to Prolog, with the added power of the
using constructive negation in the execution and returned models.

Example 3. For the program member.pl

1 member(X, [X|Xs]).

» member(X, [_|Xs]):- member(X, Xs).
3

« 1ist([1,2,3,4,5]).

5

¢ ?- 1list(A), not member(B, A).

the predicate mnember/2 models the membership of a list as usual in (classical) logic programming.
The query derives the conditions for an element B not to belong to a given list A.

Since we include the query as part of the program, invoking s(CASP) in automatic mode® it
returns the following model and binding:

{ list([1,2,3,4,5]),
not member(B | {B # 1,B # 2,B # 3,B # 4,B # 5}, [1,2,3,4,5]),
not member(B | {B # 1,B # 2,B # 3,B # 4,B # 5}, [2,3,4,5]),
not member(B | {B # 1,B # 2,B # 3,B # 4,B # 5}, [3,4,5]),
not member(B | {B # 1,B # 2,B # 3,B # 4,B # 5}, [4,5]),
not member(B | {B # 1,B # 2,B # 3,B # 4,B # 5}, [5]),
not member(B | {B # 1,B # 2,B # 3,B # 4,B #* 5}, []) }

¢ All programs shown in this paper are available at http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/ and
the results described have been obtained using s(CASP) under Ciao (version 0.21.08.25).

"Uniqueness of names is assumed for constants and function names: any two constants or functions with
different names represent different objects.

#The automatic mode is selected by default so the flag -a or --auto can be omitted, i.e., scasp member.pl.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/p.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/p2.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/member.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/

A=1[1,2345,B#*1,B# 2 B#*# 3, B+ 4, B# 5

s(CASP), like the ASP implementations, is based on stable model semantics [4] and, unlike
Prolog, supports non-stratified negation.

Example 4. The following program, in weekend.pl:

1 opera(saturday) :- not home(saturday).
2 home(saturday) :- not opera(saturday).
3 dinner(sunday) .

models that on Saturday, Bob either goes to the opera or stays home and on Sunday he has dinner.
The top-down evaluation of the non-stratified negation in lines 1-2 makes a loop with an even
number of intervening negations (even loop). When the s(CASP) metainterpreter detects an even
loop, the truth/falsehood of the atoms involved is assumed to generate different models, the consis-
tency of which is subsequently checked. In this example, there are two possible models, and given
a query s(CASP) returns (if exists) the relevant partial model for the query:

?- opera(saturday) returns {opera(saturday),not home(saturday) }.
?- home (saturday) returns {home (saturday) ,not opera(saturday)}.
?- dinner (sunday) returns {dinner (sunday) }.
?- opera(saturday), home(saturday) returns no models.

Note that opera (saturday) and home (saturday) cannot be part of the same model simul-
taneously, so for the last query, there are no (partial) models.

In addition to default negation, s(CASP) supports classical negation (using the prefix ’-’) to
capture the explicit evidence that a literal is false, e.g. not opera(saturday) means that we
have no evidence that Bob goes to the opera (we can not prove it), and -opera(saturday)
means that we have explicit evidence that Bob does not go to the opera (there is a proof for it).

4. Tuning of the Partial Answer Sets Output

In this section, we describe directives and flags that can be used to tune the output of s(CASP) to
select the atoms that appear in the partial model, avoid consistency checks, generate a specific
number of answers, and/or determine the accuracy of the real numbers.

Select the atoms that appear in the partial model: The directive #show can be used to
select which atoms should appear in the partial models.

Example 5. Consider the program weekend_show.pl that includes the directive:
1 #show opera/1, home/1, dinner/1.

to the program in Example 4. Now, in the partial models returned by s(CASP) only positive atoms
appear, so for the query ?- opera(saturday) it returns {opera(saturday}.

Negated atoms can also be selected, e.g., #show not home/1, -opera/1 is also valid.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/weekend.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/weekend_show.pl

opera(D) :- not home(D). % A day D, Bob either goes to the opera. ..

1

2 home(D) :- not opera(D). % ... or stays home.

3 home(monday) . % On Monday, Bob stays at home.

4

5 :- baby(D), opera(D). % When Bob's best friend comes with her baby, it is
6 % not a good idea to take the baby to the opera.

7 baby(tuesday) . % They come on Tuesday.

8

9 ?- opera(D). % QUERY: When might Bob go to the opera?

Figure 1: s(CASP) encoding of opera.pl.

Denials: In ASP, denials are constructions of the form : - p, g, i.e., rules without head, and
are used to express that the conjunction of atoms p A g cannot be true: either p, q, or both,
have to be false in any stable model. Additionally, the s(CASP) compiler also detects statically
rules of the form r: - g,not r., called olon rules, and introduces denials to ensure that models
satisfy —q V r even if the atoms r or q are not needed to solve the query. Let us look at two
examples.

Example 6. For the following program in olon.pl
1 p :-notq. 2 (g :- not p. 3 I :-notr.

the compiler introduces the denial : - not r which is checked for consistency after any given
query. Therefore, s(CASP) returns no models, regardless of the initial query.

Example 7. Fig. 1 shows the code of opera.pl, an extended version of weekend.pl.
The denial in line 5 expresses that the conjunction of atoms baby (D) N\ opera (D) cannot be
simultaneously true for any value of D. Thus for the query in line 9 the resulting partial model is:

{ opera(D | {D \=monday;D \= tuesday}), not home(D | {D \=monday,D \= tuesday}),
not baby(Var1 | {Var1 \ = tuesday}), baby(tuesday), not opera(tuesday), home(tuesday) }

where the atom opera ({D |{D\=monday,D \=tuesday}) means that Bob can go to the opera
any day except on Monday or Tuesday.

For debugging purposes, s(CASP) provides flags to disable consistency checks: (i) --no_olon
disables the consistency check of denials introduced by the compiler due to olon rules but
checks the user-defined denials; (ii) - -no_nmr disables consistency check of all non-monotonic
rules. In Example 6, runing s(CASP) by invoking scasp --no_nmr -i olon.pl, for the
query ?- p returns the model {p,not g} which may be useful for debugging.

Since consistency checks are evaluated when a tentative partial model is encountered, they
introduce a run-time penalty. To reduce this overhead we propose a Dynamic Consistency
Check (DCC) [13] which triggers NMR checks as soon a literal involving them is added to the
partial model. In Section 6 we present promising preliminary results of this technique.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/olon.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/weekend.pl

Partial Answer Sets: While in mainstream ASP implementations each answer corresponds
to a stable model, in s(CASP) each answer is a partial answer set containing the subset of
(negated) atoms that supports the query with specific binding of the free variables in the query.
Consequently, two answer sets for a query may (not) correspond to the same stable model.

Example 8. Considering the member.pl program of Example 3, for the query ?-1ist(A),
member (B, A) s(CASP) generates five answers sets, corresponding to the five possible bindings
of B, i.e., B=1, B=2, B=3, B=4, and B=5. While all five answer sets correspond to a single stable
model, each partial model is different because they contain only the atoms needed to support the
query with that specific binding, i.e., the partial answer set for B=1 is:

{ 1ist([1,2,3,4,5]), member(1,[1,2,3,4,5]) }
and the partial answer set for B=2 is:

{ 1ist([1,2,3,4,5]), member(2,[1,2,3,4,5]), member(2,[2,3,4,5]) }

The -sN or -nN flag can be used to specify the number N of answer sets that s(CASP) should
return in automated mode, and by adding the -s0 or -no0 flag s(CASP) would return all the
possible answers sets.

Constraint precision: The s(CASP) system has a generic interface to enable plugging in
constraint solvers. s(CASP) currently includes the CLP(Q) linear constraints solver [14], that
supports the arithmetic constraints <, >, =, <, >. The selection of CLP(Q) instead of the faster
CLP(R) is motivated by sound reasons. To transform the output from rationals to floating-point
numbers, s(CASP) provides the flag -r[=d], where d can be used to determine the (maximum)
number of decimal places (default is 5 decimal places).

Example 9. For the following program, in rationals.pl
L S(GY) - X #=Y * 7/53.

the query ?- s (X, 4.35) returns the binding X=609/1060, invoking s(CASP) without flags, and
returns the binding X=0.574 invoking scasp -r=3 rationals.pl.

5. Justification and encoding (in natural language)

In the context of the European Union approved the General Data Protection Regulation
(GDPR) [15] and Explainable Artificial Intelligence [16] (XAI), we are facing challenges that
demand XAI to understand, appropriately trust, and effectively manage an emerging generation
of artificially intelligent machine partners. However, justifying why an answer is a consequence
from an ASP program may be non-trivial, more so when the user is an expert in a given domain,
but not necessarily knowledgeable in ASP.

Justifications: s(CASP) uses top-down evaluation trees to generate minimal justifications in
which it is possible to control which literals should appear.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/member.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/rationals.pl

JUSTIFICATION TREE:
we assume that Bob goes to the opera on a day D not equal monday, nor tuesday, because
Bob does not stay at home on D not equal monday, nor tuesday.
The global constraints hold, because
the global constraint number 1 holds, because
there is no evidence that 'baby' holds (for varl), with Varl not equal tuesday, and
'baby' holds (for tuesday), and
we assume that there is no evidence that Bob goes to the opera on the day tuesday, because
'home' holds (for tuesday).

Figure 3: Human-readable justification of opera.pl.

Example 10. (cont. Example 7) Consider the program opera.pl in Figure 1.
When s(CASP) is run by invoking scasp --tree opera.pl, in addition to the partial model,
it generates the justification shown in Figure 2.
The justification shows that, as we
mentioned in Example 7, in this partial JUSTIFICATICN. TREE:
model, the atom opera (D |{D\=monday, assume(opera(D | {D \= monday,D \= tuesday})):-

D\=tuesday}) is assumed to holds, not home(D | {D \= monday,D \= tuesday}).

and this assumption is consistent with denial :-
the denial. To check the denial, i.e., that not o_chik 1 :-
the conjunction of atoms baby(D) A not baby(var1 | {var1 \= tuesday}),
opera(D) is not simultaneously true baby(tuesday),
for any value of D, s(CASP) checks that assume(not cpera(tuesday)) :-
¥ D (not baby(D) \ (baby(D) home(tuesday) .
N not opera(D))).
The flags used to control the literals that Figure 2: Justification of opera.pl.

appear in the justification are: (i) mid, used

by default, which only displays the user-defined predicates; (ii) long that displays all predicates,
including auxiliary predicates such as the forall/2 used to check this denial; and (iii) short
which only displays the annotated literals. Additionally, the flag neg, used by default, includes
the default-negated version of the annotated/selected predicates, whereas the flag pos does not.

The s(CASP) justification framework provides a mechanism for presenting natural language
justifications using a generic translation and the possibility of customize it with directives that
provide translation patterns. Both plain text and expandable, user-friendly HTML files can be
generated.

Example 11. (cont. Example 10) Consider the following module in opera.pred.

1 #pred opera(D) :: 'Bob goes to the opera on @(D:day)’.
2 #pred not home(D) :: 'Bob does not stay at home on @(D)'.

When executed s(CASP) by invoking scasp --tree --human opera.pl opera.pred,
the natural language justification is obtained (Figure 3). Note that lines 1, 2, and 7 follow the
translation patterns defined in opera. pred.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/opera.pred

Additionally, adding the --html=bob flag, s(CASP) generates the HTML file bob.html, which
includes the query, the bindings and an expandable justification tree that can be expanded and/or
collapsed to facilitate its analysis.

Compiled code: Given an ASP program, a dual program compiled by s(CASP) will include
the rules that express the constructive negation of the predicates in the original ASP program [2].
These dual rules provide a means to constructively determine the constraints under which a
predicate would fail.

During the generation of the duals, for each clause, the compiler generates independent
clauses with the “negated” literals in its body, and to avoid redundant answers, every i*" clause
for a negated literal includes calls to any ;%" literal with j < i.

Example 12. For the clause h(X,Y) : - r(X) ,not s(X,Y),q(Y), its dual is:

1 not h(X,Y) :- not r(X).
2 not h(X,Y) :- r(X), s(X,Y).
3 not h(X,Y) :- r(X), not s(X,Y), not q(Y).

In propositional programs this optimization is not desirable because we may lose relevant answers,
so s(CASP) provides the -d or --plaindual flag to generate the duals with single-goal clauses.

When we want to modify the dual program, we can use the --code’ flag to output the dual
program, and then load an updated version with the -c or --compiled flag.

Additionally, translation patterns can be used to display the compiled program in natural
language, thereby making it easier for experts without a programming background to understand
both the program and the results of its execution.

Example 13. (cont. Example 11) By invoking scasp --code --human opera.pl
opera.pred, s(CASP) would display the dual program (including the duals and denials), fol-
lowing the translation patterns and/or the generic translation.

6. Dynamic Consistency Check (Work in Progress)

As we mentioned before, the denials are evaluated after the query, ensuring that the tentative
partial model is consistent with them. In cases where this evaluation fails the execution
backtracks to check other alternatives. The goal of the Dynamic Consistency Check (DCC) is to
check the denials as soon as atoms involved are added to the tentative partial model.

Our proposal is based on the constraint propagation algorithm, which, when the domain of a
decision variable is modified, examines the constraints containing that variable to determine
whether any values in the domains of other decision variables are now inconsistent. During ASP
program evaluation, when an atom is added to the tentative partial model, the denials containing
that atom are examined to determine if the presence of other atoms makes the tentative partial
model inconsistent. In this case, the evaluation fails and is immediately backtracked to avoid
computational waste. We believe that the benefits of the denial propagation in detecting

By adding the - -raw flag, the system prints the clauses in the same order as the compiler does.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/bob.html

1 % Graph ¢ edge(b, a). 11 edge(c, d).
2 vertex(a). 7 edge(b, d). 1z edge(d, a). eea
3 vertex(b). 8 edge(a,). 13 edge(c, a). ’4

4+ vertex(c). 9 edge(a, b). 14 edge(a, d).

s vertex(d). 10 edge(b, ©). 15 edge(d, b). *

Figure 4: s(CASP) encoding and graph of graph.pl. 0.

inconsistencies as early as possible outweigh the overhead introduced (i) during compilation to
generate the DCC rules used to trigger denials involving specific atoms, and (ii) due to the extra
work done to check denials when there are no inconsistencies.

Example 14. Consider the standard ASP code for the Hamiltonian problem, in hamiltonian.pl

1 #show chosery2. 7 % Every vertex must be reachable.

2 reachable(V) :- chosen(V, a). s :- vertex(U), not reachable(U).

s reachable(V) :- chosen(V,U), reachable(U). s % Do not choose edges to/from the same vertex
4 % Choose or not an edge of the graph. 10 :- chosen(U,W), U \=V, chosen(V,w).

s chosen(U,V) :- edge(U,V), not other(U,V). u :- chosen(w,U), U \=V, chosen(w,V).

¢ other(U,V) :- edge(U,V), not chosen(U,V). 12 ?- reachable(a).

where the denials in lines 10-11 are used to discard those tentative models that have chosen edges
violating the properties of the Hamiltonian cycle. For the query in line 12, using the graph in Fig. 4
there are three stable models, one for each Hamiltonian cycle:

1 { chosen(a,c), chosen(c,d), chosen(d,b), chosen(b,a),... }
2 { chosen(a,b), chosen(b,c), chosen(c,d), chosen(d,a),... }
s { chosen(a,d), chosen(d,b), chosen(b,c), chosen(c,a),... }

However, s(CASP) follows the generate-and-test paradigm, i.e., it generates multiple cycles that
are checked for consistency when a cycle that reaches all vertex is complete. As a consequence,
if the evaluation chose two edges to/from the same vertex, trying combinations (on backtracking)
with the rest of edges would be waste of effort.

Evaluation: We compared the performance of s(CASP) with and without DCC using a MacOS
11.5.2 Intel Core i7 at 2.6GHz. We observe that using DCC, for the evaluation of the Hamiltonian
problem (Example 14) with the graph in Figure 4, we obtain a speedup of 6.8:

« Without DCC: invoking scasp --prev_forall -n0 hamiltonian.pl
graph.pl.!? the evaluation of the three models takes 8.266s.

« With DCC: invoking scasp --prev_forall -n0 --dcc hamiltonian.pl
graph.pl hamiltonian_dcc.pl,'’ the evaluation, using this preliminary DCC
implementation, takes only 1.215s.

!"Note that we are using a specific forall/2 implementation to run this example (more details in Section 7).
""Note that the DCC implementation is unfinished and the DCC rules for the denials in lines 10-11 are included
manually in hamiltonian_dcc.pl. In the future, they will be compiled automatically.

http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/graph.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/hamiltonian.pl
http://platon.etsii.urjc.es/~jarias/papers/scasp-gde21/hamiltonian_dcc.pl

7. Future Work

As already mentioned, the implementation has been improved in several aspect but can still be
substantially improved, and in particular we are planning to:

Finish the DCC implementation and work on using analysis to optimize the compilation
of the DCC rules, being able to interleave their execution with the top-down strategy to
discard models as soon as they are shown to be inconsistent.

Use dependency analysis to improve the generation of the dual programs.

Apply partial evaluation and better compilation techniques to remove (part of) the over-
head brought about by the interpreting approach.

Optimize the implementation of the c-forall algorithm using tabling [17]. Currently there
are four alternatives (by default, all_c_forall, prev_forall, and sasp_forall)
but all of them enter loops, generate redundant answers and/or discard solutions.

In addition, tabling, and ATCLP [18], can be use to (i) collect the minimal partial models,
increasing performance and readability, and (ii) increase the range of supported programs,
by handling positive variant loops that are now detected and halted. Note that halting
variant loops may cause a loss of solutions, so s(CASP) provides the --variant flag to
disable this behavior which can lead to loops.

Improve the disequality constraint solver to handle pending cases. The -w or --warning
flag can be used to warn if an unsupported constraint or variant loop is detected.
Finally, although s(CASP) provides flags (v, v0, v1, and v2) to trace a program evaluation,
better integration with the Ciao and SWI-Prolog debuggers is desirable.

References

(1]

(2]

(3]

J. Arias, M. Carro, E. Salazar, K. Marple, G. Gupta, Constraint Answer Set Programming
without Grounding, Theory and Practice of Logic Programming 18 (2018) 337-354. doi:10.
1017/5S1471068418000285.

K. Marple, E. Salazar, G. Gupta, Computing Stable Models of Normal Logic Programs
Without Grounding, arXiv 1709.00501 (2017). URL: http://arxiv.org/abs/1709.00501.
arXiv:1709.00501.

J. Arias, M. Carro, Z. Chen, G. Gupta, Justifications for goal-directed constraint answer
set programming, in: Proceedings 36th International Conference on Logic Programming
(Technical Communications), volume 325 of EPTCS, Open Publishing Association, 2020,
pp- 59-72. doi:10.4204/EPTCS.325.12.

M. Gelfond, V. Lifschitz, The Stable Model Semantics for Logic Programming, in: 5th
International Conference on Logic Programming, 1988, pp. 1070-1080. URL: http://www.
cse.unsw.edu.au/~cs4415/2010/resources/stable.pdf.

L. M. Pereira, J. N. Aparicio, Relevant counterfactuals, in: EPIA 89, 4th Portuguese
Conference on Artificial Intelligence, Lisbon, Portugal, September 26-29, 1989, Proceedings,
1989, pp. 107-118. doi:10.1007/3-540-51665-4_78.

http://dx.doi.org/10.1017/S1471068418000285
http://dx.doi.org/10.1017/S1471068418000285
http://arxiv.org/abs/1709.00501
http://arxiv.org/abs/1709.00501
http://dx.doi.org/10.4204/EPTCS.325.12
http://www.cse.unsw.edu.au/~cs4415/2010/resources/stable.pdf
http://www.cse.unsw.edu.au/~cs4415/2010/resources/stable.pdf
http://dx.doi.org/10.1007/3-540-51665-4_78

(6]

(7]

[12]

[16]

[17]

(18]

J. Arias, Z. Chen, M. Carro, G. Gupta, Modeling and Reasoning in Event Calculus Us-
ing Goal-Directed Constraint Answer Set Programming, in: Pre-Proc. of the 29th Int’l.
Symposium on Logic-based Program Synthesis and Transformation, 2019.

B. Hall, S. C. Varanasi, J. Fiedor, J. Arias, K. Basu, F. Li, D. Bhatt, K. Driscoll, E. Salazar,
G. Gupta, Knowledge-Assisted Reasoning of Model-Augmented System Requirements
with Event Calculus and Goal-Directed Answer Set Programming, in: Proc. 8th Workshop
on Horn Clause Verification and Synthesis, 2021.

Z. Chen, K. Marple, E. Salazar, G. Gupta, L. Tamil, A Physician Advisory System for
Chronic Heart Failure Management Based on Knowledge Patterns, Theory and Practice of
Logic Programming 16 (2016) 604-618. d0i:10.1017/S1471068416000429.

F. Shakerin, G. Gupta, Induction of Non-Monotonic Logic Programs to Explain Boosted Tree
Models Using LIME, in: AAAI 2019, 2019, pp. 3052-3059. doi:10.1609/aaai.v33101.
33013052.

S. C. Varanasi, E. Salazar, N. Mittal, G. Gupta, Synthesizing Imperative Code from Answer
Set Programming Specifications, in: LOPSTR, volume 12042 of Lecture Notes in Computer
Science, Springer, 2019, pp. 75-89. doi:10.1007/978-3-030-45260-5_5.

K. Basu, S. Varanasi, F. Shakerin, J. Arias, G. Gupta, Knowledge-driven Natural Language
Understanding of English Text and its Applications, AAAT’21 (2021).

J. Arias, M. Moreno-Rebato, J. A. Rodriguez-Garcia, S. Ossowski, Modeling Administrative
Discretion Using Goal-Directed Answer Set Programming, in: Advances in Artificial
Intelligence, CAEPIA 20/21, Springer International Publishing, Cham, 2021, pp. 258-267.
K. Marple, G. Gupta, Dynamic Consistency Checking in Goal-Directed Answer Set
Programming, Theory and Practice of Loging Programming 14 (2014) 415-427. URL:
https://doi.org/10.1017/S1471068414000118. doi:10.1017/S1471068414000118.

C. Holzbaur, OFAI CLP(Q,R) Manual, Edition 1.3.3, Technical Report TR-95-09, Austrian
Research Institute for Artificial Intelligence, Vienna, 1995.

European Union, General Data Protection Regulation (GDPR), Regulation (EU) 2016/679 of
the European Parliament and of the Council, 2016. https://eur-lex.europa.eu/eli/reg/2016/
679/0j.

DARPA, Explainable Artificial Intelligence (XAI), Defense Advanced Research Projects
Agency, 2017. https://www.darpa.mil/program/explainable-artificial-intelligence.

J. Arias, M. Carro, Description, Implementation, and Evaluation of a Generic Design
for Tabled CLP, Theory and Practice of Logic Programming 19 (2019) 412-448. URL:
https://arxiv.org/abs/1809.05771. doi:10.1017/S1471068418000571.

J. Arias, M. Carro, Incremental evaluation of lattice-based aggregates in logic programming
using modular TCLP, in: J.J. Alferes, M. Johansson (Eds.), 21st Int’l. Symposium on Practical
Aspects of Declarative Languages, volume 11372 of LNCS, Springer, 2019, pp. 98-114. URL:
https://doi.org/10.1007/978-3-030-05998-9_7. doi:10.1007/978-3-030-05998-9_7.

http://dx.doi.org/10.1017/S1471068416000429
http://dx.doi.org/10.1609/aaai.v33i01.33013052
http://dx.doi.org/10.1609/aaai.v33i01.33013052
http://dx.doi.org/10.1007/978-3-030-45260-5_5
https://doi.org/10.1017/S1471068414000118
http://dx.doi.org/10.1017/S1471068414000118
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.darpa.mil/program/explainable-artificial-intelligence
https://arxiv.org/abs/1809.05771
http://dx.doi.org/10.1017/S1471068418000571
https://doi.org/10.1007/978-3-030-05998-9_7
http://dx.doi.org/10.1007/978-3-030-05998-9_7

A. Output of scasp -help_all

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

-h, -?, --help

--help_all

-i, --interactive
-a, --auto

-sN, -nN

-c, --compiled
-d, --plaindual

-r[=d]

--code
--tree

--plain
--human

--long
--mid
--short

--pos
--neg

--html[=name]

-v, --verbose

--update
--version

--dcc

--all_c_forall
--prev_forall
--sasp_forall

--no_olon
--no_nmr

-w, --warning
--variant

-m, --minimal
--raw

Print this help message and terminate.

Print extended help.

Run in interactive mode (REP loop).

Run in batch mode (no user interaction).

Compute N answer sets, where N >= 0. N = 0 means ’all’.
Load compiled files (e.g. extracted using --code).
Generate dual program with single-goal clauses

(for propositional programs).

Output rational numbers as real numbers.

[d] determines precision. Defaults to d = 5.

Print program with dual clauses and exit.
Print justification tree for each answer (if any).

Output code / justification tree as literals (default).
Output code / justification tree in natural language.

Output long version of justification.
Output mid-sized version of justification (default)
Short version of justification.

Only display the selected literals in the justification.
Add the negated literals in the justification (default).

Generate HIML file for the justification. [name]:
use ’name.html’. Default: first InputFile name.

Trace user-predicate calls.

Trace user-predicate calls (show tree).
Trace user-predicate failures.

Trace user-predicate failures (show tree).
Automatically update s(CASP).

Output the current version of s(CASP)

Activate the Dynamic Consistency Check.
Exhaustive evaluation of c_forall/2.
Deprecated evaluation of forall/2.

Deprecated evaluation of forall/2.

Do not compile olon rules (for debugging purposes) .
Do not compile NMR checks (for debugging purposes) .

Enable warning messages (failures in variant loops / disequality).

Do not fail in the presence of variant loops.

Collect only the minimal models (TABLING required).
Sort the clauses as s(ASP) does (use with --code).

	1 Introduction
	2 s(CASP) Installation on Ciao or SWI-Prolog
	3 Getting started
	4 Tuning of the Partial Answer Sets Output
	5 Justification and encoding (in natural language)
	6 Dynamic Consistency Check (Work in Progress)
	7 Future Work
	A Output of scasp –help_all

